
CSE 230
Intermediate Programming

in C and C++
Recursion

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana

What is recursion?
■ Sometimes, the best way to solve a

problem is by solving a smaller version
of the exact same problem first
■ Recursion is a technique that solves a

problem by solving a smaller problem
of the same type

Shebuti Rayana (CS, Stony Brook University) 2

Recursive Function
■ A function is called recursive if it calls itself
■ In C, all functions can be used recursively
■ Example:

– This will act like an infinite loop
Shebuti Rayana (CS, Stony Brook University) 3

Recursive Function: Example
■ This code

computes the sum
of first n positive
integers.

■ For n = 4

Shebuti Rayana (CS, Stony Brook University) 4

Function Call Value returned
sum(1) 1
sum(2) 2+sum(1) or 2+1
sum(3) 3+sum(2) or 3+2+1
Sum(4) 4+sum(3) or 4+3+2+1

Recursive Function
■ There is a base case (or cases) that is

tested upon entry
■ And a general recursive case
– in which one of the variables, is passed as

an argument in such a way as to ultimately
lead to the base case.

Shebuti Rayana (CS, Stony Brook University) 5

Problems Defined Recursively

Shebuti Rayana (CS, Stony Brook University) 6

■ There are many problems whose solution
can be defined recursively

Example: factorial n

1 if n = 0
n!= (recursive solution)

(n-1)!*n if n > 0

1 if n = 0
n!= (closed form solution)

1*2*3*…*(n-1)*n if n > 0

Coding the Factorial Function
§ Recursive Implementation
int Factorial(int n)
{
if (n==0) // base case
return 1;

else
return n * Factorial(n-1);

}

■ For n > 12 this function will return
incorrect value as the final result is too big
to fit in an integer

Shebuti Rayana (CS, Stony Brook University) 7

Shebuti Rayana (CS, Stony Brook University) 8

Coding the Factorial Function (cont.)
■ Iterative Implementation
int Factorial(int n)
{
int fact = 1;

for(int count = 2; count <= n; count++)
fact = fact * count;

return fact;
}

■ Both recursive and iterative version
returns same value

Shebuti Rayana (CS, Stony Brook University) 9

Another Example: n choose k
(combinations)

Shebuti Rayana (CS, Stony Brook University) 10

■ Given n things, how many different sets of
size k can be chosen?

n n-1 n-1= + , 1 < k < n (recursive solution)k k k-1

n n!= , 1 < k < n (closed-form solution)k k!(n-k)!

with base cases:

n n= n (k = 1), = 1 (k = n)1 n

n choose k implementation
int Combinations(int n, int k)

{

if(k == 1) // base case 1

return n;

else if (n == k) // base case 2

return 1;

else

return(Combinations(n-1, k) +
Combinations(n-1, k-1));

}

Shebuti Rayana (CS, Stony Brook University) 11

Shebuti Rayana (CS, Stony Brook University) 12

Recursion vs Iteration
■ Iteration can be used in place of recursion
– An iterative algorithm uses a looping construct
– A recursive algorithm uses a branching structure

■ Recursive solutions are often less efficient,
in terms of both time and space, than
iterative solutions

■ Recursion can simplify the solution of a
problem, often resulting in shorter, more
easily understood source code

Shebuti Rayana (CS, Stony Brook University) 13

How to write a recursive function?
■ Determine the size factor
■ Determine the base case(s)

(the one for which you know the answer)

■ Determine the general case(s)
(the one where the problem is expressed as
a smaller version of itself)

■ Verify the algorithm
(use the "Three-Question-Method")

Shebuti Rayana (CS, Stony Brook University) 14

Three Question Verification
1. The Base-Case Question
– Is there a non-recursive way out of the function, and

does the routine work correctly for this "base" case?

2. The Smaller-Caller Question
– Does each recursive call to the function involve a

smaller case of the original problem, leading
inescapably to the base case?

3. The General-Case Question
– Assuming that the recursive call(s) work correctly,

does the whole function work correctly?

Shebuti Rayana (CS, Stony Brook University) 15

Recursion: Calculation of
Fibonacci Sequence
■ Recursive solution
𝑓" = 0, 𝑓% = 1, 𝑓'(% = 𝑓' + 𝑓'*%, for 𝑖 = 1, 2, …

– Except for 𝑓"	 and 𝑓%, every element in the sequence is the
sum of the previous two elements

■ The sequence begins 0, 1, 1, 2, 3, 5, 8, …

Shebuti Rayana (CS, Stony Brook University) 16

int Fibonacci(int n)
{
if(n <= 1) // base case
return n;

else
return(Fibonacci(n-1) + Fibonacci(n-2));

}

Recursion: Calculation of
Fibonacci Sequence

Shebuti Rayana (CS, Stony Brook University) 17

Number of Function Calls for
Recursive Fibonacci

Value of n Value of Fibonacci(n) #of function calls
0
1
2
…
23
24
…
42
43

0
1
1
…

28657
46368

…
267914296
433494437

1
1
3
…

92735
150049

…
866988873
1402817465

Shebuti Rayana (CS, Stony Brook University) 18

A large number of function call is required to compute the nth fibonacci
for even moderate values of n

Pitfalls of Recursion
§ Missing base case – failure to provide an escape case.

§ No guarantee of convergence – failure to include within
a recursive function a recursive call to solve a
subproblem that is not smaller.

§ Excessive space requirements - a function calls itself
recursively an excessive number of times before
returning; the space required for the task may be
prohibitive.

§ Excessive recomputation – illustrated in the recursive
Fibonacci method which ignores that several sub-
Fibonacci values have already been computed.

Shebuti Rayana (CS, Stony Brook University) 19

