CSE 230
 Intermediate Programming in C and $\mathrm{C}++$ Recursion

Fall 2017
Stony Brook University
Instructor: Shebuti Rayana

What is recursion?

■ Sometimes, the best way to solve a problem is by solving a smaller version of the exact same problem first

- Recursion is a technique that solves a problem by solving a smaller problem of the same type

Recursive Function

- A function is called recursive if it calls itself
- In C, all functions can be used recursively

■ Example:

```
#include <stdio.h>
int main(void)
{
    printf("The universe is never ending\n");
    main();
    return 0;
}
```

- This will act like an infinite loop

Recursive Function: Example

■ This code computes the sum of first n positive integers.

- For n = 4

```
int sum(int n)
{
if(n <= 1)
return n;
else
    return (n+sum(n-1));
}
```


Function Call
 Value returned

sum(1)	1
sum(2)	$2+\operatorname{sum}(1)$ or $2+1$
sum(3)	$3+\operatorname{sum}(2)$ or $3+2+1$
Sum(4)	$4+\operatorname{sum}(3)$ or $4+3+2+1$

Recursive Function

- There is a base case (or cases) that is tested upon entry
- And a general recursive case
- in which one of the variables, is passed as an argument in such a way as to ultimately lead to the base case.

```
int sum(int n)
{
    if(n <= 1) 
else
    return (n+sum(n-1));
}
```


Problems Defined Recursively

- There are many problems whose solution can be defined recursively

Example: factorial n

$$
\begin{aligned}
& n!= \begin{cases}1 & \text { if } n=0 \\
(n-1)!* n & \text { if } n>0\end{cases} \\
& n!= \begin{cases}1 & \text { if } n=0 \\
1 * 2 * 3 * \ldots *(n-1) * n & \text { if } n>0\end{cases}
\end{aligned}
$$

Coding the Factorial Function

- Recursive Implementation

```
int Factorial(int n)
{
    if (n==0) // base case
    return 1;
    else
        return n * Factorial(n-1);
```

\}

- For $\mathrm{n}>12$ this function will return incorrect value as the final result is too big to fit in an integer

Trace of Recursion: Factorial

Coding the Factorial Function (cont.)

■ Iterative Implementation
int Factorial(int n)
\{
int fact $=1$;
for (int count $=2$; count $<=n$; count++) fact $=$ fact * count;
return fact;
\}

- Both recursive and iterative version returns same value

Another Example: n choose k (combinations)

■ Given n things, how many different sets of size k can be chosen?

$$
\begin{aligned}
& {\left[\begin{array}{l}
n \\
k
\end{array}\right)=\binom{n-1}{k}+\binom{n-1}{k-1}, 1<k<n \quad \text { (recursive solution) }} \\
& \binom{n}{k}=\frac{n!}{k!(n-k)!} \quad, 1<k<n \quad \text { (closed-form solution) } \\
& \text { with base cases: } \\
& \binom{n}{1}=n \quad(k=1),\binom{n}{n}=1 \quad(k=n)
\end{aligned}
$$

n choose k implementation

```
int Combinations(int n, int k)
```

\{
if (k == 1) // base case 1 return n;
else if ($\mathrm{n}==\mathrm{k}$) // base case 2
return 1;
else
return(Combinations (n-1, k) + Combinations (n-1, k-1)) ;
\}

Recursion vs Iteration

- Iteration can be used in place of recursion
- An iterative algorithm uses a looping construct
- A recursive algorithm uses a branching structure
- Recursive solutions are often less efficient, in terms of both time and space, than iterative solutions
- Recursion can simplify the solution of a problem, often resulting in shorter, more easily understood source code

How to write a recursive function?

- Determine the size factor

■ Determine the base case(s)
(the one for which you know the answer)
■ Determine the general case(s) (the one where the problem is expressed as a smaller version of itself)

- Verify the algorithm (use the "Three-Question-Method")

Three Question Verification

1. The Base-Case Question

- Is there a non-recursive way out of the function, and does the routine work correctly for this "base" case?

2. The Smaller-Caller Question

- Does each recursive call to the function involve a smaller case of the original problem, leading inescapably to the base case?

3. The General-Case Question

- Assuming that the recursive call(s) work correctly, does the whole function work correctly?

Recursion: Calculation of Fibonacci Sequence
 - Recursive solution

$$
f_{0}=0, f_{1}=1, f_{i+1}=f_{i}+f_{i-1} \text {, for } i=1,2, \ldots
$$

- Except for f_{0} and f_{1}, every element in the sequence is the sum of the previous two elements

■ The sequence begins $0,1,1,2,3,5,8, \ldots$

```
int Fibonacci(int n)
{
    if(n <= 1) // base case
    return n;
else
    return(Fibonacci(n-1) + Fibonacci(n-2));
}
```


Recursion: Calculation of Fibonacci Sequence

Number of Function Calls for Recursive Fibonacci

Value of n Value of Fibonacci(n)
\#of function calls

0	0	1
1	1	1
2	1	3
\ldots	\ldots	\ldots
23	28657	92735
24	46368	150049
\ldots	\ldots	\ldots
42	267914296	866988873
43	433494437	1402817465

A large number of function call is required to compute the nth fibonacci for even moderate values of n

Pitfalls of Recursion

- Missing base case - failure to provide an escape case.
- No guarantee of convergence - failure to include within a recursive function a recursive call to solve a subproblem that is not smaller.
- Excessive space requirements - a function calls itself recursively an excessive number of times before returning; the space required for the task may be prohibitive.
- Excessive recomputation - illustrated in the recursive Fibonacci method which ignores that several subFibonacci values have already been computed.

