CSE 230
Intermediate Programming
in C and C++

Functions

Fall 2017
Stony Brook University
Instructor: Shebuti Rayana

Concept of Functions in C

The heart of effective problem solving is problem
decomposition. Taking a problem and breaking it into small,
manageable pieces is critical to writing large programs.

In C, the function construct is used to implement this "top-
down" method of programming.

A program consists of one or more files, each file containing
zero or more functions, one of them being amain () function.

Functions are defined as individual objects that cannot be
nested.

Program execution begins with main (), which can call other
functions, including library functions such as printf () and
scanf () .

Functions operate with program variables, and which of these
variables is available at a particular place in a function is
determined by scope rules.

Shebuti Rayana (CS, Stony Brook University)

Why Functions?

There are several reasons to write programs as
collections of many functions. It is simpler to correctly
write a small function to do one job.

Both the writing and debugging are made easier.

It is also easier to maintain or modify such a
program. One can readily change just the set of
functions that need to be rewritten, expecting the rest
of the code to work correctly.

Small functions tend to be self documenting and
highly readable.

Shebuti Rayana (CS, Stony Brook University)

Overview

[- Function definition]

Function declaration
Scope rules

[
L
m Storage classes
L

Recursion

Shebuti Rayana (CS, Stony Brook University)

Function Definition

The C code that describes what a function does is
called the function definition. It must not be confused
with the function declaration.

General Form

return type functilion name (parameter list) {
declarations statements }

Everything before braces comprise header of the
function definition

Everything between braces comprise the body of the
function definition

Parameter list is comma separated list of
declarations

Shebuti Rayana (CS, Stony Brook University)

Example 1: Functlon Definition

1 int factorial(int n)

2~ { function | Y Y
3 int i, product = 1;

4 for(i=2;i<=n;i++)

>~ {

6 product *= 1i;

7 }

8 return product;

9 '}

* The first int tells the compiler that the value returned by the function will be
converted, if necessary, to an int.

* The parameter list consists of the declaration int n. This tells the compiler
that the function takes a single argument of type int.

* An expression such as factorial (7) causes the function to be invoked, or
called.

» The effect is to execute the code that comprises the function definition, with n
having the value 7.

* Finally, the function will return the factorial value of 7.

Shebuti Rayana (CS, Stony Brook University)

Example 2: Function Definition

1 void wrt address(void)

2~ A

3 printf (" "y,

4 " kkkkkkkkhhhkkhhhkx
5 ! ** SANTA CLAUS *",
6 ! ** NORTH POLE *",
7 ! ** EARTH *,
8 " ******************");
9 '}

* The first void tells the compiler that this function returns no value; the
second void tells the compiler that this function takes no arguments.

* Following expression causes the function to be invoked.
wrt address();
* For example, to call the function three times we can write
int 1;
for (i = 0; i < 3; i++)
wrt address();

Shebuti Rayana (CS, Stony Brook University)

Function Definition (cont.)

m If no return type is specified, thenitis int by default

m Any variables declared in the body of a function are
called /ocal variables to that function.

m Other variables declared external to the function are
called global variables.

1 #include <stdio.h>

2

3 int a = is external |] liz
4

5 int main(void)

6~ {

7 int b = ; /* b is local to main()) */
8

9 printf("a = ya); i lobal 1ai
10 printf("b = ",b)
11 return
12}

Shebuti Rayana (CS, Stony Brook University) 8

The return statement

m The return statement may or may not contain an expression
return; OR return expression;

m Example:

return; return 1; return ++a; return (a*b);

m When a return statement i1s encountered, execution of the
function 1s terminated and control 1s passed to the caller.

m If the return contains an expression, then the value of the
expression 1s passed to the caller as well.

m There can be zero or more return statements 1n a function.

m When there is not return, control passed to the caller when
the closing brace 1s encountered.

Shebuti Rayana (CS, Stony Brook University) 9

Function prototype

A function should be declared before it is used.

C provides a function declaration syntax called function
prototype

A function prototype tells the compiler the number and
type of arguments that are to be passed to the function

and the type of the value that is to be returned by the
function.

Example: double sqgrt (double) ;

General: type function name (parameter type list);

Shebuti Rayana (CS, Stony Brook University) 1 O

#include <stdio.h>
void print_ header(void);
void print table(int);

long power(int, int);

int main()

Example:
Function . =,
)

oo WN -

.
4
.
14

11 print table(N
Prototype :, “*

13}

14

15 void print header(void)

16 » {

17 printf("----Print Table of Powers----\n");

18 }

19

20 void print_ table(int n)

21~ {

22 int i, Jj;

23 for(i=1;i<=n;i++)

24 ~ {

25 for(j=1;j<=n;j++)

26 printf("%1d ",power(i,j)):;

27 putchar('\n');

28 }

29 }

30

31 long power(int m, int n)

32~ {

33 int i;

34 long product = 1;

35 for(i=1l;i<=n;i++)

36 product *= m;

37 return product;

38 }
Shebuti Rayana (CS, Stony Brook University)

Overview

m Function definition
m| Function declaration

m Scope rules
m Storage classes
m Recursion

Shebuti Rayana (CS, Stony Brook University)

12

Function Declaration

m From the compilers viewpoint, function declaration
can be generated in various ways. By

- function invocation

- function definition

- explicit function declaration
- function prototype

If a function call, say £ (x), is
encountered before any declaration,
definition, or prototype for it occurs,

then the compiler assumes a default
declaration of the form int £ ()

Shebuti Rayana (CS, Stony Brook University)

#include <stdio.h>

int main (woid)

{
printf ("%d4d", sum (10, 5));
return O;

int sum (int b, int c, int a)

{

return (atb+c);

}

This code compiles in gcc but
returns garbage value 13

1 #include <stdio.h>
2
3 long power(int m, int n)
4~ {
5 int i;
Alternate : o s - o,
7 for(i=1l;i<=n;i++)
St l f 8 product *= m;
y e O 9 return product;
o 10 }
Function i ... -
12 void print header(void)
o 0 13~ {
Deﬁnltlon 14 printf("----Print Table of Powers----\n");
15 }
16
17 void print table(int n)
18 » {
19 int i, 3J;
20 for(i=1l;i<=n;i++)
21 ~ {
22 for(j=1;j<=n;j++)
23 printf("%1ld ",power(i,j)):;
24 putchar('\n');
25 }
26 }
27
28 int main()
29~ {
30 int N = 7;
31 print header();
32 print table(N);
33 return 0;
34)

Shebuti Rayana (CS, Stony Brook University) 1 4

Function Invocation

m Program execution always
begins with main ().

m \When program control
encounters a function name,
the function is called, or
Invoked. This means that
program control passes to
that function.

m After the function does its
work, program control is
passed back to the calling
environment, which then
continues with its work.

Shebuti Rayana (CS, Stony Brook University)

void main()

{

int num;

num = square(4); |
printf("%d" ,num)

P

int square(int n1)

{
int x=nl *ni;

return(x);

}

15

Call-by-value

m If a function is “called by value”

- This means that each argument is evaluated, and its
value is used locally in place of the corresponding
formal parameter.

- Thus, if a variable is passed to a function, the stored
value of that variable in the calling environment will

not be changed.

Shebuti Rayana (CS, Stony Brook University)

16

Example: Call-by-value

#include <stdio.h>

int

int

o {

int

cornpute sum(int n);

main(void)

int n = 3, sum;

printf("%d\n", n); /* 3 is printed */

sum = compute sum(n);

printf("%d\n", n); /* 3 is printed */

printf("%d\n", sum);/* 6 is printed */

return 0;

compute sum(int n) /*sum the integers from 1 to n#*/
int sum = 0;
for(; n>0; --n) /*stored value of n is changes*/

sum += nj;
return sum;

Shebuti Rayana (CS, Stony Brook University)

17

Call-by-reference

m "call-by-reference" is a way of passing addresses
(references) of variables to a function that then
allows the body of the function to make changes to
the values of variables in the calling environment.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

Call by value

Output:
1 5
3 = 10

ll,i);
ll,j);

#include <stdio.h>
void swap(int i, int j)
A
int temp;
temp = i;
i=73;
j = temp;
}
int main()
A
int 1 = 5;
int j =
swap(i,Jj);
printf("i
printf("j
}

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

Shebuti Rayana (CS, Stony Brook University)

#include <stdio.h>
void swap(int *i, int *3j)
= {
int temp;
temp = *1i;
*1 = *J;
*j = temp;
} Output:
i =10
int main() j - 5
A
int i = 5;
int j = ;
swap(&i,&j);
printf("i = ",1);
printf("j = “rd)i
}

aoualajal Aq ||leD

18

Overview

m Function definition
m Function declaration

[- Scope rules]
m Storage classes

m Recursion

Shebuti Rayana (CS, Stony Brook University)

19

Scope Rules

m [he basic rule of scoping is that identifiers are
accessible only within the block in which they are
declared.

m They are unknown outside the boundaries of that
block.

1~ {

2 int a = 2; r bl
3 printf (" ",a); 2 i ri
4w {

5 int a = 5; , i r bl
6 printf (" “,a); /* !

7 }

8 printf (" ",t+a); i ri
9 }

Shebuti Rayana (CS, Stony Brook University) 20

Scope Rules for Nested Blocks

inta=1, b=2, c¢c = 3;
printf(" ", a, b,
{
int b = 4;
float ¢ = ;
printf (" ", a,
a = b;
{
int c;
c = b;
printf (" "
}
printf (" ", a,
}
printf (" "+ a, b,

Shebuti Rayana (CS, Stony Brook University)

/ *

/ *

/ *

/ *

W

W

*/

*/

*/

21

Overview

m Function definition
m Function declaration
m Scope rules

[- Storage classes]
m Recursion

Shebuti Rayana (CS, Stony Brook University)

22

Storage Classes

m Every variable and function in C has two attributes:

- type
- Storage class

m [he four storage classes are automatic, external,
register, and static

m Specifiers: auto, extern, register, static

m Most common storage class is automatic

Shebuti Rayana (CS, Stony Brook University) 23

Storage class: auto

Variables declared within function bodies are
automatic by default

Variables defined at the beginning of a block are also
automatic by default

We can also explicitly specify automatic variables
auto 1int a;

When execution enters a block, system allocates
memory for the automatic variables

When execution exits the block, system releases the
memory allocated for automatic variables (so the
values are lost)

Shebuti Rayana (CS, Stony Brook University) 24

Storage class: extern

m One method of transmitting information across blocks
and functions is to use external variables.

m \When a variable is declared outside of a function,
storage is permanently assigned to it, and the

storage class is extern.

#include <stdio.h>

int a=1, b=2, c =3;
int f(void);

* externvariableis [t min(veid

I intfF('%3d\n", fO):
considered global g,’j}gtf(..%w%gd%w\n”’ 2 b, O
for all the functions | retm &
declared after it. int Fvoid)

» Never disappears

int b, c;
a=bhb=c=4;
return (a + b + ¢);

}

Shebuti Rayana (CS, Stony Brook University)

/% global variables */
/* function prototype */

/% 12 1is printed */
/* 4 2 3 1is printed */

/* b and c are local ¥/
/* global b, c are masked */

25

Storage class: extern

In file filel.c
#include <stdio.h>

int a=1, b =2, c = 3; /* external variables */
int f(void); ‘

int main(void)
printf("%3d\n", fO);
printf("%3d%3d%3d\n", a, b, ;.
return 9;

}
In file file2.c

int f(void)

{
extern int a; /% look for it elsewhere ¥/
int b, ¢;
a=bs=c=4;
return (a + b + ¢); }

The keyword extern is used to tell the compiler to look
for it elsewhere, either in this file or in some other file.

Shebuti Rayana (CS, Stony Brook University) 26

Storage class: register

m Tells the compiler to store the associated variables in
high speed memory registers.

m Defaults to automatic if compiler is unable to store
(resource limitations) the variable into a high-speed
memory register.

m It is used to improve execution speed.

m \When speed is a concern, programmer may choose
a few variables that are frequently accessed and
declare them to be of storage class register.

{

register int i

for (i = 0; 1 < LIMIT; ++i) {

}
} /* block exit will free the register */

Shebuti Rayana (CS, Stony Brook University) 27

Storage class: register

m If a storage class register is specified in a
declaration and the type is absent, then the type int

by default.

m Note that in our example the reqister variable i was
declared as close to its place of use as possible. This
Is to allow maximum availability of the physical
registers, only when needed.

m Always remember that a register declaration is taken
only as advice to the compiller.

Shebuti Rayana (CS, Stony Brook University) 28

Storage class: static

m Storage class static has two distinct usage

1. The more elementary use is to allow a local variable
to retain its previous value when the block is
reentered.

» This is contrast to ordinary automatic variables, which lose their
value upon block exit and must be reinitialized.

Example
void f(void) . _ _ o
{ The first time the function is invoked,
static int cnt = 0; the variable cnt is initialized to zero.
++ent; On function exit, the value of cnt is
1f(cnt%2 == 0) .
preserved in memory. Whenever the
else function is invoked again, cnt is not
' reinitialized.

Shebuti Rayana (CS, Stony Brook University) 29

Static External Variable

m [he second and more subtle use of staticisin
connection with external declarations.

m [hey are scope restricted external variables.

m [he scope is the remainder of the source file in which

they are declared. voia f(voiq)

{
* Thus, they are

unavailable to functions !

defined earlier in the static int v;
file or to functions void g(void)
defined in other files, {
even if these functions
attempt to use the
extern storage class

keyword.

}

Shebuti Rayana (CS, Stony Brook University) 30

Example: Static External Variable

/* A family of pseudo random number generators. */

#define INITIAL SEED 17

#define MULTIPLIER 25173
#define INCREMENT 13849
#define MODULUS 65536

#define FLOATING MODULUS 65536.0

static unsigned seed = INITIAL SEED; /* external, but */
/* private to this file */

unsigned random(void)

{
seed = (MULTIPLIER * seed + INCREMENT) % MODULUS;
return seed; /* return integer between 0 and MODULUS */
}
unsigned probability(void)
{
seed = (MULTIPLIER * seed + INCREMENT) % MODULUS;
return seed/FLOATING MODULUS; /* return float between 0 and 1 */
}

Shebuti Rayana (CS, Stony Brook University)

31

Default Initialization

m In C, both external variables and static variables that
are not initializes by the programmer are initialized to
zero by the system.

Shebuti Rayana (CS, Stony Brook University) 32

Static Functions

m This causes scope of the function to be restricted

m The static functions are only visible within the file in
which they are defined

m They can not be accessed from other files

Shebuti Rayana (CS, Stony Brook University)

33

Limitations of Function Definition and
Prototypes

m [he function storage class specifier, if present, can
be either extern or static, but not both

m auto and register cannot be used

m [he types "array of... " and "function returning ... "
cannot be returned by a function. However, a pointer
representing an array or a function can be returned.

m The only storage class specifier that can occur in the
parameter type listis register.

Shebuti Rayana (CS, Stony Brook University) 34

Overview

Function definition
Function declaration
Scope rules
Storage classes

C

Recursion]

In next class

Shebuti Rayana (CS, Stony Brook University)

35

