CSE 230
Intermediate Programming
in C and C++
Introduction to C

Fall 2017
Stony Brook University
Instructor: Shebuti Rayana




Overview

A brief discussion on introductory C language
concepts

Variables, Expressions, Assignments
Operators

Data types

Flow of Control

Shebuti Rayana (CS, Stony Brook University)



Overview

A brief discussion on introductory C language
concepts

Variables, Expressions, Assignments

Operators
Data types
Flow of Control

Shebuti Rayana (CS, Stony Brook University)



Variables

Variables are simply names used to refer to some location
In the memory

A placeholder for a value

Before using, you need to declare a variables with a
specific type
All variables in C are typed

important to know the type of variables and the size of
these types

Example: Declaring an integer type variable “number”
Int number,

Initializing “number” with a value 10
number = 10;

Declare + Initialize : int number = 10:;

Shebuti Rayana (CS, Stony Brook University) 4



Variables, Expressions,
Assignments - Example

/*distance of a marathon in kilometers*/
#include<stdio.h>

Variables declaration

int main(void) /
{
int miles, yards;

float kilometers; Assignment statements
wiles = 25 / Expression
yards = 385; —

kilometers =1.609 * (miles + yards | 1760.0);
printf("\nA marathon is %f kilometers.\n\n", kilometers);
return O;

J

Output:
A marathon is 42.185970 kilometers.

Shebuti Rayana (CS, Stony Brook University)



Use of #include

#include preprocessor directive in a code
causes the compiler to replace that line with the
entire text of the contents of the named source
file which is included

Example: #include<stdio.h>

stdio.h is a header file, which contains
declaration of functions in standard i/o library

Whenever the functions printf() and scanf() are
used, the header file stdio.h should be included

Shebuti Rayana (CS, Stony Brook University)



Use of printf() and scanf()

Both functions are passed a list of arguments
Control string (may contain conversion specifications)
Other arguments

Function printf() is used for output

Usage: printf(“abc”);
printf(“%s”, “abc”);
printf(“%c%c%c”,’a’,’b’,’c’);
int x = 10; printf(“%d”, x);
float y = 10.5; printf(“%f”, y);

Function scanf() is used for input

Usage: int x; scanf(“%d”, &x);
char c; scanf(“%c”, &c); Here & is the address operator

Shebuti Rayana (CS, Stony Brook University)



Overview

A brief discussion on introductory C language
concepts

Variables, Expressions, Assignments

Operators

Data types
Flow of Control

Shebuti Rayana (CS, Stony Brook University)



Operators

Arithmetic + - * /%

Increment/ ++

Decrement -

Assignment = += = *= /= %=

Relational == < > <= >= |[=

Logical &&(AND) | [(OR) I(NOT)

Bitwise &(AND) |(OR) "™(XOR) ~(complement)

<< (left shift) >> (right shift)
Ternary :? (conditionalExpression ? exprl : expr2)

Shebuti Rayana(CS, Stony Brook University) 9




Operator Precedence and Associativity

() ++(postfix) --(postfix) left to right
+(unary) —(unary) ++(prefix) right to left
—(prefix)

* /% left to right
+ - left to right
= += = *= /= Y%= right to left

¢ All the operators on a given line have equal precedence
with respect to each other, but have higher precedence
than all the operators that occur on the lines below them.

Shebuti Rayana (CS, Stony Brook University) 10




Operators: Example
m-a*b-cisequivalentto((-a) * b) -c
mo6/2**(1+2)=7?(1or9)
minta=b=c=0;

a = ++c;

b =ct++;

printf(“%d %d %d\n”, a, b, ++c);

What is the output?

Shebuti Rayana (CS, Stony Brook University)

11



Example
m-a*b-cisequivalentto((-a) * b) -c
mo6/2*(1+2)=?(1or9)
minta=b=c=0;

a = ++c;

b =ct++;

printf(“%d %d %d\n”, a, b, ++c);

What is the output?
Qutput: 1 1 3

Shebuti Rayana (CS, Stony Brook University)

12



Overview

A brief discussion on introductory C language
concepts

Variables, Expressions, Assignments
Operators

Data types

Flow of Control

Shebuti Rayana (CS, Stony Brook University)

13



Data types

char signed char unsigned char
short int long

unsigned short unsigned unsigned long
float double long double

* Enumerated type: enum
* Type void: void indicates that no value

* Derived Types: pointer, array, structure, union

« The data type of a variable determines how much space
it occupies in storage and how the bit pattern stored is
interpreted.

Shebuti Rayana (CS, Stony Brook University) 14



Integral Data Types

char 1 byte -128 t0 127 or 0 to 255

unsigned char 1 byte 0t0 255

signed char 1 byte -128 to 127

int 4 bytes  -2,147,483,648 to 2,147,483,647

unsigned 4 bytes  01t04,294,967,295

short 2 bytes  -32,768 to 32,767

unsigned short 2 bytes 01065535

long 8 bytes  —9223372036854775808 to
9223372036854775807

unsigned long 8 bytes  0to 18446744073709551615

*sizes are given for 64-bit UNIX machine
Shebuti Rayana (CS, Stony Brook University) 15



Floating-Point Types

Type Storage Value Precision
Size Range

float 4 bytes 1.2E-38 to 6 decimal
3.4E+38

double 8 bytes 1.2E-38 to 15 decimal
3.4E+38

long double 16 bytes 3.4E-49321to 20 decimal
1.2E+1049321

*you can check the sizes of these data types using sizeof{()

Shebuti Rayana (CS, Stony Brook University)

16



Overview

A brief discussion on introductory C language
concepts

Variables, Expressions, Assignments
Operators
Data types

Control flow

Slide Curtesy:

Shebuti Rayana (CS, Stony Brook University)

17



Control Flow

Y VY

Program Control

Program begins execution at the main () function.
Statements within the main () function are then
executed from top-down style, line-by-line.
However, this order is rarely encountered in real C
program.

The order of the execution within the main () body
may be branched.

Changing the order in which statements are executed
Is called program control.

Accomplished by using program control flow
statements.

So we can control the program flows.

Shebuti Rayana (CS, Stony Brook University) 18



Control Flow

—

There are three types of program controls:

. Sequence control structure.

. Selection sfructures such as i f, if-else,

nested 1 f, if-if-else, 1f-else-1f and
switch—-case-break.

. Repetition (loop) such as for, while and

do-while.

Certain C functions and keywords also can be
used to control the program flows.

Shebuti Rayana (CS, Stony Brook University) 19



Sequence

= Take alook at the following example

- ~7 29 - JPp S, B b - =t s~ - F— 1 a =y
inciuge <stdio.n:> out 3TaAilo.n = =

M-

—

printf("...")
definition

Jump/branch to printf() Back to main() from printf()

Shebuti Rayana (CS, Stony Brook University) 20



Sequence

float paidRate=5.0, sumPaid, paidHours=25; S1
sumPaid = paidHours * paidRate; S2
printf ("Paid sum = $%.2f \n", sumPaid); S3
return 0; S4
Begin —_— S1 — 82 —b SS — 84 — End

One entry point and one exit point.
Conceptually, a control structure like this means a

sequence execution.

Shebuti Rayana (CS, Stony Brook University)




Selection Control Flow

* Program need to select from the options given
for execution.
= At least 2 options, can be more than 2.

= Option selected based on the condition
evaluation result: TRUE or FALSE.

Shebuti Rayana (CS, Stony Brook University) 22



Selection: most basic 1 f

if (condition) if (condition)
statement; { statements;}

next statement; next statement;

1. (condition) is evaluated.

2. If TRUE (non-zero) the statement is executed.

3. If FALSE (zero) the next statement following the i f statement
block is executed.

4. So, during the execution, based on some condition, some codes were

skipped.

Shebuti Rayana (CS, Stony Brook University)

23




Example: i f

For example:
1f (hours > 70)
hours = hours + 100;

printf ("Less hours, no bonus!\n");

» |[f hours is less than or equal to 70, its value will
remain unchanged and only printf () will be

executed.
= |[fit exceeds 70, its value will be increased by 100
and then printf () will be executed.

Shebuti Rayana (CS, Stony Brook University) 24



Selection: 1 f-else

i1f (condition) i1f (condition)

statement 1; { a block of statements;}
else else

statement 2; { a block of statements;}
next statement; next statement;
Explanation:

1.The (condition) is evaluated.

2.1f it evaluates to non-zero (TRUE), statement 1 is executed,
otherwise, if it evaluates to zero (FALSE), statement 2 is executed.
3.They are mutually exclusive, meaning, either statement 1 is
executed or statement 2, but not both.

4.statements 1 and statements 2 can be a block of codes and
must be put in curly braces.

Shebuti Rayana (CS, Stony Brook University) 25




Selection: Nested i f-else

» The if-else constructs can be nested (placed one
within another) to any depth.

= Generalforms: if-if-elseand if-else-1if.
Following is i f-if-else constructs (3 level of depth)

y1f (condition 1)

if (condition 2)
if (condition 3)
<: statement 4;
else
statement 3;
else

| statement_Z;

else

statement 1;

next statement; 26




Selection: Nested i f-else

The if-else-1if statement has the following form
(3 levels example).

1f (condition 1)
statement 1;

else 1f (condition 2)
statement 2;

else 1f (condition 3)
statement 3;

else
statement 4;

next statement;

Shebuti Rayana (CS, Stony Brook University)

27



Selection: switch-case-break

= The most flexible selection program control.

= Enables the program to execute different statements
based on an condition or expression that can have
more than two values.

= Also called multiple choice statements.

= The if statement were limited to evaluating an
expression that could have only two logical values:
TRUE or FALSE.

= |f more than two values, have to use nested if.

* The switch statement makes such nesting
unnecessary.

» Used together with case and break.

Shebuti Rayana (CS, Stony Brook University) 28




Selection: switch-case-break

switch (condition)
{
case template 1 : statement(s);
break;
case template 2 : statement(s);
break;
case template 3 : statement(s);
break;
case template n : statement(s);
break;
default : statement(s);
}
next statement;

Shebuti Rayana (CS, Stony Brook University)




Repetition: for loop

sExecutes a code block for a certain number of times.
*Code block may have no statement, one statement or more.
»for loop executes a fixed number of times.

for(initial value;condition(s);increment/decrement)

statement (s) ;

next statement;

= initial value, condition(s) and increment/decrement are any valid C
expressions.

= The statement (s) may be a single or compound C statement (a block of code).

= When for statement is encountered during program execution, the following events
OCCuUrs:

1.
2.
3.

o B

The initial value is evaluated e.g. intNum = 1.

Then the condition (s) is evaluated, typically a relational expression.

If condition (s) evaluates to FALSE (zero), the for statement terminates and
execution passes to next statement.

If condition (s) evaluates as TRUE (non zero), the statement (s) is executed.
Next, increment/decrement is executed, and execution returns to step no. 2
until condition (s) becomes FALSE.

Shebuti Rayana (CS, Stony Brook University) 30




Flow Chart: for loop

\ 4

True

Shebuti Rayana (CS, Stony Brook University)

Evaluate
initial_value
Do increment/
/@ decrement
Evaluate | Execute
condition(s) statement(s)




Example: for loop

= ASimple for example, printing integer 1 to 10.

#include <stdio.h>
vold main (void)

{

int nCount;

// display the numbers 1 to 10

for (nCount = 1; nCount <= 10; nCount++)
printf ("%sd ", nCount);

printf ("\n");

e C:\WINDOWS\system32\cmd.exe Ol x
1 23 456 78 92 18

Press any key to continue

Shebuti Rayana (CS, Stony Brook University)

32



Nested for loop

« for loops can be nested

for(initial value;condition (s);increment/decrement) {

for(initial value;condition(s);increment/decrement) {

statement (s) ;

}

next statement;

»For this output the program has two for loops.
*The loop index iRow for the outer (first) loop
runs from 1 to 10 and for each value of iRow, the
loop index jColumn for the inner loop runs from
iRow + 1to 10.

*Note that for the last value of iRow (i.e. 10), the

inner loop is not executed at all because the
starting value of jColumn is 2 and the expression

cv C:\WINDOWS\system32\cmd.exe

12345678910
2345678918
345678910
456789210

jColumn < 11 yields the value false (7jColumn

= 11).
Shebuti Rayana (CS, Stony Brook University)




Repetition: while loop

= Executes a block of statements as long as a specified
condition is TRUE.

while (condition)
statement (s) ;
next statement;

» The (condition) may be any valid C expression.
» The statement (s) may be either a single or a compound (a block of code) C
statement.
» When while statement encountered, the following events occur:
1. The (condition) is evaluated.
2. If (condition) evaluates to FALSE (zero), the while loop terminates
and execution passes to the next statement.
3. If (condition) evaluates as TRUE (non zero), the C statement (s) is
executed.

4. Then, the execution returns to step number 1 until condition becomes
FALSE.

Shebuti Rayana (CS, Stony Brook University) 34




Flow Chart: while loop

Start
b
Evaluate Execute
condition statement(s)

Shebuti Rayana (CS, Stony Brook University) 35



Example: while loop

// simple while loop example
#include <stdio.h>
int main (void)

{

int nCalculate = 1;

// set the while condition
while (nCalculate <= 12)

{

// print
printf ("sd ", nCalculate);

// increment by 1, repeats
nCalculate++;

// a newline
printf ("\n") ; v C: \WINDOWS\systemH\cmd exe -

return 0O; Pless any key to contlnue ..

Shebuti Rayana (CS, Stony Brook University)



for vs while loop

* The same task that can be performed using the for
statement.

= But, while statement does not contain an initialization
section, the program must explicitly initialize any
variables beforehand.

= As conclusion, while statement is essentially a for
statement without the initialization and increment
components.

* While can be nested like for
= The syntax comparison between for and while,

for (

°
’

condition; ) |VS

while (condition)

Shebuti Rayana (CS, Stony Brook University)

37




Repetition: do-while loop

sExecutes a block of statements if the condition is true at least once.
»Test the condition at the end of the loop rather than at the beginning

do
statement (s) ;
while (condition)

next statement;

* (condition) can be any valid C expression.
» statement (s) can be either a single or compound (a block of code) C
statement.
* When the program encounter the do-while loop, the following events occur:
1. The statement (s) are executed.
2. The (condition) is evaluated. Ifitis TRUE, execution returns to step
number 1. Ifitis FALSE, the loop terminates and the next statement
IS executed.
3. This means the statement (s) inthe do-while will be executed at
least once.

Shebuti Rayana (CS, Stony Brook University) 38




Flow Chart: do-while loop

= The statement (s)

@ are always executed

at least once.

Execute | = forandwhile
statement(s)
l loops evaluate the

condition at the start

of the loop, so the

Evaluate
condition associated
e statement_s are not
‘ executed if the
o condition is initially
FALSE.

Shebuti Rayana (CS, Stony Brook University) 39




break statement

m The break statement causes an exit from the
Innermost enclosing loop or switch statement.

while (1) {
scanf ("S1f", &x);
if (x < 0.0) /* exit loop if x 1s negative */
break;
printf ("$f\n", sgrt(x)):;
}

/* break jumps to here */

Shebuti Rayana (CS, Stony Brook University) 40



continue Sstatement

continue keyword forces the next iteration to take
place immediately, skipping any instructions that may
follow it.

The continue statement can only be used inside a
loop (for, do-while and while) and not inside a
switch-case selection.

When executed, it transfers control to the condition
(the expression part) in a while or do-while loop,
and to the increment expression in a for loop.
Unlike the break statement, continue does not
force the termination of a loop, it merely transfers
control to the next iteration.

Shebuti Rayana (CS, Stony Brook University) 41



Example: continue statement

// using the continue in for structure
#include <stdio.h>

int main(void)
{
int iNum;
for (iNum = 1; iNum <= 10; iNum++)
{
// skip remaining code in loop only if iNum ==
if (iNum == 5)
continue;
printf ("%d ", iNum) ;
}

printf ("\nUsed continue to skip printing the wvalue 5\n");
return 0;

} v C:\WINDOWS\system32\cmd.exe A= E

12346 78910
lUsed continue to skip printing the value 5
Press any key to continue . .

Shebuti Rayana (CS, Stony Brook University) 42




goto statement

The goto statement is one of C unconditional jump or
branching.

When goto statement is encountered, execution jumps,
or branches, to the location specified by goto.

The branching does not depend on any condition.

goto statement and its target label must be located in the
same function, although they can be in different blocks.
Use goto to transfer execution both into and out of loop.
However, using goto statement strongly not
recommended. Always use other C branching
statements.

When program execution branches with a goto
statement, no record is kept of where the execution is
coming from.

Shebuti Rayana (CS, Stony Brook University) 43




Example: goto statement

while (scanf ("S1f", &x) == 1) {
if (x < 0.0)
goto negative alert;

printf ("%f $f\n", sqrt(x) , sqrt(2 * x));
}

negative alert: printf ("Negative value encountered!\n");

Shebuti Rayana (CS, Stony Brook University) 44



return Sstatement

= The return statement has a form,
return expression;

= The action is to terminate execution of the current
function and pass the value contained in the
expression (if any) to the function that invoked it.

= The value returned must be of the same type or
convertible to the same type as the function's return
type (type casting).

= More than one return statement may be placed in a
function.

= The execution of the first return statement in the
function automatically terminates the function.

Shebuti Rayana (CS, Stony Brook University) 45



Program Control

Callee

S~

S printf(“...“) definition

Caller

#incllude <stdio.h>
F1nt main(void)
int nNum = 20;

%\m%“ printf ("Initial e of the nNum variable is %d", nNum);

““return 0;

Shebuti Rayana (CS, Stony Brook University) 46



