CSE 220:
Systems Fundamentals I
Unit 2:
Number Systems
Digital Abstraction

• Most physical variables are **continuous**
 • Temperature
 • Voltage on a wire
 • Frequency of an oscillation
 • Position of a mass

• Although voltage, charge and other electrical quantities are continuous in nature, modern computers are all digital and work with **discrete values**

• The continuous nature of electricity is “abstracted away” and we consider only “high” and “low” voltage, or the “presence” and “absence” of electric charge: i.e., 1s and 0s (**bits**: binary digits)
Binary Digits

• So, all data is ultimately represented in a computer in terms of binary digits
 • Each bit is either a 0 or a 1
• Groups of bits represent larger values
 • 1101 1110 1010 1101 1011 1110 1110 1111
 • We usually write spaces between groups of four or eight bits, depending on the situation. More on this soon.
Positional Notation

• The scheme we use in modern times for representing numbers is called **positional notation**

• The position of a digit determines how much it contributes to the number's value

• With decimal (base-10 or radix-10), the **place-values** are powers of 10:

 ..., 10³, 10², 10¹, 10⁰, 10⁻¹, 10⁻², 10⁻³, ...
 ..., 1000s, 100s, 10s, 1s, ¹/₁₀s, ¹/₁₀₀s, ¹/₁₀₀₀s, ...

• **642.15** really means \((6 \times 10²) + (4 \times 10¹) + (2 \times 10⁰) + (1 \times 10⁻¹) + (5 \times 10⁻²)\)
Positional Notation

• More generally, in base-10 notation, the sequence of digits $d_k d_{k-1} \ldots d_2 d_1 d_0$ stands for the polynomial expansion
 \[(d_k \times 10^k) + (d_{k-1} \times 10^{k-1}) + \ldots + (d_2 \times 10^2) + (d_1 \times 10^1) + (d_0 \times 10^0)\]

• We can generalize this to arbitrary bases. In radix-k we use k distinct symbols (digits), and the place-values are powers of k.

• Radix-2 (binary) notation example:
 \[
 10101_2 = (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)
 \]
 \[
 = 16 + 4 + 1
 \]
 \[
 = 21_{10}
 \]

• When working with multiple radixes, \textbf{always} include a subscript to identify the radix!
Positional Notation

• In some circumstances it’s more natural to write numbers in base 8, called **octal**, or base 16, called **hexadecimal**

• With octal there are 8 digits: 0, 1, 2, 3, 4, 5, 6, 7 with place-values that are powers of 8:
 ... , 8³, 8², 8¹, 8⁰, 8⁻¹, 8⁻², 8⁻³, ...
 ... , 512s, 64s, 8s, 1s, 1/8s, 1/64s, 1/512s, ...

• 376₈ = (3 × 8²) + (7 × 8¹) + (6 × 8⁰)
 = 192 + 56 + 6
 = 254₁₀

• With hexadecimal we should have 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, where the letters A through F represent ten through fifteen, respectively
Positional Notation

- Radix-16 (hexadecimal) notation example:
 \[3E0_{16} = (3 \times 16^2) + (14 \times 16^1) + (0 \times 16^0)\]
 \[= 768 + 224 + 0\]
 \[= 992_{10}\]

- Radix-\(k\) fractions involve negative powers of \(k\)
 \[10.011_2 = (1 \times 2^1) + (0 \times 2^0) + (0 \times 2^{-1}) + (1 \times 2^{-2}) + (1 \times 2^{-3})\]
 \[= 2 + 0.25 + 0.125\]
 \[= 2.375\]

- Numbers with terminating decimal representations might not have terminating representations in other radixes.
- For example: \(0.2_{10} = 0.0011_2\)
Binary, Octal and Hexadecimal

<table>
<thead>
<tr>
<th>Binary</th>
<th>Octal</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>111</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>12</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>13</td>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>14</td>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>15</td>
<td>D</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>16</td>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>17</td>
<td>F</td>
<td>15</td>
</tr>
</tbody>
</table>

- Note that the digits “10” represent the base of a number in its own base
- 10_2 is two
- 10_8 is eight
- 10_{16} is sixteen
- 10_{10} is ten
- Why does it work out like this?
Binary \rightarrow Decimal Conversion

• Algorithm: Start with initial value of 0. Process bits in left-to-right order, i.e., from most significant bit (msb) to least significant bit (lsb)
 • Double the value from previous step.
 • Add the next bit value.
Binary \rightarrow Decimal Example

• Convert 1011100_2 to decimal (going left to right)

\[
\begin{align*}
1011100_2 \\
1 \\
1 \times 2 + 0 &= 2 \\
2 \times 2 + 1 &= 5 \\
5 \times 2 + 1 &= 11 \\
11 \times 2 + 1 &= 23 \\
23 \times 2 + 0 &= 46 \\
46 \times 2 + 0 &= 92
\end{align*}
\]

• This algorithm will work for any radix. Just multiply by the radix after each step.
Binary \rightarrow Decimal Example

• Convert 101011101_2 to decimal
Binary \rightarrow Decimal Example

- Convert 101011101_2 to decimal

1
1 \times 2 + 0 = 2
2 \times 2 + 1 = 5
5 \times 2 + 0 = 10
10 \times 2 + 1 = 21
21 \times 2 + 1 = 43
43 \times 2 + 1 = 87
87 \times 2 + 0 = 174
174 \times 2 + 1 = 349_{10}
Octal \rightarrow Decimal Example

- Convert 417_8 to decimal
Octal \rightarrow Decimal Example

• Convert 417_8 to decimal

$$4\times8 + 1 = 33$$
$$33\times8 + 7 = 271_{10}$$
Decimal \rightarrow Binary Conversion

• Algorithm: repeatedly divide the decimal representation by 2, writing the remainders in right-to-left order, i.e., from least significant bit (lsb) to most significant bit (msb)

• Continue dividing until the quotient is 0
Decimal → Binary Example

• Convert 123_{10} to binary
 • $123 \div 2 = 61$ rem. 1
 • $61 \div 2 = 30$ rem. 1
 • $30 \div 2 = 15$ rem. 0
 • $15 \div 2 = 7$ rem. 1
 • $7 \div 2 = 3$ rem. 1
 • $3 \div 2 = 1$ rem. 1
 • $1 \div 2 = 0$ rem. 1
• Answer: 1111011_2
Decimal \rightarrow Binary Example

• Convert 1528_{10} to binary
Decimal \rightarrow Binary Example

- Convert 1528_{10} to binary

\[
\begin{align*}
1528 / 2 &= 764 \text{ rem. } 0 & 23 / 2 &= 11 \text{ rem. } 1 \\
764 / 2 &= 382 \text{ rem. } 0 & 11 / 2 &= 5 \text{ rem. } 1 \\
382 / 2 &= 191 \text{ rem. } 0 & 5 / 2 &= 2 \text{ rem. } 1 \\
191 / 2 &= 95 \text{ rem. } 1 & 2 / 2 &= 1 \text{ rem. } 0 \\
95 / 2 &= 47 \text{ rem. } 1 & 1 / 2 &= 0 \text{ rem. } 1 \\
47 / 2 &= 23 \text{ rem. } 1
\end{align*}
\]

Answer: \(10111111000_2\)
Decimal → Hexadecimal Example

• The decimal-to-hexadecimal conversion works largely in the same way, but with division by 16
• $3241 / 16 = 202 \text{ rem. } 9$
• $202 / 16 = 12 \text{ rem. } 10$
• $12 / 16 = 0 \text{ rem. } 12$
• Answer: CA9_{16}

• This algorithm will also work for any radix. Just divide by the radix after each step.
Decimal \rightarrow Octal Example

- Convert 1528_{10} to octal
Decimal \rightarrow Octal Example

• Convert 1528_{10} to octal

1528 / 8 = 191 rem. 0
191 / 8 = 23 rem. 7
23 / 8 = 2 rem. 7
2 / 8 = 0 rem. 2

Answer: 2770_8
Decimal Fractions \rightarrow Binary

• Algorithm: generate the bits in *left-to-right order*, starting from the radix point:
 • Multiply the decimal value by 2. If the product is greater than 1, the next bit is 1. Otherwise, the next bit is 0.
 • Drop the integer part to get a value less than 1.
 • Continue until 0 is reached (a terminating expansion) or a pattern of digits repeats (a non-terminating expansion)
• The resulting representation is called **fixed-point format**
Decimal Frac. \rightarrow Binary Example

- Convert 0.4_{10} to binary
- $0.4 \times 2 = 0.8$ $0.8 < 1$, so write a $0 \approx 0.0$
- $0.8 \times 2 = 1.6$ $1.6 \geq 1$, so write a $1 \approx 0.01$
 - Drop the integer part
- $0.6 \times 2 = 1.2$ $1.2 \geq 1$, so write a $1 \approx 0.011$
 - Drop the integer part
- $0.2 \times 2 = 0.4$ $0.4 < 1$, so write a $0 \approx 0.0110$
 - Since we arrived at a decimal fraction we have already seen, the pattern will repeat
- Final answer: 0.0110111_2
Decimal Frac. → Binary Example

• Convert 13.85_{10} to binary
Decimal Frac. \rightarrow Binary Example

- Convert 13.85_{10} to binary
- $13_{10} = 1101_2$
- $0.85 \times 2 = 1.7 \quad 1.7 \geq 1$, so write a $1 \equiv 0.1$
 - Drop the integer part
- $0.7 \times 2 = 1.4 \quad 1.4 \geq 1$, so write a $1 \equiv 0.11$
- $0.4 \times 2 = 0.8 \quad 0.8 < 1$, so write a $0 \equiv 0.110$
- $0.8 \times 2 = 1.6 \quad 1.6 \geq 1$, so write a $1 \equiv 0.1101$
- $0.6 \times 2 = 1.2 \quad 1.2 \geq 1$, so write a $1 \equiv 0.11011$
- $0.2 \times 2 = 0.4 \quad 0.4 < 1$, so write a $0 \equiv 0.110110$
- We will get $\equiv 0.1101100110 \ldots = 0.110110$
- Final answer: 1101.110110_2
Bin ↔ Oct ↔ Hex Conversion

• Because 8 and 16 are powers of 2, converting between bases 2 and 8, and between bases 2 and 16 is very simple
 • Binary → Octal
 • Working *right-to-left*, take bits in groups of 3, converting the groups into octal digits (Why 3? Because $2^3 = 8$.)
 • Example: $10110101_2 \rightarrow 10 110 101 \rightarrow 265_8$
 • Binary → Hexadecimal
 • Working *right-to-left*, take bits in groups of 4 (a nibble), converting the groups into hexadecimal digits ($2^4 = 16$)
 • Example: $10110111101_2 \rightarrow 101 1011 1101 \rightarrow 5BD_{16}$
 • Two nibbles = eight bits = one *byte*
Bin ↔ Oct ↔ Hex Conversion

• Octal → Binary
 • Working *left-to-right*, replace each octal digit with its 3-bit binary equivalent
 • Example: \(250_8 \rightarrow 010 \ 101 \ 000 \rightarrow 10101000_2\)

• Hexadecimal → Binary
 • Working *left-to-right*, replace each hexadecimal digit with its 4-bit binary equivalent
 • Example: \(3FE5_{16} \rightarrow 0011 \ 1111 \ 1110 \ 0101 \rightarrow 11111111100101_2\)

• Conversion between octal and hexadecimal is not so straightforward. It’s easiest to convert the given representation into binary and then into the desired base.
Bin ↔ Oct ↔ Hex Conversion

• Convert $7BA3 \cdot BC4_{16}$ to octal

• Convert 2713_8 to hexadeciml
Bin ↔ Oct ↔ Hex Conversion

• Convert 7BA3. BC4\textsubscript{16} to octal

 - 7BA3\textsubscript{16} = 111 1011 1010 0011\textsubscript{2}
 - = 111 101 110 100 011\textsubscript{2} = 75643\textsubscript{8}
 - BC4\textsubscript{16} = 1011 1100 0100\textsubscript{2} = 101 111 000 100\textsubscript{2} = 5704\textsubscript{8}
 - Answer: 75643.5704\textsubscript{8}

• Convert 2713\textsubscript{8} to hexadecimal

 - 2713\textsubscript{8} = 10 111 001 011\textsubscript{2} = 101 1100 1011\textsubscript{2} = 5CB\textsubscript{16}
Base $2^M \leftrightarrow Base 2^N$

• General algorithm for converting from base 2^M to 2^N
 • Write out the binary equivalent of the base 2^M number and, working right-to-left, form groups of N bits

• Convert 2713_8 to base 4

• Because $4 = 2^2$, we will take bits in pairs (right-to-left)

• General algorithm for converting from base 2^M to 2^N
 • Write out the binary equivalent of the base 2^M number and, working right-to-left, form groups of N bits
Base $2^M \leftrightarrow Base 2^N$

• General algorithm for converting from base 2^M to 2^N
 • Write out the binary equivalent of the base 2^M number and, working right-to-left, form groups of N bits
• Convert 2713_8 to base 4
• Because $4 = 2^2$, we will take bits in pairs (right-to-left)
 • $2713_8 = 10111001011_2 = 10111001011_2 = 113023_4$
• General algorithm for converting from base 2^M to 2^N
 • Write out the binary equivalent of the base 2^M number and, working right-to-left, form groups of N bits
General Base Conversions

• What if we want to convert between two bases other than the ones we've studied?
• Generally it's easiest to convert the given representation into decimal, and then from decimal into the desired base
• Example: convert 215_7 to base 5
• $215_7 = (2 \times 7^2) + (1 \times 7^1) + (5 \times 7^0)$
 $= 98 + 7 + 5$
 $= 110_{10}$
• $110 / 5 = 22 \text{ rem. 0}$
• $22 / 5 = 4 \text{ rem. 2}$
• $4 / 5 = 0 \text{ rem. 4}$
• Answer: $215_7 = 420_5$
Integer Encodings: Unsigned

• Now we'll start to see how integers are encoded in hardware

• In **unsigned integer** encodings, the numbers 0, 1, 2, ..., $2^N - 1$ are typically encoded as follows:

 0 → 000 ... 00
 1 → 000 ... 01
 2 → 000 ... 10
 3 → 000 ... 11
 ...
 $2^N - 1$ → 111 ... 11
Integer Encodings: Unsigned

• Binary arithmetic with unsigned integers (particularly, addition), is done in the usual way

• With decimal addition we can have *carried* values:

 Carry values:
 \[
 \begin{array}{c}
 \text{74}_{10} \\
 +\text{89}_{10} \\
 \text{163}_{10}
 \end{array}
 \]

 Sum:

• The same thing can happen with binary addition

 Carry values:
 \[
 \begin{array}{c}
 \text{111} \\
 \text{01001010}_2 \\
 +\text{01011001}_2 \\
 \text{101000111}_2
 \end{array}
 \]

 Sum:
Binary Addition Example

• Add the following two 8-bit binary numbers:

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 0 & 1 & 1 & 1
\\
+ & 0 & 1 & 0 & 1 & 0 & 0 & 1
\\
\hline
1 & 1 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}
\]

• We had an overflow.
• In fixed-precision integer arithmetic, it is possible for an arithmetic operation, such as addition, to result in an overflow. The leftmost carry value is dropped, resulting in an incorrect sum.
• The programmer must be aware of the range of representable values to avoid unintentional overflow.
Binary Addition Example

• Add the following two 8-bit binary numbers:

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
+ & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\end{array}
\]

• We had an **overflow**.

• In **fixed-precision** integer arithmetic, it is possible for an arithmetic operation, such as addition, to result in an overflow. The leftmost carry value is dropped, resulting in an incorrect sum.

• The programmer must be aware of the range of representable values to avoid unintentional overflow.
Integer Encodings: Signed

• There are several different signed integer encodings which permit the representation of both positive and negative numbers.

• The hardware designer chooses between the encodings to make the arithmetic hardware simpler or more efficient for certain operations.

• Sometimes the programmer needs to be aware of what encoding is being used:
 • To format numbers for input or output.
 • To understand the range of representable values and the conditions under which overflow can occur.
Sign/Magnitude Numbers

• In N-bit **sign/magnitude encoding**, the most significant bit (leftmost bit) is used as a **sign bit** ($0 = \text{“positive”}$, $1 = \text{“negative”}$), and the remaining $N - 1$ bits represent the **magnitude** (absolute value) of the number, as in the unsigned scheme.

• Range: $[-2^{N-1} + 1, 2^{N-1} - 1]$

• Example (8-bit precision):
 • $+75 \Rightarrow 01001011$
 • $-15 \Rightarrow 10001111$

• Problems with sign/magnitude encoding:
 • Two encodings for zero: $+0$ and -0
 • Subtraction is somewhat complicated
One’s Complement Encoding

- The \(N \)-bit \textbf{one’s complement} encoding represents integers in the range \([- (2^{N-1} - 1), 2^{N-1} - 1]\) as follows:

\[
\begin{array}{cclcl}
0 & \rightarrow & 000 \ldots 00 & -0 & \rightarrow & 111 \ldots 11 \\
1 & \rightarrow & 000 \ldots 01 & -1 & \rightarrow & 111 \ldots 10 \\
2 & \rightarrow & 000 \ldots 10 & -2 & \rightarrow & 111 \ldots 01 \\
3 & \rightarrow & 000 \ldots 11 & -3 & \rightarrow & 111 \ldots 00 \\
\vdots & & \vdots & & \vdots & & \vdots & & \vdots \\
2^{N-1} - 1 & \rightarrow & 011 \ldots 11 & -(2^{N-1} - 1) & \rightarrow & 100 \ldots 00
\end{array}
\]

- To obtain the negative of a value, complement (“flip”) all the bits:
 - Change all 0s to 1s and all 1s to 0s
One’s Complement Encoding

• Addition may require an “end around carry”:

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & \text{5} \\
+ & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & \text{2} \\
\hline
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{1} \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{1} \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \text{2} \\
\hline
\end{array}
\]
One’s Complement Example

• Perform the computation $-28 - 37$ in 8-bit one's complement and convert the result to decimal.
One’s Complement Example

• Perform the computation $-28 - 37$ in 8-bit one's complement and convert the result to decimal.

• $28_{10} = 00011100 \rightarrow 11100011 = -28$ in one’s comp.

• $37_{10} = 00100101 \rightarrow 11011010 = -37$ in one’s comp.

\[
\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & \quad -28 \\
+ & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & \quad -37 \\
\hline
1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 &
\end{array}
\]

\[
\begin{array}{ccccccccccc}
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & \quad -65? \ Check...
\end{array}
\]

• $10111110 \rightarrow$ flip bits $\rightarrow 01000001 = 65$

• Answer: 10111110, which is -65_{10}
One’s Complement Issue

• The presence of two representations for zero adds complexity to a circuit that implements addition
• So we can use a different encoding called two’s complement that avoids this problem
Two’s Complement Encoding

- The N-bit **two’s complement** encoding represents integers in the range $[-2^{N-1}, 2^{N-1} - 1]$ as follows:

<table>
<thead>
<tr>
<th>Integer</th>
<th>Binary Representation</th>
<th>Integer</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000 ... 00</td>
<td>-1</td>
<td>111 ... 11</td>
</tr>
<tr>
<td>1</td>
<td>000 ... 01</td>
<td>-2</td>
<td>111 ... 10</td>
</tr>
<tr>
<td>2</td>
<td>000 ... 10</td>
<td>-3</td>
<td>111 ... 01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$2^{N-1} - 1$</td>
<td>011 ... 11</td>
<td>-2^{N-1}</td>
<td>100 ... 00</td>
</tr>
</tbody>
</table>
Two’s Complement Encoding

• To negate a number in two’s complement encoding, use one of the following (equivalent) rules:

 1. Complement all the bits and increment the result.

 Example: negate 3

 \[00000011 \rightarrow 11111100 \rightarrow 11111101\]

 2. Complement all the bits to the left of the rightmost 1.

 Example: negate 9

 \[00001001 \rightarrow 11110111\]

• The value \(2^{N-1}\) has no representation in \(N\)-bit two’s complement notation, but \(-2^{N-1}\) does.
Two’s Complement

• What is the 8-bit two’s complement representation of -99?

• What is the decimal equivalent of the two’s complement number 11001010?
Two’s Complement

• What is the 8-bit two’s complement representation of -99?
 $99_{10} = 01100011$
 • Flip all bits to left of the rightmost 1
 • Answer: 10011101

• What is the decimal equivalent of the two’s complement number 11001010?
 • A 1 at the msb indicates a negative number
 • Flip all bits to left of the rightmost 1
 • $00110110_2 = 54_{10}$
 • Answer: -54
Two’s Complement of Zero

• What happens if we take the two’s complement of the number 0 written as an 8-bit number?
Two’s Complement of Zero

- What happens if we take the two’s complement of the number 0 written as an 8-bit number?
 - 00000000
- Flip all the bits: 11111111
- Add 1: 1 00000000
- Drop the extra bit
- Answer: 00000000
- Mind blown!
The Two’s Complement Wheel

• Unlike mathematical integers, which inhabit a number line, in computer arithmetic the numbers lie on a circle.

• An overflow occurs when crossing the boundary between the greatest representable positive number and the least representable negative number.

Image: users.dickinson.edu/~braught/courses/cs251f02/classes/notes07.html
The Two’s Complement Wheel

Addition

Subtraction

Overflow
Two’s Complement Encoding

• The leftmost bit is the sign bit, which tells whether the number is positive (0) or negative (1).
• The rightmost bit tells whether the number is even (0) or odd (1).
• Multiplication by 2 is accomplished by a left shift (introduce 0 at right), dropping the msb:
 \[-3 \rightarrow -6 \]
 \[11111101 \rightarrow 11111010 \]
• Division by 2 is accomplished by a right arithmetic shift (replicate sign bit at left), dropping the lsb:
 \[-6 \rightarrow -3 \]
 \[11111010 \rightarrow 11111101 \]
Overflow in Two’s Complement

• In signed arithmetic using two’s complement encoding, there is a possibility of overflow when the correct result is “too large” or “too small” to be represented.

• Overflow cannot occur when adding numbers of opposite sign (or when subtracting numbers of the same sign).

• Overflow can occur when adding numbers of the same sign (or subtracting numbers of opposite sign).

\[
\begin{array}{ccccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 126 \\
+ & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & + 3 \\
\hline
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -127 \\
\end{array}
\]

• The overflow can be detected by noticing that the sum has opposite sign from the addends.
Carry-out in Two’s Complement

- A carry-out of the leftmost column does not necessarily indicate an overflow in two’s complement addition

- Suppose we perform the subtraction $-4 - 7$:

\[
\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
+ & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
\hline
1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
\end{array}
\]

- What do we do with the carry-out shown in red?
 - **Answer:** discard it. An end-around carry is done only in one’s complement
Sign Extension

• When a two’s complement number is extended to more bits, the sign bit must be copied into the most significant bit positions
 • This is called sign-extension
• Examples: rewrite each of the following numbers (3 and \(-3 \)) in 8-bit two’s complement
 • 3 is 0011 \(\rightarrow \) 00000011
 • \(-3 \) is 1101 \(\rightarrow \) 11111101
Excess-\(k\) Encoding

- **Excess-\(k\) encoding** is another signed integer encoding that is important due to its use in representing real numbers.
- In excess-\(k\), also called **bias-\(k\)**, integer \(i\) is represented by the unsigned encoding of \(i + k\).
 - For example, in excess-127:
 - 3 is represented as \(3 + 127 = 130 \rightarrow 10000010\)
 - \(-5\) is represented as \(-5 + 127 = 122 \rightarrow 01111010\)
- We note that both positive and negative numbers are represented as unsigned values. In excess-127:
 - \(-127\) is 00000000 and \(+128\) is 11111111
- The advantage of excess-\(k\) notation is that ordering of positive and negative numbers is preserved, which makes comparing two values (e.g., \(<, >\)) very straightforward.
Comparison of Integer Encodings

<table>
<thead>
<tr>
<th>N decimal</th>
<th>N binary</th>
<th>–N sign/mag</th>
<th>–N 1’s comp.</th>
<th>–N 2’s comp.</th>
<th>–N bias-127</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000001</td>
<td>10000001</td>
<td>11111110</td>
<td>11111111</td>
<td>01111110</td>
</tr>
<tr>
<td>2</td>
<td>00000010</td>
<td>10000010</td>
<td>11111101</td>
<td>11111110</td>
<td>01111101</td>
</tr>
<tr>
<td>3</td>
<td>00000011</td>
<td>10000011</td>
<td>11111100</td>
<td>11111101</td>
<td>01111100</td>
</tr>
<tr>
<td>4</td>
<td>00000100</td>
<td>10000100</td>
<td>11111011</td>
<td>11111100</td>
<td>01111011</td>
</tr>
<tr>
<td>5</td>
<td>00000101</td>
<td>10000101</td>
<td>11111010</td>
<td>11111101</td>
<td>01111010</td>
</tr>
<tr>
<td>10</td>
<td>00001010</td>
<td>10001010</td>
<td>11101011</td>
<td>11101110</td>
<td>01101011</td>
</tr>
<tr>
<td>50</td>
<td>00110010</td>
<td>10110010</td>
<td>11001101</td>
<td>11001110</td>
<td>01001101</td>
</tr>
<tr>
<td>90</td>
<td>01011010</td>
<td>11011010</td>
<td>10100101</td>
<td>10100101</td>
<td>00100101</td>
</tr>
<tr>
<td>100</td>
<td>01100100</td>
<td>11100100</td>
<td>10011011</td>
<td>10011011</td>
<td>00011011</td>
</tr>
<tr>
<td>127</td>
<td>01111111</td>
<td>11111111</td>
<td>10000000</td>
<td>10000001</td>
<td>00000000</td>
</tr>
<tr>
<td>128</td>
<td>10000000</td>
<td>N/A</td>
<td>N/A</td>
<td>10000000</td>
<td>N/A</td>
</tr>
</tbody>
</table>
What About Real Numbers?

• We did some base conversions involving real numbers but haven’t seen yet how they can be represented in a computer.

• A big disadvantage of the so-called **fixed-point format** or **fixed-precision encoding** of such numbers is that they have a very limited “dynamic range”
 • This format can’t represent very large numbers (e.g., 2^{70}) or very small numbers (e.g., 2^{-17})

• These numbers are called “fixed point” because the decimal point (or **binary point**) is fixed, which limits accuracy.

• On the other hand, they give **exact** answers (i.e., no rounding errors) as long as there is no overflow.
Floating-Point Format

• Because fractions can have non-terminating representations and/or might require many digits to be represented exactly, usually real numbers can only be approximately represented in a computer
 • We have to tolerate a certain amount of representational error
• The industry standard way used to approximate real numbers is called floating-point format
 • IEEE 754 floating-point standard
• In this scheme the binary point is allowed to “float” (i.e., be repositioned) in order to give as accurate an approximation as possible
IEEE 754 Floating-Point Standard

• The IEEE 754 standard species floating-point representations of numbers and also arithmetic operations on these representations

• IEEE 754 is essentially a form of scientific notation, but written in binary: $\pm 2^{\text{exponent}} \times \text{fraction}$

• This format can be encoded using three fields: a sign bit (s), an exponent (e) and a fraction (f), sometimes called the mantissa

• IEEE 754 single-precision format requires 32 bits and provides about 7 decimal digits of accuracy

• IEEE 754 double-precision format requires 64 bits and provides about 15 decimal digits of accuracy
IEEE 754 Floating-Point Standard

- **32-bit version:**
 - 1 bit for sign
 - 8 bits for exponent
 - 23 bits for fraction (mantissa)

 single precision

- **64-bit version:**
 - 1 bit for sign
 - 11 bits for exponent
 - 52 bits for fraction (mantissa)

 double precision

- Sign bit: 0 (positive) or 1 (negative)
- Exponent: stored in excess-127 for the 32-bit version
 - Excess-1023 for the 64-bit version
- Fraction: contains the digits to the right of the binary point
- **Normalized:** the digit to the left of the point is always 1, and is not represented, giving us one bit of precision “for free”
IEEE 754 to Decimal

• Decimal value of a IEEE 754 floating point encoding is given by the formula:
 \(-1)^s \times 2^{e-bias} \times (1 + f)\)
where:
 • \(s\) is the sign bit (0/1).
 • \(e\) is the decimal value of the exponent field
 • \(bias\) is 127 for single-precision, 1023 for double-precision.
 • \(f\) is the decimal value of the fraction field (regarded as a binary fraction)
IEEE 754 to Decimal Example

• What decimal value has the following IEEE 754 encoding?
 10111110011000000000000000000000
 1 01111100 1100000000000000000000000
IEEE 754 to Decimal Example

• What decimal value has the following IEEE 754 encoding?
 10111110110000000000000000000000
 1 01111100 110000000000000000000000

• $s = 1$
• $e = (64 + 32 + 16 + 8 + 4) - 127 = -3$
• $f = 0.5 + 0.25 = 0.75$
• Answer: $-1.75 \times 2^{-3} = -0.21875_{10}$
Decimal to IEEE 754 Example

- Encode 13.4_{10} in 32-bit IEEE 754 floating-point format
Decimal to IEEE 754 Example

- Encode 13.4_{10} in 32-bit IEEE 754 floating-point format
- Positive number $\rightarrow s = 0$
- From earlier in this Unit: $0.4_{10} = 0.0110_2$
- $1101.011001100110011001100110...$
- Normalize: move binary point 3 places to left
 - $e = 3$ Add 127: $3 + 127 = 130_{10} = 10000010$
 - $1010110011001100110011001100110...$ (dropped leading 1)
- Take 23 bits: 10101100110011001100110
- Answer:

<table>
<thead>
<tr>
<th>s</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000010</td>
<td>10101100110011001100110</td>
</tr>
</tbody>
</table>
IEEE 754 Special Values

• The smallest 000...0 and largest 111...1 exponents are reserved for the encoding of special values:
 • Zero (two encodings):
 • $s = 0$ or 1, $e = 000 ... 0$, $f = 000 ... 0$
 • Infinity:
 • $+\infty$: $s = 0$, $e = 111 ... 1$, $f = 000 ... 0$
 • $-\infty$: $s = 1$, $e = 111 ... 1$, $f = 000 ... 0$
 • NaN (not a number):
 • $s = 0$ or 1, $e = 111 ... 1$, $f = \text{non-zero}$
 • Can result from division by zero, $\sqrt{-1}$, $\log(-5)$, etc.
IEEE 754 Format Summary

<table>
<thead>
<tr>
<th>Property</th>
<th>Single-Precision</th>
<th>Double-Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits in Sign</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bits in Exponent</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Bits in Fraction</td>
<td>23</td>
<td>52</td>
</tr>
<tr>
<td>Total Bits</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Exponent Encoding</td>
<td>excess-127</td>
<td>excess-1023</td>
</tr>
<tr>
<td>Exponent Range</td>
<td>-126 to 127</td>
<td>-1022 to 1023</td>
</tr>
<tr>
<td>Decimal Range</td>
<td>$\approx 10^{-38}$ to 10^{38}</td>
<td>$\approx 10^{-308}$ to 10^{308}</td>
</tr>
</tbody>
</table>
Floating-Point Limitations

• There are $\sim 2^{32}$ different values that can be represented in single-precision floating point.

• This is the same as the number of values that can be represented using 32-bit integer encodings.

• Many values (even integers) do not have floating-point representations:
 • Examples: 33554431_{10} and 0.33554431_{10}

• Try assigning these to a `float` variable in Java and then printing them out.

• Caution: Results of floating point calculations are not exact.

• Never use floating point when exact results are essential or in equality checks, such as in conditional statements