Stacks

Chapter 6
Fundamentals

• A stack is a sequence of data elements (of the same type) arranged one after another conceptually.

• An element can be added to the top of the stack only. (“PUSH”)

• An element can be removed from the top of the stack only. (“POP”)
Applications of Stacks

- Operating systems
 - keeping track of method calls in a running program
- Compilers
 - conversion of arithmetic expressions to machine code
Conceptual Picture

Depending on the implementation of a stack, it may or may not have a maximum capacity.
Depending on the implementation of the stack, the 49 may still be in memory but is not part of the stack.
Implementation of a Stack

• ARRAYS

Which is more efficient?
Basic Stack Operations

• Constructor – create an empty stack
• isEmpty – is the stack empty?
• push – push an element on to the top of the stack (if the stack is not full)
• pop – remove the top element from the stack (if the stack is not empty)
Extended Stack Operations

• peek – examine the top element of the stack without removing it (if the stack is not empty)

 if not isEmpty()
 temp ← pop()
 push(temp)
 return(temp)

• size – return the number of elements on the stack

How would you implement this using the basic operations?
An IntStack using Arrays

public class IntStack implements Cloneable {

 public final int CAPACITY = 100;
 private int[] data;
 private int top;

 // IntStack methods (clone not shown)

}
public IntStack()
{
 top = -1;
 data = new int[CAPACITY];
}

public boolean isEmpty()
{
 return (top == -1);
}
public void push(int item)
{
 if (top == CAPACITY - 1)
 throw new FullStackException();
 top++;
 data[top] = item;
}
public int pop()
{
 int answer;
 if (top == -1) // isEmpty()
 throw new EmptyStackException();
 answer = data[top];
 top--;
 return answer;
}
public int peek()
{
 int answer;
 if (top == -1) // isEmpty()
 throw new EmptyStackException();
 answer = data[top];
 return answer;
}
Implementation of a Stack

- LINKED LISTS

Which is more efficient?
An `IntStack` using Lists

class `IntStack` implements `Cloneable` {

 private `IntNode` top;

 // `IntStack` methods (clone not shown)
}

private class `IntNode` {

 int value;
 `IntNode` next;
}

public int push(int value) {
 // Implementation
}

public int pop() {
 // Implementation
}

public int peek() {
 // Implementation
}

public boolean isEmpty() {
 // Implementation
}

public int size() {
 // Implementation
}

public void add(int index, int value) {
 // Implementation
}

public int remove(int index) {
 // Implementation
}

public int get(int index) {
 // Implementation
}

public void clear() {
 // Implementation
}

public boolean contains(int value) {
 // Implementation
}

public void set(int index, int value) {
 // Implementation
}

public Object clone() {
 // Implementation
}

// Additional methods...

IntStack (lists) (cont’d)

```java
public IntStack()
{
    top = null;
}
public boolean isEmpty()
{
    return (top == null);
}
```
public void push(int item)
{
 IntNode newNode = new IntNode(item);
 newNode.setLink(top);
 top = newNode;
}

Stack Overflow?
public int pop()
{
 int answer;
 if (top == null) // isEmpty()
 throw new EmptyStackException();
 answer = top.getData();
 top = top.getLink();
 return answer;
}
public int peek()
{
 int answer;
 if (top == null) // isEmpty()
 throw new EmptyStackException();
 answer = top.getData();
 return answer;
}
Balanced Parentheses

• An arithmetic expression has balanced parenthesis if and only if:
 – the number of left parentheses of each type is equal to the number of right parentheses of each type
 – each right parenthesis of a given type matches to a left parenthesis of the same type to its left and all parentheses in between are balanced correctly.
Examples

• \(\{A + B\} - C \)
 Balanced

• \(\{(A + B) - C\} \)
 Not balanced

• \(\{A + B\} - \left[\frac{C}{D}\right] \)
 Balanced

• \(\left(\{A + B\} - C\right) / D \)
 Not balanced
Algorithm
CHECK FOR BALANCED PARENTHESES

- Scan the expression from left to right.
 For each left parenthesis that is found, push on the stack.
 For each right parenthesis that is found,
 If the stack is empty, return false (too many right parentheses)
 Otherwise, pop the top parenthesis from the stack:
 If the left and right parentheses are of the same type, discard.
 Otherwise, return false.
Algorithm (cont’d)
CHECK FOR BALANCED PARENTHESES

• If the stack is empty when the scan is complete, return true.
 Otherwise, return false. (too many left parentheses)
Trace

- $\frac{({\{A + B\} - C})}{D}$

- **Stack trace:**

```plaintext
false
```
Evaluating Expressions

• An expression is fully parenthesized if every operator has a pair of balanced parentheses marking its left and right operands.

• Not fully-parenthesized:
 \[3 \times (5 + 7) - 9 \quad (2 - 4) \times (5 - 7) + 8 \]

• Fully-parenthesized:
 \[(((3 \times (5 + 7)) - 9) \quad ((((2 - 4) \times (5 - 7)) + 8) \]
General Idea

• The first operation to perform is surrounded by the innermost set of balanced parentheses.

• Example: \(((3 \times (5 + 7)) - 9)\) \quad \text{First op: +}

• By reading expression from left to right, first operator comes immediately before first right parenthesis.

• Replace that subexpression with its result and search for next right parenthesis, etc.

• Example: \(((3 \times 12) - 9) = (36 - 9) = 27\)
General Idea (cont’d)

• How do we keep track of operands and operators as we read past them in the expression from left to right?

• Use two stacks:
 one for operands and one for operators.

• When we encounter a right parenthesis, pop off one operator and two operands, perform the operation, and push the result back on the operand stack.
Trace

• \(((3 \times (5 + 7)) - 9)\)

• Stack traces: operands operators

| 7 | 5 | + | 12 | * | 3 | * | 36 | - | 27 |

ANSWER
Algorithm

• Let each operand or operator or parenthesis symbol be a token.
• Let NumStack store the operands.
• Let OpStack store the operations.
• For each token in the input expression do
 If token = operand, NumStack.push(token)
 If token = operator, OpStack.push(token)
Algorithm (cont’d)

If token = “)”,

\[
\begin{align*}
\text{operand}_2 & \leftarrow \text{NumStack.pop()} \\
\text{operand}_1 & \leftarrow \text{NumStack.pop()} \\
\text{operator} & \leftarrow \text{OpStack.pop()} \\
\text{result} & \leftarrow \text{operand}_1 \text{ operator } \text{operand}_2 \\
\text{NumStack.push}(\text{result})
\end{align*}
\]

If token = “(”, ignore token

- After expression is parsed, answer \leftarrow \text{NumStack.pop()}
Arithmetic Expressions

• Infix notation:
 operator is between its two operands
 $3 + 5$ $(5 + 7) \times 9$ $5 + (7 \times 9)$

• Prefix notation:
 operator precedes its two operands
 $+ \ 3 \ 5$ $* \ + \ 5 \ 7 \ 9$ $+ \ 5 \ * \ 7 \ 9$

• Postfix notation:
 operator follows its two operands
 $3 \ 5 \ +$ $5 \ 7 \ + \ 9 \ *$ $5 \ 7 \ 9 \ * \ +$
Precedence of Operators

- Multiplication and division (higher precedence) are performed before addition and subtraction (lower precedence).
- Operators in balanced parentheses are performed before operators outside of the balanced parentheses.
- If two operators are of the same precedence, they are evaluated left to right.
Example

• Infix expression:

\[A + B \times (C \times D - E / F) / G - H \]

\[\begin{array}{ccccccc}
6 & 4 & 1 & 3 & 2 & 5 & 7 \\
\end{array} \]

• What is its prefix equivalent?

\[- + A / * B - * C D / E F G H\]

• What is its postfix equivalent?

\[A B C D \times E F / - * G / + H - \]

\[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array} \]
Evaluating a Postfix Expression

• Let each operand or operator be a token.
• Let NumStack store the operands.
• For each token in the input expression do
 If token = operand, push(token)
 If token = operator,
 operand₂ ← pop()
 operand₁ ← pop()
 result ← operand₁ operator operand₂
 push(result)
• answer ← pop()
Trace

- **INFIX:** \(3 \times (5 + 7) - 9\)
- **POSTFIX:** \(3 \ 5 \ 7 \ + \ * \ 9 \ -\)
- **Stack traces:** operands

<table>
<thead>
<tr>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

\[\begin{array}{c}
3 \\
12 \\
3 \\
9 \\
36 \\
27 \\
\end{array}\]
Translating Infix to Postfix
Fully-Parenthesized Expressions

• Let each operand, operator, or parenthesis be a token.
• Let OpStack store the operators.
• Let postfix string \(P = "" \) (empty string)
• For each token in the input expression do
 - If token = operand, append operand to \(P \)
 - If token = operator, push(token)
 - If token = “)”, append pop() to \(P \)
 - If token = “(“, ignore
Trace

- **Infix:** \(((3 \times (5 + 7)) - 9)\)

Stack (sideways)

- empty
- *
- *
- *
- *
- empty
- –
- –

Postfix String

- 3
- 3
- 3 5
- 3 5
- 3 5 7
- 3 5 7 +
- 3 5 7 + *
- 3 5 7 + *
- 3 5 7 + * 9
- empty

- 3 5 7 + * 9 –
Another Example

Infix: \(((3 * (5 + 7)) - 9)\)

Postfix: \(3 5 7 + * 9 -\)

Infix: \(((2 - 4)*(5 - 7)) + 8)\)

Postfix: \(2 4 - 5 7 - * 8 +\)
Another Example

Infix: \(((3 \times (5 + 7)) - 9)\)

\[
\begin{array}{ccc}
2 & 1 & 3 \\
\end{array}
\]

Postfix: \[3 \ 5 \ 7 \ + \ * \ 9 \ - \]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\]

Infix: \((((2 - 4) \times (5 - 7)) + 8)\)

\[
\begin{array}{cccc}
1 & 3 & 2 & 4 \\
\end{array}
\]

Postfix: \[2 \ 4 \ - \ 5 \ 7 \ - \ * \ 8 \ + \]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}
\]
Translating Infix to Postfix

General Expressions

• Define a precedence function
• \(prec: \text{token} \rightarrow \{0,1,2,3\} \)
• let “$” represent empty stack
• token precedence

<table>
<thead>
<tr>
<th>Token</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>“$”</td>
<td>0</td>
</tr>
<tr>
<td>“(”</td>
<td>1</td>
</tr>
<tr>
<td>“+”, “-”</td>
<td>2</td>
</tr>
<tr>
<td>“*”, “/”</td>
<td>3</td>
</tr>
</tbody>
</table>
Translating Infix to Postfix

General Expressions

• Let each operand, operator, or parenthesis be a token.

• Let OpStack be a character stack that stores the operators or other special symbols (“(”) and “$”).

• Let postfix string P = “” (empty string)
Translating Infix to Postfix (cont’d)

General Expressions

1. push(“$”)

2. For each token in the input expression do
 a. If token = operand,
 append token to P
 b. if token = “(“,
 push(token)
Translating Infix to Postfix (cont’d)

General Expressions

c. if token = “)”,

 topOp ← pop()

while topOp ≠ “(”

 append topOp to P

 topOp ← pop()
Translating Infix to Postfix (cont’d)

General Expressions

d. if token = operator,

\[
\text{topOp} \leftarrow \text{peek}()
\]

while \(\text{prec(topOp)} \geq \text{prec(token)} \)

append pop() to P

\[
\text{topOp} \leftarrow \text{peek}()
\]

push(token)
Translating Infix to Postfix (cont’d)

General Expressions

3. At end of infix expression,

\[
\text{topOp} \leftarrow \text{pop()}
\]

while \(\text{topOp} \neq "\$" \) do

\[
\text{append topOp to P}
\]

\[
\text{topOp} \leftarrow \text{pop()}
\]
Trace

\[A + B \times (C \times D - E / F) / G - H \]

- **Stack** *(sideways)*

<table>
<thead>
<tr>
<th>Stack (sideways)</th>
<th>Postfix String</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$ +</td>
<td>A</td>
</tr>
<tr>
<td>$ +</td>
<td>A</td>
</tr>
<tr>
<td>$ +</td>
<td>A B</td>
</tr>
<tr>
<td>$ + *</td>
<td>A B</td>
</tr>
<tr>
<td>$ + * (</td>
<td>A B</td>
</tr>
<tr>
<td>$ + * (</td>
<td>A B C</td>
</tr>
</tbody>
</table>

- **Postfix String**

 \[A A B A B A B C \]
Trace (cont’d)

\[A + B \times (C \times D - E \div F) \div G - H \]

- **Stack** *(sideways)*
 Postfix String

- $ + \times (\)$
 A B C

- $ + \times (\ast \)$
 A B C

- $ + \times (\ast \)$
 A B C D

- $ + \times (- \)$
 A B C D *

- $ + \times (- \)$
 A B C D * E

- $ + \times (- \div \)$
 A B C D * E

- $ + \times (- \div \)$
 A B C D * E F
Trace (cont’d)

\[A + B \times (C \times D - E / F) / G - H \]

- **Stack** *(sideways)*
 - $ + \times (- / $
 - $ + \times $
 - $ + / $
 - $ - $
 - $ - $
 - *empty*

- **Postfix String**
 - \[A \ B \ C \ D \times \ E \ F \]
 - \[A \ B \ C \ D \times \ E \ F / - \]
 - \[A \ B \ C \ D \times \ E \ F / - * \]
 - \[A \ B \ C \ D \times \ E \ F / - * G \]
 - \[A \ B \ C \ D \times \ E \ F / - * G / + \]
 - \[A \ B \ C \ D \times \ E \ F / - * G / + H \]
 - empty