
Untyped Lambda Calculus

Principles of Programming Languages

CSE 526

1 Syntax

2 Variables and Substitution

3 Reductions

4 Recursion

5 Nameless Representation

Compiled at 08:26 on 2020/03/10

Programming Languages The Untyped Lambda Calculus CSE 526 1 / 38

Lambda Calculus

A formal notation to study computability and programming.

Can be considered as the smallest universal programming language.

Universal: Can be used to express any computation that can be
performed on a Turing Machine
Small: Has only two constructs: abstraction and application.

Brief History:

Introduced by Church and Kleene in 1930s.
Used by Church to study problems in computability.
Concepts have heavily influenced functional programming.
Used to study types and type systems in programming languages

Programming Languages The Untyped Lambda Calculus CSE 526 2 / 38

Syntax

Lambda Terms

Syntax of the λ-calculus

t ::= Terms

x Variable

| λx . t Abstraction

| t t Application

Textual Representation:
Use parentheses to represent trees as linear text

Programming Languages The Untyped Lambda Calculus CSE 526 3 / 38

Syntax

Informal Semantics

λ-expressions can be considered as expressions in a functional language

Abstraction: (λx . t) is a “function” with formal parameter x that
returns (the value of) term t.

Example 1: λx . x is the identity function: one that returns the
argument value itself.
Example 2: λx .λy . x is a function that takes “two arguments x and y
and returns the first argument”.
The explanation in blue above is not accurate, but is good enough for
government work. We’ll see the subtlety shortly.

Application: (t1 t2) is a “function call” where t1 is a function and t2
is the supplied argument.

Example: ((λx . x) y) supplies y as the argument to the identity
function.

Programming Languages The Untyped Lambda Calculus CSE 526 4 / 38

Syntax

Syntactic Conventions and Syntactic Sugar

Parentheses can be dropped using the following conventions:

application is left associative
e.g. ((f f) x) is same as f f x
a λ binds as much as possible to its right.
e.g λf . λx . f (f x) is same as (λf .(λx . f (f x)))

Multiple consecutive abstractions can be combined:
e.g. λf .λx .f (f x) is same as λf x . f (f x)

Programming Languages The Untyped Lambda Calculus CSE 526 5 / 38

Variables and Substitution

The Meaning of Lambda Expressions

Recall: λx . t stands for a function with x as the parameter and (the
value of) t as the return value.

(t1 t2) stands for “calling” the function t1 with t2 as the parameter.

Example: Consider the expression

((λwyx . y (w y x)) (λsz . z))

This is an instance of an application. The expression in blue is passed
as an argument to the function in red.

The meaning of an application: replace every occurrence of the formal
parameter in the body of the function with the given argument.
In the above example

1 λ yx . y ((λ sz . z) y x)
2 λ yx . y ((λ z . z) x)
3 λ yx . y x

Programming Languages The Untyped Lambda Calculus CSE 526 6 / 38

Variables and Substitution

Encoding Booleans in the λ-Calculus

B λ-calculus

true λx . λy . x

false λx . λy . y

&& λx . λy . ((x y) false)

|| λx . λy . ((x true) y)

! λx . ((x false) true)

if λc . λt. λe. ((c t) e)

This is known as the
Church encoding of Booleans,
or simply Church Booleans.

Example:
(true && false)

≡ (λx . λy . ((x y) false))
(λx . λy . x)
(λx . λy . y)

→ (λy . (((λx . λy . x) y) false))
(λx . λy . y)

→ (((λx . λy . x) (λx . λy . y)) false)

→ ((λy . (λx . λy . y)) false)

→ (λx . λy . y)

≡ false

Programming Languages The Untyped Lambda Calculus CSE 526 7 / 38

Variables and Substitution

Encoding Natural Numbers in the λ-Calculus

N λ-calculus

0 λs. λz . z

1 λs. λz . (s z)

2 λs. λz . (s (s z))

3 λs. λz . (s (s (s z)))

...
inc λn. λs. λz . (s ((n s) z))

plus λm. λn. λs. λz . ((m s) ((n s) z))

times λm. λn. ((m (plus n)) 0)

iszero λm. ((m (λx . false)) true)

...

This is known as the Church encoding of Naturals, or simply Church Numerals.

Programming Languages The Untyped Lambda Calculus CSE 526 8 / 38

Variables and Substitution

Encoding Data Structures in the λ-Calculus

pair λf . λs. λc . ((c f) s)

fst λp. (p true)

snd λp. (p false)

Example: Let ϕ1 and ϕ2 be two arbitrary
expressions.

pair ϕ1 ϕ2

≡ ((λf . λs. λc . ((c f) s) ϕ1) ϕ2)

→∗ λc . ((c ϕ1) ϕ2)

fst (pair ϕ1 ϕ2)

≡ (λp. (p true)) (pair ϕ1 ϕ2)

→ (pair ϕ1 ϕ2) true

→∗ (λc . ((c ϕ1) ϕ2)) true

→ ((true ϕ1) ϕ2)

→ ϕ1

snd (pair ϕ1 ϕ2)

≡ (λp. (p false)) (pair ϕ1 ϕ2)

→∗ ((false ϕ1) ϕ2)

→ ϕ2

Programming Languages The Untyped Lambda Calculus CSE 526 9 / 38

Variables and Substitution

Evaluating Lambda Expressions: An Informal Intro.

Basic reduction: (λx . t1) t2 → [x 7→ t2]t1,
where

[x 7→ t2]t1 be the term obtained by replacing all
“free” occurrences of x in t1 by t2.

A sub-term of t of the form (λx. t1) t2 is
called a redex of t.

One step in evaluating a λ-term t is
replacing some redex in t according to the
above reduction schema.

In general, there may be many redexes in
a term.
Example: Let id = (λx . x) in term
id (id (λz . id z))

t
�
�
�
�
�
�
�
��

T
T
T
T
T
T
T
TT

apply

� @
λx

t1
�� BB

t2
�
�
��

C
C
CC

apply
� @

λx

x

apply
� @

λx

x

λz

apply
� @

λx

x

z

Programming Languages The Untyped Lambda Calculus CSE 526 10 / 38

Variables and Substitution

Reduction Strategies

A reduction strategy is used to choose a redex where the basic reduction
step will be done.

apply
� @

λx

x

apply
� @

λx

x

λz

apply
� @

λx

x

z

Full β-reduction: Pick a redex
non-deterministically

Normal Order: choose the left-most,
outer-most redex.

Call-By-Name: like normal-order, but ignore
redexes inside abstractions.

Call-By-Value: choose the right-most,
inner-most redex that is not inside an
abstraction.

Programming Languages The Untyped Lambda Calculus CSE 526 11 / 38

Variables and Substitution

Evaluating Lambda Expressions

The key step in evaluating an application then is:
replace every occurrence of a formal parameter with the actual
argument.

Example: ((λx .(λz . x z)) y) → (λz . y z)

We can formalize the meaning of application by introducing a
function, called substitution that maps terms to terms:

(λx .t1) t2 → [x 7→ t2]t1

The central problem now is how we define this substitution function.

Programming Languages The Untyped Lambda Calculus CSE 526 12 / 38

Variables and Substitution

Substitutions (1st attempt)

[x 7→ s]x = s
[x 7→ s]y = y if y 6= x
[x 7→ s](λy . t) = λy . [x 7→ s]t
[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

Appears to be correct.
Example: [x 7→ y](λz . x z) = (λz . y z)

Use: (λx . (λz . x z)) y) → (λz . y z)

But is incorrect!
Example: [x 7→ y](λx . x) = (λx . y)
Use: ((λx .(λx . x)) y) → (λx . y)

Programming Languages The Untyped Lambda Calculus CSE 526 13 / 38

Variables and Substitution

Substitutions (2nd attempt)

[x 7→ s]x = s
[x 7→ s]y = y if y 6= x

[x 7→ s](λy . t) =

{
λy . t if x = y
λy . [x 7→ s]t if x 6= y

[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

[x 7→ y](λx . x) = (λx . x)

But is still incorrect! e.g. [x 7→ y](λy . x y) = (λy . y y)

In the result of the above example, one y is local to the function
while the other y is not local.

But going by our definition, there is no way to distinguish between
the two y ’s!

Solution: We should get (λw . y w) instead (by suitably renaming
“local” variables).

Programming Languages The Untyped Lambda Calculus CSE 526 14 / 38

Variables and Substitution

Bound and Free Variables: An Informal Intro.

Variable x in λ-expression λx . t is said to be bound.

Example 1: x in λx . x is a bound variable.
Example 2: in λx .(x y), x is bound but y is not bound.
Rough meaning: parameters are local to a function definition.

A variable that is not bound is said to be free.

Example 2: in λx .(x y), y is free.
Rough meaning: free variables in a function definition are analogous to
non-local variables.

Programming Languages The Untyped Lambda Calculus CSE 526 15 / 38

Variables and Substitution

Bound and Binding Occurrences

λ x . x���
Binding Occurrence (declaration)

���
Bound Occurrence (use)

?

(λ x . x)(λ z . (x z))������? ��� ���?
x

Free Occurrence

(λz . (λ x . z (x x)) (λ x . z (x x)))
?

6 6

Programming Languages The Untyped Lambda Calculus CSE 526 16 / 38

Variables and Substitution

Bound Variables

Formal definition: bv(t), the set of all bound variables of t, is such that:

t is an abstraction of the form λx .t ′:

bv(t) = bv(t ′) ∪ {x}
t is an application of the form t1 t2:

bv(t) = bv(t1) ∪ bv(t2)

Example:
bv((λx . x) (λz . (x z)))
= bv(λx . x) ∪ bv(λz . (x z))
= {x} ∪ {z} = {x , z}

Programming Languages The Untyped Lambda Calculus CSE 526 17 / 38

Variables and Substitution

Free Variables

Formal definition: fv(t), the set of all free variables of t, is such that:

t is a variable of the form x :

fv(t) = {x}
t is an abstraction of the form λx .t ′:

fv(t) = fv(t ′)− {x}
t is an application of the form t1 t2:

fv(t) = fv(t1) ∪ fv(t2)

Example:
fv((λx . x) (λz . (x z)))
= fv(λx . x) ∪ fv(λz . (x z))
= { } ∪ {x} = {x}

Programming Languages The Untyped Lambda Calculus CSE 526 18 / 38

Reductions

α-Conversion (Renaming)

Intuition: We can rename a bound variable as long as

the new name is not also the name of a free variable, and
we replace every occurrence of the bound variable

Example 1: (λy . x y) is equivalent to (λz . x z)

Example 2: (λy . x y) is not equivalent to (λx . x x) (the name of
new variable is same as that of a free variable)

Example 3: (λy . x y) is not equivalent to (λy . x z) (not every
occurrence of y has been replaced).

Two terms t and t ′ are said to be “α-equivalent” (denoted by
t ≡α t ′) if they are identical modulo the names of bound variables.

Programming Languages The Untyped Lambda Calculus CSE 526 19 / 38

Reductions

Substitutions (3rd attempt)

[x 7→ s]x = s
[x 7→ s]y = y if y 6= x
[x 7→ s](λy . t) = λy . [x 7→ s]t if x 6= y and y 6∈ fv(s)
[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

The definition is now incomplete! e.g. [x 7→ y](λy . x y) = ??

This drawback is not serious:

We can apply a substitution on an α-equivalent term instead.

E.g. [x 7→ y](λz . x z) = (λz . y z)

Programming Languages The Untyped Lambda Calculus CSE 526 20 / 38

Reductions

Operational Semantics: Full β-Reduction

t1 → t ′1
t1 t2 → t ′1 t2

E-App1

t2 → t ′2
t1 t2 → t1 t ′2

E-App2

t → t ′

λx . t → λx . t ′
E-Abs

(λx . t1) t2 → [x 7→ t2]t1 E-AppAbs

Programming Languages The Untyped Lambda Calculus CSE 526 21 / 38

Reductions

Operational Semantics: Call-By-Value
t ::= . . . Terms (all λ-terms)

v ::= λx . t Values

Evaluation:

t1 → t ′1
t1 t2 → t ′1 t2

E-App1

t2 → t ′2
v1 t2 → v1 t ′2

E-App2

(λx . t1) v2 → [x 7→ v2]t1 E-AppAbs

In an application of the form (t1 t2), if t1 is a λ-abstraction, then t2
has to be reduced to a value before the application is done.

This corresponds to Call-By-Value parameter passing: evaluate the
actual arguments first before passing them as parameters to a called
function.

Programming Languages The Untyped Lambda Calculus CSE 526 22 / 38

Reductions

Operational Semantics: Call-By-Name

t ::= . . . Terms (all λ-terms)

v ::= λx . t Values

Evaluation:

t1 → t ′1
t1 t2 → t ′1 t2

E-App

(λx . t1) t2 → [x 7→ t2]t1 E-AppAbs

In an application of the form (t1 t2), if t1 is a λ-abstraction, then t1
has to be reduced to a value before the application is done.

In terms of familiar languages, the actual arguments are passed
unevaluated to the called function. They will be evaluated in the
called function if needed.

Programming Languages The Untyped Lambda Calculus CSE 526 23 / 38

Recursion

Infinite and Diverging Computations in the λ-Calculus

omega : (λx . x x) (λx . x x)

Evaluation:

omega
≡ (λx . x x) (λx . x x)

→ (λx . x x) (λx . x x)

≡ omega
→ omega
...

inf : (λx . (x x) x)

Evaluation:

(inf inf)
≡ (λx . (x x) x) inf

→ (inf inf) inf

→ ((inf inf) inf) inf

→ . . .
...

Programming Languages The Untyped Lambda Calculus CSE 526 24 / 38

Recursion

Recursive Functions in the λ-Calculus —(1)

Consider the function to compute factorial of a natural number,
written as follows:

fact ≡ λn. (if (iszero n) 1 (times n (fact (dec n))))

where dec is the function that decrements a number by 1.

Note this is not a proper encoding: fact is being defined in terms of
itself!

The solution is to “lift” factorial into a functional:

F ≡ λf . λn. (if (iszero n) 1 (times n (f (dec n))))

Note that F is well-defined.

F is a very special function, as we’ll see in the next. . .

Programming Languages The Untyped Lambda Calculus CSE 526 25 / 38

Recursion

Recursive Functions in the λ-Calculus —(2)

F ≡ λf . λn. (if (iszero n) 1 (times n (f (dec n))))

Consider fact0 ≡ F omega:
fact0 ≡ F omega
≡ (λf . λn. (if (iszero n) 1 (times n (f (dec n))))) omega
→ λn. (if (iszero n) 1 (times n (omega (dec n))))

When non-strict evaluation is used, fact0 computes the same as fact
for 0, but diverges elsewhere.

Programming Languages The Untyped Lambda Calculus CSE 526 26 / 38

Recursion

Recursive Functions in the λ-Calculus —(3)

F ≡ λf . λn. (if (iszero n) 1 (times n (f (dec n))))

Now consider fact1 ≡ F fact0:
fact1 ≡ F fact0
≡ (λf . λn. (if (iszero n) 1 (times n (f (dec n))))) fact0
→ λn. (if (iszero n) 1 (times n (fact0 (dec n))))

When non-strict evaluation is used, fact1 computes the same as fact
for 0 and 1, but diverges elsewhere.

Programming Languages The Untyped Lambda Calculus CSE 526 27 / 38

Recursion

Recursive Functions in the λ-Calculus —(4)

Consider the sequence of functions fact0, fact1, fact2, . . . such that
fact0 = omega, and factn+1 = (F factn).

None of these functions is same as fact, but as we construct more
and more members of this sequence, we get functions that
approximate fact closer and closer.

fact is indeed the limit of this sequence of functions!

If only we had a way, in the λ-calculus, to generate such a sequence. . .

Programming Languages The Untyped Lambda Calculus CSE 526 28 / 38

Recursion

The Y-Combinator

Y = λf . (λx . f (x x)) (λx . f (x x))

Consider (Y F):
(Y F) ≡ (λf . (λx . f (x x)) (λx . f (x x))) F
→ (λx . F (x x)) (λx . F (x x))
→ F ((λx . F (x x)) (λx . F (x x)))
∼= F (Y F)

Recall F ≡ λf . λn. (if (iszero n) 1 (times n (f (dec n)))).

Putting it all together:
(Y F) ∼= F (Y F)
≡ (λf . λn. (if (iszero n) 1 (times n (f (dec n))))) (Y F)
→ λn. (if (iszero n) 1 (times n ((Y F) (dec n))))

(Y F) looks like the mythical function fact .

Programming Languages The Untyped Lambda Calculus CSE 526 29 / 38

Recursion

The Z-Combinator

(Y F) ∼= F (Y F)

With call-by-name evaluation strategy, the next steps in reduction will
first substitute the formal parameter of F with (Y F).

With call-by-value strategy, F (Y F) will first reduce (Y F), which
result in:

→∗ F (F (Y F))
→∗ F (F (F (Y F)))
→∗ . . .

For call-by-value strategy, we should use the Z combinator instead:

Z = λf . (λx . f (λy . x x y)) (λx . f (λy . x x y))

Programming Languages The Untyped Lambda Calculus CSE 526 30 / 38

Recursion

Recursive Functions in the λ-Calculus —(5)

Y = λf . (λx . f (x x)) (λx . f (x x))
F = λf . λn. (if (iszero n) 1 (times n (f (dec n))))

fact = (Y F)

Note that the definitions of Y , F and fact are all non-recursive.

The above recipe can be used for writing any recursive function.

Say, we have a mythical recursive definition f = λx . e where e uses f .

We simply rewrite the definition as f = (Y (λf . λx . e)).

Programming Languages The Untyped Lambda Calculus CSE 526 31 / 38

Nameless Representation

Nameless Representation of Terms
Consider variables in a λ-term as named “holes” to be filled in.
Instead of using symbolic names for variables, one can name the holes
w.r.t. the λ that binds them.

Examples:

x

λx

x

λx

λy

apply

apply

xy

x

λx

λy

0

λ

1

λ

λ

apply

apply

10

1

λ

λ

λx . x can be written as
λ. 0

λx . λy . x can be written
as λ. λ. 1

λx . λy . x (y x) can be
written as λ. λ. 1 (0 1)

Programming Languages The Untyped Lambda Calculus CSE 526 32 / 38

Nameless Representation

n-Terms

De Bruijn terms are defined by a family of sets (each set being a set of
terms) {T0, T1, . . .} such that Tn represents λ-terms with n or fewer free
variables

Formally, T is the smallest family of sets {T0, T1, . . .} such that

k ∈ Tn whenever 0 ≤ k < n

if t1 ∈ Tn then λ. t1 ∈ Tn−1
if t1, t2 ∈ Tn then (t1 t2) ∈ Tn

α-equivalent closed λ-terms will have the same de Bruijn representation.

Programming Languages The Untyped Lambda Calculus CSE 526 33 / 38

Nameless Representation

Naming Context

When a λ-term has free variables, we need information on their
relative positions.

E.g. given {v 7→ 2,w 7→ 1, x 7→ 0}:
Naming Context

λv

λw

λx

t1

apply

apply

λv

λw

w

v

x

λx

apply

λv

λw

w y

λx

λy

λc

λv

λw

v

λx

λy
v (w x) can be written as 2 (1 0)

λy . w y can be written as λ. 2 0

λy .λc . v can be written as λ. λ. 4

Naming contexts are often written as a sequence, where
xn, xn−1, . . . , x1, x0, represents a context where each xi has de Bruijn
index i .

Programming Languages The Untyped Lambda Calculus CSE 526 34 / 38

Nameless Representation

Substitution

Term (λy . λz . (x y) (w z)) under naming context v ,w , x has the
following de Bruijn representation:

λ. λ. (2 1) (3 0)

Term (v w) under naming context v ,w , x has the following de Bruijn
representation:

(2 1)

Substitution [x 7→ (v w)](λy . λz . (x y) (w z)) will yield the term

λy . λz . ((v w) y) (w z)

Assuming the naming context is v ,w , x , the above term has the
following de Bruijn representation: (λ. λ. ((4 3) 1) (3 0))

Hence, when carrying out substitution, we need to renumber the
indices of free variables in the replacement term, and retain the
indices of bound variables.
This will be done using the shifting operation, defined next.

Programming Languages The Untyped Lambda Calculus CSE 526 35 / 38

Nameless Representation

Shifting

For substitution, we need to

renumber the indices of free variables (say, by d), and

retain the indices of bound variables (say, those numbered below c).

This is done using the shifting operation, defined as follows:

↑dc (k) =

 k if k < c

k + d if k ≥ c

↑dc (λ. t1) = λ. ↑dc+1 (t1)

↑dc (t1 t2) = (↑dc t1 ↑dc t2)

↑d (t) = ↑d0 (t)

Examples

↑2 (λ. λ. 1 (0 2)) = λ. λ. 1 (0 4)

↑2 (λ. 0 1 (λ. 0 1 2)) = λ.0 3 (λ. 0 1 4)

Programming Languages The Untyped Lambda Calculus CSE 526 36 / 38

Nameless Representation

Substitution using Shifting

[j 7→ s]k =

{
s if k = j
k otherwise

[j 7→ s](λ. t1) = λ. [j + 1 7→↑1 (s)]t1
[j 7→ s](t1 t2) = ([j 7→ s]t1 [j 7→ s]t2)

Examples:

[0 7→ 1](0 (λ. λ. 2)) = 1 (λ. λ. 3)

[0 7→ (1 (λ. 2))](0 (λ. 1)) =(1 (λ. 2)) (λ(2 (λ. 3)))

[0 7→ 1](λ. (0 2)) = λ. (0 2)

Programming Languages The Untyped Lambda Calculus CSE 526 37 / 38

Nameless Representation

Evaluation
In the calculus with symbolic term representation:

(λx . t1) t2 → [x 7→ t2]t1 E-AppAbs

In the calculus with de Bruijn representation:

(λ. t1) t2 →↑−1 ([0 7→↑1 (t2)]t1) E-AppAbs

The outer λ is removed after application, so the indices have to shift
down by 1.

Indices in argument (t2) should not be changed in the end, so we
shifting them up by 1 first.

Consider (λx . w x v) (λy . (w y)), whose de Bruijn representation is
(λ. 1 0 2) (λ. 1 0) (assuming naming context v ,w).
The result of the application is w (λy . w y) v .
↑1 (λ. 1 0) = λ. 2 0
[0 7→ (λ. 2 0)](1 0 2) = 1 (λ. 2 0) 2
↑−1 (1 (λ. 2 0) 2) = 0 (λ. 1 0) 1

Programming Languages The Untyped Lambda Calculus CSE 526 38 / 38

