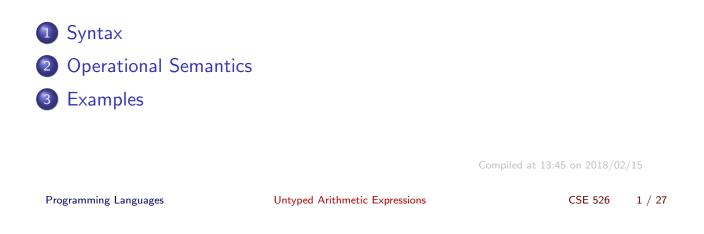
Untyped Arithmetic Expressions

Principles of Programming Languages

CSE 526



Formal Description of Programming Languages

- Formal Definition of Syntax
 - Grammars to define the set of *strings* that define a syntactically valid program
 - Inductive definitions of *abstract syntax trees*.
- Formal Definition of Semantics
 - Structural operational semantics

Example: A language of untyped arithmetic expressions

t

```
::= true \\ | false \\ if(t, t, t) \\ | 0 \\ | succ t \\ pred t \\ iszero t
```

Inductive Definition: The set T of *terms* is the smallest set such that:

- **2** if $t_1 \in \mathcal{T}$ then {succ t_1 , pred t_1 , iszero t_1 } $\subseteq \mathcal{T}$.
- **3** if $t_1, t_2, t_3 \in \mathcal{T}$ then $if(t_1, t_2, t_3) \in \mathcal{T}$.

Programming Languages

Untyped Arithmetic Expressions

CSE 526 3 / 27

Syntax

Alternative Definitions of Terms

Inductive Definition: The set T of *terms* is the smallest set such that:

- **2** if $t_1 \in \mathcal{T}$ then {succ t_1 , pred t_1 , iszero t_1 } $\subseteq \mathcal{T}$.
- **3** if $t_1, t_2, t_3 \in \mathcal{T}$ then $if(t_1, t_2, t_3) \in \mathcal{T}$.

Inference Rules: The set \mathcal{T} is defined by the following rules:

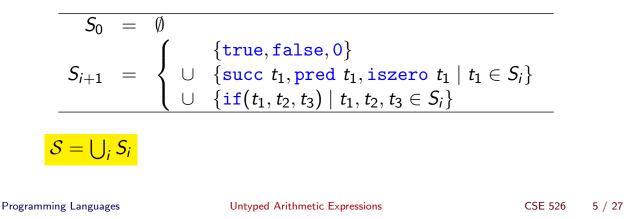
$\texttt{true} \in \mathcal{T}$	$\texttt{false} \in \mathcal{T}$	$0\in\mathcal{T}$
$\frac{t_1 \in \mathcal{T}}{\texttt{succ } t_1 \in \mathcal{T}}$	$\frac{t_1 \in \mathcal{T}}{\texttt{pred} \ t_1 \in \mathcal{T}}$	$rac{t_1 \in \mathcal{T}}{ ext{iszero } t_1 \in \mathcal{T}}$
	$rac{t_1,t_2,t_3\in\mathcal{T}}{ extsf{if}(t_1,t_2,t_3)\in\mathcal{T}}$	

Alternative Definitions of Terms (contd.)

Inductive Definition: The set T of *terms* is the smallest set such that:

- $\texttt{1} \ \{\texttt{true}, \texttt{false}, \texttt{0}\} \subseteq \mathcal{T}$
- **2** if $t_1 \in \mathcal{T}$ then {succ t_1 , pred t_1 , iszero t_1 } $\subseteq \mathcal{T}$.
- 3 if $t_1, t_2, t_3 \in \mathcal{T}$ then $if(t_1, t_2, t_3) \in \mathcal{T}$.

Constructive Definition: For each natural number *i* define set S_i as follows:



Syntax

Alternative Definitions of Terms (contd.)

Properties:

- The sets S_i are cumulative, i.e., $\forall i \ S_i \subseteq S_{i+1}$
- $\mathcal{T} = \mathcal{S}$
 - $\textcircled{0} \ \mathcal{S} \ \text{satisfies the conditions on } \mathcal{T}$
 - 2 Let S' be a set that satisfies the conditions on \mathcal{T} . Then $S \subseteq S'$.

Equivalence of ${\mathcal S}$ and ${\mathcal T}$

$$\begin{array}{rcl} S_0 &=& \emptyset \\ S_{i+1} &=& \left\{ \begin{array}{cc} \{\texttt{true}, \texttt{false}, 0\} \\ \cup & \{\texttt{succ } t_1, \texttt{pred } t_1, \texttt{iszero } t_1 \mid t_1 \in S_i\} \\ \cup & \{\texttt{if}(t_1, t_2, t_3) \mid t_1, t_2, t_3 \in S_i\} \end{array} \right. \end{array}$$

1. $\forall i \ S_i \subseteq S_{i+1}$

Proof is by *ordinary* induction on *i*: P(0) and $\forall k.P(k) \implies P(k+1)$, where $P(i) : S_i \subseteq S_{i+1}$

P(0): S_0 is empty, and hence is a subset of S_1 .

 $P(k) \implies P(k+1)$: We'll show that every $t \in S_{k+1}$ is also $\in S_{k+2}$.

Consider $t \in S_{k+1}$. Then t is of one of the following forms:

- 1. $t \in \{\texttt{true}, \texttt{false}, 0\}$. Then $t \in S_{k+2}$ by definition.
- 2. $t = \operatorname{succ}(t_1)$ for some $t_1 \in S_k$. By ind. hyp., $t_1 \in S_{k+1}$ and hence $t \in S_{k+2}$.
- 3-5. proof steps for terms of the form $pred(t_1)$ etc. are similar to case 2.

Programming Languages

Untyped Arithmetic Expressions

```
CSE 526 7 / 27
```

Syntax

Equivalence of ${\mathcal S}$ and ${\mathcal T}$

$$\mathcal{T} \text{ is the smallest set such that}$$

$$\{ \text{true, false, 0} \} \subseteq \mathcal{T}$$

$$\text{if } t_1 \in \mathcal{T} \text{ then } \{ \text{succ } t_1, \\ \text{pred } t_1, \text{ iszero } t_1 \} \subseteq \mathcal{T}.$$

$$\text{if } t_1, t_2, t_3 \in \mathcal{T} \text{ then} \\ \text{if } (t_1, t_2, t_3) \in \mathcal{T}.$$

$$S_{i+1} = \begin{cases} \{ \text{true, false, 0} \} \\ \cup \{ \text{succ } t_1, \text{pred } t_1, \\ \text{iszero } t_1 \mid t_1 \in S_i \} \\ \cup \{ \text{if}(t_1, t_2, t_3) \mid t_1, t_2, t_3 \in S_i \} \end{cases}$$

$$S = \bigcup_{i \ge 0} S_i$$

$$S = \bigcup_{i \ge 0} S_i$$

- ${\tt true, false, 0}$ are in S_1 and hence in S.
- ② If $t_1 \in S$ then $t_1 \in S_k$ for some $k \ge 0$. Hence, {succ(t_1), pred(t_1), iszero(t_1)} ⊆ S_{k+1} and consequently ⊆ S.

◎ If $t_1, t_2, t_3 \in S$ then there are k_1, k_2, k_3 such that $t_1 \in S_{k_1}, t_2 \in S_{k_2}$, and $t_3 \in S_{k_3}$. From Lemma 1, t_1, t_2, t_3 are all $\in S_k$ for $k \ge \max(k_1, k_2, k_3)$. Hence $if(t_1, t_2, t_3) \in S_{k+1}$ and consequently $\in S$.

Equivalence of \mathcal{S} and \mathcal{T} (Contd.)

$$\mathcal{T} \text{ is the smallest set such that}$$

$$\{ \text{true, false, 0} \} \subseteq \mathcal{T}$$

$$\text{if } t_1 \in \mathcal{T} \text{ then } \{ \text{succ } t_1, \\ \text{pred } t_1, \text{ iszero } t_1 \} \subseteq \mathcal{T}.$$

$$\text{if } t_1, t_2, t_3 \in \mathcal{T} \text{ then} \\ \text{if } (t_1, t_2, t_3) \in \mathcal{T}.$$

2b. If S' satisfies the conditions 1, 2, and 3 on T, then $S \subseteq S'$. We will show this by proving that S_i is a subset of S' by *complete* induction: $(\forall j < i P(j)) \implies P(i).$

We get two cases from the definition of S_i :

$$i = 0$$
: $S_0 \subseteq S'$.

 $\exists j. \ i = j + 1$: Every $t \in S_{j+1}$ is also $\in S'$.

- 1. {true, false, 0} are in S' by condition 1.
- 2. If $t = \operatorname{succ}(t_1) \in S_{j+1}$ for $t_1 \in S_j$, then by ind. hyp. $t_1 \in S'$, and $t \in S'$ by condition 2.
- 3–5. Proof steps are similar to case 2 for $t = \text{pred}(t_1)$ etc.

Programming Languages

Untyped Arithmetic Expressions

```
CSE 526 9 / 27
```

Syntax

Inductive Definitions

The following recursive definition is "well-defined" since the function on a term is defined based on that on *smaller* terms.

$$Const(true) = \{true\}$$

$$Const(false) = \{false\}$$

$$Const(0) = \{0\}$$

$$Const(succ t_1) = Const(t_1)$$

$$Const(pred t_1) = Const(t_1)$$

$$Const(iszero t_1) = Const(t_1)$$

$$Const(if(t_1, t_2, t_3)) = Const(t_1) \cup Const(t_2) \cup Const(t_3)$$

Inductive Definitions (contd.)

The size of a term is also defined inductively:

$$size(true) = 1$$

 $size(false) = 1$
 $size(0) = 1$
 $size(succ t_1) = size(t_1) + 1$
 $size(pred t_1) = size(t_1) + 1$
 $size(iszero t_1) = size(t_1) + 1$
 $size(if(t_1, t_2, t_3)) = size(t_1) + size(t_2) + size(t_3) + 1$

The *depth* of terms can be defined similarly.

Programming Languages Untyped Arithmetic Expressions CSE 526 11 / 27
Syntax

Induction on terms

• Structural Induction:

- If, for each term s, given P(r) for all immediate sub-terms r of swe can show P(s)then P(s) holds for all s.
- Induction on size:

If, for each term s, given P(r) for all terms r such that size(r) < size(s)we can show P(s)then P(s) holds for all s.

Operational Semantics

Example: A language of untyped boolean expressions \mathcal{B} :

t	::=	true false if(t, t, t)	Terms
V	::=	true false	Values

Evaluation:

$$\begin{aligned} & \texttt{if}(\texttt{true}, t_2, t_3) \rightarrow t_2 & \text{E-IFTRUE} \\ & \texttt{if}(\texttt{false}, t_2, t_3) \rightarrow t_3 & \text{E-IFFALSE} \\ & \underline{t_1 \rightarrow t_1'} \\ & \underline{\texttt{if}(t_1, t_2, t_3) \rightarrow \texttt{if}(t_1', t_2, t_3)} & \text{E-IF} \end{aligned}$$

Programming Languages	Untyped Arithmetic Expressions	CSE 526	13 / 27

Operational Semantics

The Inference Rule Notation

- Inference rules without premises are called *axioms*.
- Inference rules (more precisely *rule schema*) may have meta-variables.
 E.g., t₁, t₂, t₃, t'₁ in:

$$rac{t_1
ightarrow t_1'}{ extsf{if}(t_1,t_2,t_3)
ightarrow extsf{if}(t_1',t_2,t_3)} \quad extsf{E-IF}$$

A *rule instance* is obtained by consistently replacing each meta-variable by the same term in the premises as well as the conclusion.

Operational Semantics

Operational Semantics of Boolean Expressions

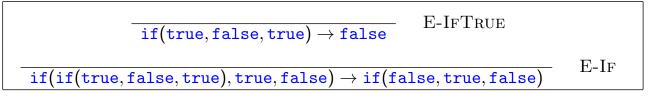
$$\begin{split} & \texttt{if}(\texttt{true}, t_2, t_3) \rightarrow t_2 \qquad \text{E-IFTRUE} \\ & \texttt{if}(\texttt{false}, t_2, t_3) \rightarrow t_3 \qquad \text{E-IFFALSE} \\ & \underline{t_1 \rightarrow t_1'} \\ & \underline{\texttt{if}(t_1, t_2, t_3) \rightarrow \texttt{if}(t_1', t_2, t_3)} \quad \text{E-IF} \end{split}$$

- The *one-step evaluation relation* is the smallest relation "→" on terms satisfying the above rules.
- When (t, t') is in the evaluation relation, we say that the evaluation statement (or judgment) $t \rightarrow t'$ is derivable.
- **Determinacy:** If $t \to t'$ and $t \to t''$ then t' = t''.

Programming Languages	Untyped Arithmetic Expressions	CSE 526	15 / 27

Operational Semantics

Example Evaluations



Step 2:

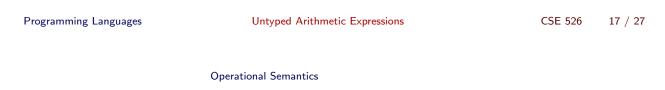
 $if(false, true, false) \rightarrow false$ E-IFFALSE

if(if(true, false, true), true, false) $\rightarrow if(false, true, false)$ $\rightarrow false$

Small-Step Semantics

Properties of (previously defined) operational semantics

- **Determinacy:** If $t \to t'$ and $t \to t''$ then t' = t''.
- Proof: by induction on the derivation of $t \rightarrow t'$.
- This proof is also identical to induction on structure of t
- The operational semantics defined previously is said to be "*Structural Operational Semantics* (SOS)", where the evaluation derivation follows the structure of the term being reduced.



Proof of Determinacy

$$\begin{array}{c|c} \text{if}(\texttt{true}, t_2, t_3) \rightarrow t_2 & \text{E-IFTRUE} \\ \text{if}(\texttt{false}, t_2, t_3) \rightarrow t_3 & \text{E-IFFALSE} \end{array} \qquad \begin{array}{c} t_1 \rightarrow t_1' \\ \hline \texttt{if}(t_1, t_2, t_3) \rightarrow \texttt{if}(t_1', t_2, t_3) \end{array} \qquad \text{E-IF} \end{array}$$

If $t \to t'$ and $t \to t''$ then t' = t''.

Consider the last rule used in the derivation of $t \rightarrow t'$.

- E-IFTRUE: Then $t = if(true, t_2, t_3)$ for some terms t_2 and t_3 , and $t' = t_2$. Consider the derivation $t \to t''$. The last rule used here cannot be E-IFFALSE (does not match) or E-IF (premise does not hold). Hence the last rule used in $t \to t''$ must be E-IFTRUE, and $t'' = t_2 = t'$.
- E-IFFALSE: Similar to above case.
- E-IF: Then $t = if(t_1, t_2, t_3)$, $t_1 \rightarrow t'_1$ (premise), and $t' = if(t'_1, t_2, t_3)$. The last rule used in derivation of $t \rightarrow t''$ must also be E-IF, with premise $t_1 \rightarrow t''_1$, resulting in $t'' = if(t''_1, t_2, t_3)$. By induction hypotheses, we know $t'_1 = t''_1$.

Normal Form

- A term t is in normal form if there is no t' such that $t \rightarrow t'$.
- Every *value* is in normal form.
- If t is in normal form, then t is a value.
- Let "→*" relation be the reflexive, transitive closure of "→" relation in the following:
- Uniqueness: If $t \rightarrow^* u$ and $t \rightarrow^* u'$ where u and u' are normal forms, then u = u'.

If $t \to^* u$, and u is in normal form, we say u is the normal form of t.

• **Termination:** For every term t, there is some normal form t' such that $t \rightarrow^* t'$.

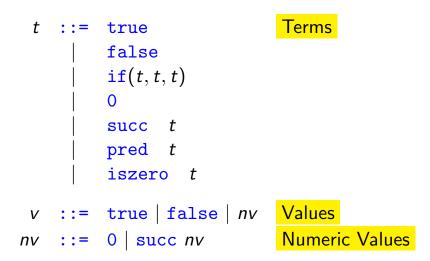
Programming Languages

Untyped Arithmetic Expressions

CSE 526 19 / 27

Operational Semantics

Untyped Arithmetic Expressions



Operational Semantics of Untyped Arithmetic Expressions

$$\frac{t_1 \rightarrow t'_1}{\text{succ } t_1 \rightarrow \text{succ } t'_1} \quad \text{E-Succ}$$

$$pred \ 0 \rightarrow 0 \quad \text{E-PREDZERO}$$

$$pred \ \text{succ } nv_1 \rightarrow nv_1 \quad \text{E-PREDSUCC}$$

$$\frac{t_1 \rightarrow t'_1}{\text{pred } t_1 \rightarrow \text{pred } t'_1} \quad \text{E-PRED}$$

$$\text{iszero } 0 \rightarrow \text{true} \quad \text{E-IsZEROZERO}$$

$$\frac{t_1 \rightarrow t'_1}{\text{iszero } t_1 \rightarrow \text{false}} \quad \text{E-IsZEROSUCC}$$

$$\frac{t_1 \rightarrow t'_1}{\text{iszero } t_1 \rightarrow \text{iszero } t'_1} \quad \text{E-IsZERO}$$

Programming Languages

Untyped Arithmetic Expressions

CSE 526 21 / 27

Operational Semantics

Properties of the operational semantics (prev. slide)

- **Determinacy**
- Uniqueness of normal forms
- Termination
- Not all normal forms are values!

A term is stuck if it is in normal form but not a value.

Stuck terms correspond to "run-time errors".

Examples

Reflexive Transitive Closure

Let $R \subseteq D \times D$ be a binary relation. The reflexive transitive closure R^* of R is the smallest relation such that

- $\forall d \in D$ $(d,d) \in R^*$
- $R \subseteq R^*$
- $\forall x, y, z \in D$ $(x, y) \in R^* \land (y, z) \in R^* \Rightarrow (x, z) \in R^*$

Inference rules for \rightarrow , the small-step transition relation (Ex. 3.5.10):

$$\begin{array}{c} t \rightarrow^{*} t \\ \\ \frac{t \rightarrow t'}{t \rightarrow^{*} t'} \\ \\ \frac{t \rightarrow^{*} t' \quad t' \rightarrow^{*} t''}{t \rightarrow^{*} t''} \end{array}$$

Programming Languages

Untyped Arithmetic Expressions

CSE 526 23 / 27

Examples

Big-Step Semantics

Small-Step Semantics for **B**:

$$\begin{aligned} & \text{if}(\texttt{true}, t_2, t_3) \to t_2 & \text{E-IFTRUE} \\ & \text{if}(\texttt{false}, t_2, t_3) \to t_3 & \text{E-IFFALSE} \\ & \frac{t_1 \to t_1'}{\texttt{if}(t_1, t_2, t_3) \to \texttt{if}(t_1', t_2, t_3)} & \text{E-IF} \end{aligned}$$

$$\forall t \exists v. t \rightarrow^* v \quad (\text{Uniqueness of N.F. \& Termination})$$

Big-Step Semantics for **B**:

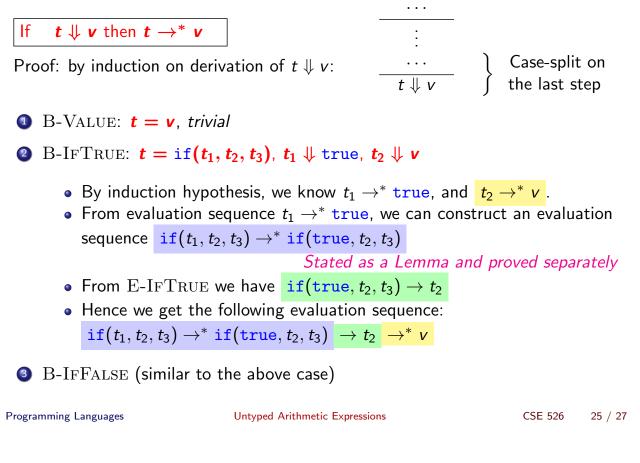
$$v \Downarrow v$$
 B-VALUE

$$\frac{t_1 \Downarrow \text{true} \quad t_2 \Downarrow v_2}{\text{if}(t_1, t_2, t_3) \Downarrow v_2} \quad \text{B-IFTRUE}$$

$$\frac{t_1 \Downarrow \texttt{false} \quad t_3 \Downarrow v_3}{\texttt{if}(t_1, t_2, t_3) \Downarrow v_3} \quad \text{B-IFFALSE}$$

Examples

Soundness of Big-Step Semantics



Examples

Soundness of Big-Step Semantics (contd.)

Lemma needed for soundness proof: $\begin{array}{c|c} \text{If} \quad t_1 \rightarrow^* t'_1 \quad \text{then} \quad \text{if}(t_1, t_2, t_3) \rightarrow^* \text{if}(t'_1, t_2, t_3) \end{array}$

Proof: by induction on the length of evaluation sequence $t_1 \rightarrow^* t'_1$.

- $t_1 = t'_1$ (i.e zero-length evaluation sequence): trivial.
- $t_1 \rightarrow \hat{t_1} \rightarrow^* t'_1$: Then t_1 is not a value (by defn of small-step semantics)
 - By E-IF, $if(t_1, t_2, t_3)
 ightarrow if(\hat{t_1}, t_2, t_3)$
 - By induction hypothesis, $\hat{t_1} \rightarrow^* t'_1$ means $if(\hat{t_1}, t_2, t_3) \rightarrow^* if(t'_1, t_2, t_3)$
 - Hence $if(t_1, t_2, t_3) \rightarrow if(\hat{t_1}, t_2, t_3) \rightarrow^* if(t'_1, t_2, t_3)$

Examples

Completeness of Big-Step Semantics If $t \rightarrow^* v$ then $t \Downarrow v$

Proof: by induction on length of evaluation of $t \rightarrow^* v$

• t = v: $v \Downarrow v$ by B-VALUE.

2
$$t \rightarrow \hat{t} \rightarrow^* v$$
: then $t = if(t_1, t_2, t_3)$.

Use the following lemma:

 $\begin{array}{l} \text{If } \texttt{if}(t_1,t_2,t_3) \to^* v \text{ then} \\ t_1 \to^* \texttt{true} \text{ and } t_2 \to^* v \text{, or} \\ t_1 \to^* \texttt{false} \text{ and } t_3 \to^* v \end{array}$

and the evaluation sequences for t_1 and t_2 or t_3 are strictly shorter than the given evaluation sequence.

If $t_1 \rightarrow^* \text{true}$, then by induction hypothesis, $t_1 \Downarrow \text{true}$ and $t_2 \Downarrow v$ Hence by applying B-IFTRUE, we get $if(t_1, t_2, t_3) \Downarrow v$. Proof if $t_1 \rightarrow^* \text{false}$ is similar.

Programming Languages

Untyped Arithmetic Expressions

CSE 526 27 / 27