
Untyped Arithmetic Expressions

Principles of Programming Languages

CSE 526

1 Syntax

2 Operational Semantics

3 Examples

Compiled at 13:45 on 2018/02/15

Programming Languages Untyped Arithmetic Expressions CSE 526 1 / 27

Formal Description of Programming Languages

Formal Definition of Syntax

Grammars to define the set of strings that define a syntactically valid
program
Inductive definitions of abstract syntax trees.

Formal Definition of Semantics

Structural operational semantics

Programming Languages Untyped Arithmetic Expressions CSE 526 2 / 27

Syntax

Syntax

Example: A language of untyped arithmetic expressions

t ::= true

| false

| if(t, t, t)
| 0

| succ t
| pred t
| iszero t

Inductive Definition: The set T of terms is the smallest set such that:

1 {true, false, 0} ⊆ T
2 if t1 ∈ T then {succ t1, pred t1, iszero t1} ⊆ T .

3 if t1, t2, t3 ∈ T then if(t1, t2, t3) ∈ T .

Programming Languages Untyped Arithmetic Expressions CSE 526 3 / 27

Syntax

Alternative Definitions of Terms

Inductive Definition: The set T of terms is the smallest set such that:

1 {true, false, 0} ⊆ T
2 if t1 ∈ T then {succ t1, pred t1, iszero t1} ⊆ T .

3 if t1, t2, t3 ∈ T then if(t1, t2, t3) ∈ T .

Inference Rules: The set T is defined by the following rules:

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T
succ t1 ∈ T

t1 ∈ T
pred t1 ∈ T

t1 ∈ T
iszero t1 ∈ T

t1, t2, t3 ∈ T
if(t1, t2, t3) ∈ T

Programming Languages Untyped Arithmetic Expressions CSE 526 4 / 27

Syntax

Alternative Definitions of Terms (contd.)

Inductive Definition: The set T of terms is the smallest set such that:

1 {true, false, 0} ⊆ T
2 if t1 ∈ T then {succ t1, pred t1, iszero t1} ⊆ T .

3 if t1, t2, t3 ∈ T then if(t1, t2, t3) ∈ T .

Constructive Definition: For each natural number i define set Si as
follows:

S0 = ∅

Si+1 =

{true, false, 0}

∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si}
∪ {if(t1, t2, t3) | t1, t2, t3 ∈ Si}

S =
⋃

i Si

Programming Languages Untyped Arithmetic Expressions CSE 526 5 / 27

Syntax

Alternative Definitions of Terms (contd.)

Properties:

The sets Si are cumulative, i.e., ∀i Si ⊆ Si+1

T = S
1 S satisfies the conditions on T
2 Let S ′ be a set that satisfies the conditions on T . Then S ⊆ S ′.

Programming Languages Untyped Arithmetic Expressions CSE 526 6 / 27

Syntax

Equivalence of S and T
S0 = ∅

Si+1 =

 {true, false, 0}
∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si}
∪ {if(t1, t2, t3) | t1, t2, t3 ∈ Si}

1. ∀i Si ⊆ Si+1

Proof is by ordinary induction on i : P(0) and ∀k .P(k) =⇒ P(k + 1), where

P(i) : Si ⊆ Si+1

P(0): S0 is empty, and hence is a subset of S1.

P(k) =⇒ P(k + 1): We’ll show that every t ∈ Sk+1 is also ∈ Sk+2.

Consider t ∈ Sk+1. Then t is of one of the following forms:

1. t ∈ {true, false, 0}. Then t ∈ Sk+2 by definition.
2. t = succ(t1) for some t1 ∈ Sk . By ind. hyp., t1 ∈ Sk+1 and

hence t ∈ Sk+2.
3–5. proof steps for terms of the form pred(t1) etc. are similar to

case 2.

Programming Languages Untyped Arithmetic Expressions CSE 526 7 / 27

Syntax

Equivalence of S and T

T is the smallest set such that

1 {true, false, 0} ⊆ T
2 if t1 ∈ T then {succ t1,

pred t1, iszero t1} ⊆ T .

3 if t1, t2, t3 ∈ T then
if(t1, t2, t3) ∈ T .

S0=∅

Si+1=

{true, false, 0}

∪ {succ t1, pred t1,
iszero t1 | t1 ∈ Si}

∪ {if(t1, t2, t3) | t1, t2, t3 ∈ Si}
S=
⋃

i≥0 Si

2a. S satisfies the conditions 1, 2, and 3 on T
1 {true, false, 0} are in S1 and hence in S.

2 If t1 ∈ S then t1 ∈ Sk for some k ≥ 0. Hence,
{succ(t1), pred(t1), iszero(t1)} ⊆ Sk+1 and consequently ⊆ S.

3 If t1, t2, t3 ∈ S then there are k1, k2, k3 such that t1 ∈ Sk1 , t2 ∈ Sk2 , and
t3 ∈ Sk3 . From Lemma 1, t1, t2, t3 are all ∈ Sk for k ≥ max(k1, k2, k3).
Hence if(t1, t2, t3) ∈ Sk+1 and consequently ∈ S.

Programming Languages Untyped Arithmetic Expressions CSE 526 8 / 27

Syntax

Equivalence of S and T (Contd.)
T is the smallest set such that

1 {true, false, 0} ⊆ T
2 if t1 ∈ T then {succ t1,

pred t1, iszero t1} ⊆ T .

3 if t1, t2, t3 ∈ T then
if(t1, t2, t3) ∈ T .

S0=∅

Si+1=

{true, false, 0}

∪ {succ t1, pred t1,
iszero t1 | t1 ∈ Si}

∪ {if(t1, t2, t3) | t1, t2, t3 ∈ Si}
S=
⋃

i≥0 Si

2b. If S ′ satisfies the conditions 1, 2, and 3 on T , then S ⊆ S ′
We will show this by proving that Si is a subset of S ′ by complete induction:
(∀j < i P(j)) =⇒ P(i).
We get two cases from the definition of Si :

i = 0: S0 ⊆ S ′.

∃j . i = j + 1: Every t ∈ Sj+1 is also ∈ S ′.
1. {true, false, 0} are in S ′ by condition 1.
2. If t = succ(t1) ∈ Sj+1 for t1 ∈ Sj , then by ind. hyp. t1 ∈ S ′,

and t ∈ S ′ by condition 2.
3–5. Proof steps are similar to case 2 for t = pred(t1) etc.

Programming Languages Untyped Arithmetic Expressions CSE 526 9 / 27

Syntax

Inductive Definitions

The following recursive definition is “well-defined” since the function on a
term is defined based on that on smaller terms.

Const(true) = {true}
Const(false) = {false}

Const(0) = {0}
Const(succ t1) = Const(t1)
Const(pred t1) = Const(t1)

Const(iszero t1) = Const(t1)
Const(if(t1, t2, t3)) = Const(t1) ∪ Const(t2) ∪ Const(t3)

Programming Languages Untyped Arithmetic Expressions CSE 526 10 / 27

Syntax

Inductive Definitions (contd.)

The size of a term is also defined inductively:

size(true) = 1
size(false) = 1

size(0) = 1
size(succ t1) = size(t1) + 1
size(pred t1) = size(t1) + 1

size(iszero t1) = size(t1) + 1
size(if(t1, t2, t3)) = size(t1) + size(t2) + size(t3) + 1

The depth of terms can be defined similarly.

Programming Languages Untyped Arithmetic Expressions CSE 526 11 / 27

Syntax

Induction on terms

Structural Induction:

If, for each term s,
given P(r) for all immediate sub-terms r of s
we can show P(s)

then P(s) holds for all s.

Induction on size:

If, for each term s,
given P(r) for all terms r such that size(r) < size(s)
we can show P(s)

then P(s) holds for all s.

Programming Languages Untyped Arithmetic Expressions CSE 526 12 / 27

Operational Semantics

Operational Semantics

Example: A language of untyped boolean expressions B:

t ::= true | false | if(t, t, t) Terms

v ::= true | false Values

Evaluation:

if(true, t2, t3)→ t2 E-IfTrue

if(false, t2, t3)→ t3 E-IfFalse

t1 → t ′1
if(t1, t2, t3)→ if(t ′1, t2, t3)

E-If

Programming Languages Untyped Arithmetic Expressions CSE 526 13 / 27

Operational Semantics

The Inference Rule Notation

Premises

Conclusion
Name

Inference rules without premises are called axioms.

Inference rules (more precisely rule schema) may have meta-variables.
E.g., t1, t2, t3, t

′
1 in:

t1 → t ′1
if(t1, t2, t3)→ if(t ′1, t2, t3)

E-If

A rule instance is obtained by consistently replacing each
meta-variable by the same term in the premises as well as the
conclusion.

Programming Languages Untyped Arithmetic Expressions CSE 526 14 / 27

Operational Semantics

Operational Semantics of Boolean Expressions

if(true, t2, t3)→ t2 E-IfTrue

if(false, t2, t3)→ t3 E-IfFalse

t1 → t ′1
if(t1, t2, t3)→ if(t ′1, t2, t3)

E-If

The one-step evaluation relation is the smallest relation “→” on
terms satisfying the above rules.

When (t, t ′) is in the evaluation relation, we say that

the evaluation statement (or judgment) t → t ′ is derivable.

Determinacy: If t → t ′ and t → t ′′ then t ′ = t ′′.

Programming Languages Untyped Arithmetic Expressions CSE 526 15 / 27

Operational Semantics

Example Evaluations

Step 1:

if(true, false, true)→ false
E-IfTrue

if(if(true, false, true), true, false)→ if(false, true, false)
E-If

Step 2:

if(false, true, false)→ false
E-IfFalse

if(if(true, false, true), true, false)
→ if(false, true, false)
→ false

Small-Step Semantics

Programming Languages Untyped Arithmetic Expressions CSE 526 16 / 27

Operational Semantics

Properties of (previously defined) operational semantics

Determinacy: If t → t ′ and t → t ′′ then t ′ = t ′′.

Proof: by induction on the derivation of t → t ′.

This proof is also identical to induction on structure of t

The operational semantics defined previously is said to be “Structural
Operational Semantics (SOS)”, where the evaluation derivation
follows the structure of the term being reduced.

Programming Languages Untyped Arithmetic Expressions CSE 526 17 / 27

Operational Semantics

Proof of Determinacy

if(true, t2, t3)→ t2 E-IfTrue

if(false, t2, t3)→ t3 E-IfFalse
t1 → t ′1

if(t1, t2, t3)→ if(t ′1, t2, t3)
E-If

If t → t ′ and t → t ′′ then t ′ = t ′′.

Consider the last rule used in the derivation of t → t ′.

E-IfTrue: Then t = if(true, t2, t3) for some terms t2 and t3, and t ′ = t2.
Consider the derivation t → t ′′. The last rule used here cannot be
E-IfFalse (does not match) or E-If (premise does not hold). Hence the
last rule used in t → t ′′ must be E-IfTrue, and t ′′ = t2 = t ′.

E-IfFalse: Similar to above case.

E-If: Then t = if(t1, t2, t3), t1 → t ′1 (premise), and t ′ = if(t ′1, t2, t3). The
last rule used in derivation of t → t ′′ must also be E-If, with premise
t1 → t ′′1 , resulting in t ′′ = if(t ′′1 , t2, t3). By induction hypotheses, we know
t ′1 = t ′′1 . Consequently, t ′ = t ′′.

Programming Languages Untyped Arithmetic Expressions CSE 526 18 / 27

Operational Semantics

Normal Form

A term t is in normal form if there is no t ′ such that t → t ′.

Every value is in normal form.

If t is in normal form, then t is a value.

Let “→∗” relation be the reflexive, transitive closure of “→” relation
in the following:

Uniqueness: If t →∗ u and t →∗ u′ where u and u′ are normal
forms, then u = u′.
If t →∗ u, and u is in normal form, we say u is the normal form of t.

Termination: For every term t, there is some normal form t ′ such
that t →∗ t ′.

Programming Languages Untyped Arithmetic Expressions CSE 526 19 / 27

Operational Semantics

Untyped Arithmetic Expressions

t ::= true Terms
| false

| if(t, t, t)
| 0

| succ t
| pred t
| iszero t

v ::= true | false | nv Values

nv ::= 0 | succ nv Numeric Values

Programming Languages Untyped Arithmetic Expressions CSE 526 20 / 27

Operational Semantics

Operational Semantics of Untyped Arithmetic Expressions

t1 → t ′1
succ t1 → succ t ′1

E-Succ

pred 0→ 0 E-PredZero

pred succ nv1 → nv1 E-PredSucc

t1 → t ′1
pred t1 → pred t ′1

E-Pred

iszero 0→ true E-IsZeroZero

iszero succ nv1 → false E-IsZeroSucc

t1 → t ′1
iszero t1 → iszero t ′1

E-IsZero

Programming Languages Untyped Arithmetic Expressions CSE 526 21 / 27

Operational Semantics

Properties of the operational semantics (prev. slide)

Determinacy

Uniqueness of normal forms

Termination

Not all normal forms are values!
A term is stuck if it is in normal form but not a value.

Stuck terms correspond to “run-time errors”.

Programming Languages Untyped Arithmetic Expressions CSE 526 22 / 27

Examples

Reflexive Transitive Closure
Let R ⊆ D × D be a binary relation. The reflexive transitive closure R∗ of
R is the smallest relation such that

∀d ∈ D (d , d) ∈ R∗

R ⊆ R∗

∀x , y , z ∈ D (x , y) ∈ R∗ ∧ (y , z) ∈ R∗ ⇒ (x , z) ∈ R∗

Inference rules for →, the small-step transition relation (Ex. 3.5.10):

t →∗ t

t → t ′

t →∗ t ′

t →∗ t ′ t ′ →∗ t ′′

t →∗ t ′′

Programming Languages Untyped Arithmetic Expressions CSE 526 23 / 27

Examples

Big-Step Semantics
Small-Step Semantics for B:

if(true, t2, t3)→ t2 E-IfTrue

if(false, t2, t3)→ t3 E-IfFalse

t1 → t ′1
if(t1, t2, t3)→ if(t ′1, t2, t3)

E-If

∀t ∃v . t →∗ v (Uniqueness of N.F. & Termination)

Big-Step Semantics for B:

v ⇓ v B-Value

t1 ⇓ true t2 ⇓ v2
if(t1, t2, t3) ⇓ v2

B-IfTrue

t1 ⇓ false t3 ⇓ v3
if(t1, t2, t3) ⇓ v3

B-IfFalse

Programming Languages Untyped Arithmetic Expressions CSE 526 24 / 27

Examples

Soundness of Big-Step Semantics

If t ⇓ v then t →∗ v

Proof: by induction on derivation of t ⇓ v :

· · ·
...
· · ·

t ⇓ v

}
Case-split on
the last step

1 B-Value: t = v , trivial

2 B-IfTrue: t = if(t1, t2, t3), t1 ⇓ true, t2 ⇓ v

By induction hypothesis, we know t1 →∗ true, and t2 →∗ v .
From evaluation sequence t1 →∗ true, we can construct an evaluation

sequence if(t1, t2, t3)→∗ if(true, t2, t3)

Stated as a Lemma and proved separately

From E-IfTrue we have if(true, t2, t3)→ t2
Hence we get the following evaluation sequence:

if(t1, t2, t3)→∗ if(true, t2, t3) → t2 →∗ v

3 B-IfFalse (similar to the above case)

Programming Languages Untyped Arithmetic Expressions CSE 526 25 / 27

Examples

Soundness of Big-Step Semantics (contd.)

Lemma needed for soundness proof:

If t1 →∗ t′1 then if(t1, t2, t3) →∗ if(t′1, t2, t3)

Proof: by induction on the length of evaluation sequence t1 →∗ t ′1.

t1 = t ′1 (i.e zero-length evaluation sequence): trivial.

t1 → t̂1 →∗ t ′1: Then t1 is not a value (by defn of small-step
semantics)

By E-If, if(t1, t2, t3)→ if(t̂1, t2, t3)
By induction hypothesis, t̂1 →∗ t ′1 means if(t̂1, t2, t3)→∗ if(t ′1, t2, t3)
Hence if(t1, t2, t3)→ if(t̂1, t2, t3)→∗ if(t ′1, t2, t3)

Programming Languages Untyped Arithmetic Expressions CSE 526 26 / 27

Examples

Completeness of Big-Step Semantics
If t →∗ v then t ⇓ v

Proof: by induction on length of evaluation of t →∗ v

1 t = v : v ⇓ v by B-Value.

2 t → t̂ →∗ v : then t = if(t1, t2, t3).

Use the following lemma:

If if(t1, t2, t3)→∗ v then

t1 →∗ true and t2 →∗ v , or
t1 →∗ false and t3 →∗ v

and the evaluation sequences for t1 and t2 or t3 are strictly
shorter than the given evaluation sequence.

If t1 →∗ true, then by induction hypothesis, t1 ⇓ true and t2 ⇓ v

Hence by applying B-IfTrue, we get if(t1, t2, t3) ⇓ v .

Proof if t1 →∗ false is similar.

Programming Languages Untyped Arithmetic Expressions CSE 526 27 / 27

