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Formal Description of Programming Languages

Formal Definition of Syntax

Grammars to define the set of strings that define a syntactically valid
program
Inductive definitions of abstract syntax trees.

Formal Definition of Semantics

Structural operational semantics
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Syntax

Syntax

Example: A language of untyped arithmetic expressions

t ::= true

| false

| if(t, t, t)
| 0

| succ t
| pred t
| iszero t

Inductive Definition: The set T of terms is the smallest set such that:

1 {true, false, 0} ⊆ T
2 if t1 ∈ T then {succ t1, pred t1, iszero t1} ⊆ T .

3 if t1, t2, t3 ∈ T then if(t1, t2, t3) ∈ T .
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Syntax

Alternative Definitions of Terms

Inductive Definition: The set T of terms is the smallest set such that:

1 {true, false, 0} ⊆ T
2 if t1 ∈ T then {succ t1, pred t1, iszero t1} ⊆ T .

3 if t1, t2, t3 ∈ T then if(t1, t2, t3) ∈ T .

Inference Rules: The set T is defined by the following rules:

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T
succ t1 ∈ T

t1 ∈ T
pred t1 ∈ T

t1 ∈ T
iszero t1 ∈ T

t1, t2, t3 ∈ T
if(t1, t2, t3) ∈ T
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Syntax

Alternative Definitions of Terms (contd.)

Inductive Definition: The set T of terms is the smallest set such that:

1 {true, false, 0} ⊆ T
2 if t1 ∈ T then {succ t1, pred t1, iszero t1} ⊆ T .

3 if t1, t2, t3 ∈ T then if(t1, t2, t3) ∈ T .

Constructive Definition: For each natural number i define set Si as
follows:

S0 = ∅

Si+1 =


{true, false, 0}

∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si}
∪ {if(t1, t2, t3) | t1, t2, t3 ∈ Si}

S =
⋃

i Si
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Syntax

Alternative Definitions of Terms (contd.)

Properties:

The sets Si are cumulative, i.e., ∀i Si ⊆ Si+1

T = S
1 S satisfies the conditions on T
2 Let S ′ be a set that satisfies the conditions on T . Then S ⊆ S ′.
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Syntax

Equivalence of S and T
S0 = ∅

Si+1 =

 {true, false, 0}
∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si}
∪ {if(t1, t2, t3) | t1, t2, t3 ∈ Si}

1. ∀i Si ⊆ Si+1

Proof is by ordinary induction on i : P(0) and ∀k .P(k) =⇒ P(k + 1), where

P(i) : Si ⊆ Si+1

P(0): S0 is empty, and hence is a subset of S1.

P(k) =⇒ P(k + 1): We’ll show that every t ∈ Sk+1 is also ∈ Sk+2.

Consider t ∈ Sk+1. Then t is of one of the following forms:

1. t ∈ {true, false, 0}. Then t ∈ Sk+2 by definition.
2. t = succ(t1) for some t1 ∈ Sk . By ind. hyp., t1 ∈ Sk+1 and

hence t ∈ Sk+2.
3–5. proof steps for terms of the form pred(t1) etc. are similar to

case 2.
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Syntax

Equivalence of S and T

T is the smallest set such that

1 {true, false, 0} ⊆ T
2 if t1 ∈ T then {succ t1,

pred t1, iszero t1} ⊆ T .

3 if t1, t2, t3 ∈ T then
if(t1, t2, t3) ∈ T .

S0=∅

Si+1=


{true, false, 0}

∪ {succ t1, pred t1,
iszero t1 | t1 ∈ Si}

∪ {if(t1, t2, t3) | t1, t2, t3 ∈ Si}
S=
⋃

i≥0 Si

2a. S satisfies the conditions 1, 2, and 3 on T
1 {true, false, 0} are in S1 and hence in S.

2 If t1 ∈ S then t1 ∈ Sk for some k ≥ 0. Hence,
{succ(t1), pred(t1), iszero(t1)} ⊆ Sk+1 and consequently ⊆ S.

3 If t1, t2, t3 ∈ S then there are k1, k2, k3 such that t1 ∈ Sk1 , t2 ∈ Sk2 , and
t3 ∈ Sk3 . From Lemma 1, t1, t2, t3 are all ∈ Sk for k ≥ max(k1, k2, k3).
Hence if(t1, t2, t3) ∈ Sk+1 and consequently ∈ S.
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Syntax

Equivalence of S and T (Contd.)
T is the smallest set such that

1 {true, false, 0} ⊆ T
2 if t1 ∈ T then {succ t1,

pred t1, iszero t1} ⊆ T .

3 if t1, t2, t3 ∈ T then
if(t1, t2, t3) ∈ T .

S0=∅

Si+1=


{true, false, 0}

∪ {succ t1, pred t1,
iszero t1 | t1 ∈ Si}

∪ {if(t1, t2, t3) | t1, t2, t3 ∈ Si}
S=
⋃

i≥0 Si

2b. If S ′ satisfies the conditions 1, 2, and 3 on T , then S ⊆ S ′
We will show this by proving that Si is a subset of S ′ by complete induction:
(∀j < i P(j)) =⇒ P(i).
We get two cases from the definition of Si :

i = 0: S0 ⊆ S ′.

∃j . i = j + 1: Every t ∈ Sj+1 is also ∈ S ′.
1. {true, false, 0} are in S ′ by condition 1.
2. If t = succ(t1) ∈ Sj+1 for t1 ∈ Sj , then by ind. hyp. t1 ∈ S ′,

and t ∈ S ′ by condition 2.
3–5. Proof steps are similar to case 2 for t = pred(t1) etc.
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Syntax

Inductive Definitions

The following recursive definition is “well-defined” since the function on a
term is defined based on that on smaller terms.

Const(true) = {true}
Const(false) = {false}

Const(0) = {0}
Const(succ t1) = Const(t1)
Const(pred t1) = Const(t1)

Const(iszero t1) = Const(t1)
Const(if(t1, t2, t3)) = Const(t1) ∪ Const(t2) ∪ Const(t3)
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Syntax

Inductive Definitions (contd.)

The size of a term is also defined inductively:

size(true) = 1
size(false) = 1

size(0) = 1
size(succ t1) = size(t1) + 1
size(pred t1) = size(t1) + 1

size(iszero t1) = size(t1) + 1
size(if(t1, t2, t3)) = size(t1) + size(t2) + size(t3) + 1

The depth of terms can be defined similarly.
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Syntax

Induction on terms

Structural Induction:

If, for each term s,
given P(r) for all immediate sub-terms r of s
we can show P(s)

then P(s) holds for all s.

Induction on size:

If, for each term s,
given P(r) for all terms r such that size(r) < size(s)
we can show P(s)

then P(s) holds for all s.
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Operational Semantics

Operational Semantics

Example: A language of untyped boolean expressions B:

t ::= true | false | if(t, t, t) Terms

v ::= true | false Values

Evaluation:

if(true, t2, t3)→ t2 E-IfTrue

if(false, t2, t3)→ t3 E-IfFalse

t1 → t ′1
if(t1, t2, t3)→ if(t ′1, t2, t3)

E-If
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Operational Semantics

The Inference Rule Notation

Premises

Conclusion
Name

Inference rules without premises are called axioms.

Inference rules (more precisely rule schema) may have meta-variables.
E.g., t1, t2, t3, t

′
1 in:

t1 → t ′1
if(t1, t2, t3)→ if(t ′1, t2, t3)

E-If

A rule instance is obtained by consistently replacing each
meta-variable by the same term in the premises as well as the
conclusion.
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Operational Semantics

Operational Semantics of Boolean Expressions

if(true, t2, t3)→ t2 E-IfTrue

if(false, t2, t3)→ t3 E-IfFalse

t1 → t ′1
if(t1, t2, t3)→ if(t ′1, t2, t3)

E-If

The one-step evaluation relation is the smallest relation “→” on
terms satisfying the above rules.

When (t, t ′) is in the evaluation relation, we say that

the evaluation statement (or judgment) t → t ′ is derivable.

Determinacy: If t → t ′ and t → t ′′ then t ′ = t ′′.

Programming Languages Untyped Arithmetic Expressions CSE 526 15 / 27

Operational Semantics

Example Evaluations

Step 1:

if(true, false, true)→ false
E-IfTrue

if(if(true, false, true), true, false)→ if(false, true, false)
E-If

Step 2:

if(false, true, false)→ false
E-IfFalse

if(if(true, false, true), true, false)
→ if(false, true, false)
→ false

Small-Step Semantics
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Operational Semantics

Properties of (previously defined) operational semantics

Determinacy: If t → t ′ and t → t ′′ then t ′ = t ′′.

Proof: by induction on the derivation of t → t ′.

This proof is also identical to induction on structure of t

The operational semantics defined previously is said to be “Structural
Operational Semantics (SOS)”, where the evaluation derivation
follows the structure of the term being reduced.
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Operational Semantics

Proof of Determinacy

if(true, t2, t3)→ t2 E-IfTrue

if(false, t2, t3)→ t3 E-IfFalse
t1 → t ′1

if(t1, t2, t3)→ if(t ′1, t2, t3)
E-If

If t → t ′ and t → t ′′ then t ′ = t ′′.

Consider the last rule used in the derivation of t → t ′.

E-IfTrue: Then t = if(true, t2, t3) for some terms t2 and t3, and t ′ = t2.
Consider the derivation t → t ′′. The last rule used here cannot be
E-IfFalse (does not match) or E-If (premise does not hold). Hence the
last rule used in t → t ′′ must be E-IfTrue, and t ′′ = t2 = t ′.

E-IfFalse: Similar to above case.

E-If: Then t = if(t1, t2, t3), t1 → t ′1 (premise), and t ′ = if(t ′1, t2, t3). The
last rule used in derivation of t → t ′′ must also be E-If, with premise
t1 → t ′′1 , resulting in t ′′ = if(t ′′1 , t2, t3). By induction hypotheses, we know
t ′1 = t ′′1 . Consequently, t ′ = t ′′.
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Operational Semantics

Normal Form

A term t is in normal form if there is no t ′ such that t → t ′.

Every value is in normal form.

If t is in normal form, then t is a value.

Let “→∗” relation be the reflexive, transitive closure of “→” relation
in the following:

Uniqueness: If t →∗ u and t →∗ u′ where u and u′ are normal
forms, then u = u′.
If t →∗ u, and u is in normal form, we say u is the normal form of t.

Termination: For every term t, there is some normal form t ′ such
that t →∗ t ′.
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Operational Semantics

Untyped Arithmetic Expressions

t ::= true Terms
| false

| if(t, t, t)
| 0

| succ t
| pred t
| iszero t

v ::= true | false | nv Values

nv ::= 0 | succ nv Numeric Values

Programming Languages Untyped Arithmetic Expressions CSE 526 20 / 27



Operational Semantics

Operational Semantics of Untyped Arithmetic Expressions

t1 → t ′1
succ t1 → succ t ′1

E-Succ

pred 0→ 0 E-PredZero

pred succ nv1 → nv1 E-PredSucc

t1 → t ′1
pred t1 → pred t ′1

E-Pred

iszero 0→ true E-IsZeroZero

iszero succ nv1 → false E-IsZeroSucc

t1 → t ′1
iszero t1 → iszero t ′1

E-IsZero
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Operational Semantics

Properties of the operational semantics (prev. slide)

Determinacy

Uniqueness of normal forms

Termination

Not all normal forms are values!
A term is stuck if it is in normal form but not a value.

Stuck terms correspond to “run-time errors”.

Programming Languages Untyped Arithmetic Expressions CSE 526 22 / 27



Examples

Reflexive Transitive Closure
Let R ⊆ D × D be a binary relation. The reflexive transitive closure R∗ of
R is the smallest relation such that

∀d ∈ D (d , d) ∈ R∗

R ⊆ R∗

∀x , y , z ∈ D (x , y) ∈ R∗ ∧ (y , z) ∈ R∗ ⇒ (x , z) ∈ R∗

Inference rules for →, the small-step transition relation (Ex. 3.5.10):

t →∗ t

t → t ′

t →∗ t ′

t →∗ t ′ t ′ →∗ t ′′

t →∗ t ′′
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Examples

Big-Step Semantics
Small-Step Semantics for B:

if(true, t2, t3)→ t2 E-IfTrue

if(false, t2, t3)→ t3 E-IfFalse

t1 → t ′1
if(t1, t2, t3)→ if(t ′1, t2, t3)

E-If

∀t ∃v . t →∗ v (Uniqueness of N.F. & Termination)

Big-Step Semantics for B:

v ⇓ v B-Value

t1 ⇓ true t2 ⇓ v2
if(t1, t2, t3) ⇓ v2

B-IfTrue

t1 ⇓ false t3 ⇓ v3
if(t1, t2, t3) ⇓ v3

B-IfFalse
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Examples

Soundness of Big-Step Semantics

If t ⇓ v then t →∗ v

Proof: by induction on derivation of t ⇓ v :

· · ·
...
· · ·

t ⇓ v

}
Case-split on
the last step

1 B-Value: t = v , trivial

2 B-IfTrue: t = if(t1, t2, t3), t1 ⇓ true, t2 ⇓ v

By induction hypothesis, we know t1 →∗ true, and t2 →∗ v .
From evaluation sequence t1 →∗ true, we can construct an evaluation

sequence if(t1, t2, t3)→∗ if(true, t2, t3)

Stated as a Lemma and proved separately

From E-IfTrue we have if(true, t2, t3)→ t2
Hence we get the following evaluation sequence:

if(t1, t2, t3)→∗ if(true, t2, t3) → t2 →∗ v

3 B-IfFalse (similar to the above case)
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Examples

Soundness of Big-Step Semantics (contd.)

Lemma needed for soundness proof:

If t1 →∗ t′1 then if(t1, t2, t3) →∗ if(t′1, t2, t3)

Proof: by induction on the length of evaluation sequence t1 →∗ t ′1.

t1 = t ′1 (i.e zero-length evaluation sequence): trivial.

t1 → t̂1 →∗ t ′1: Then t1 is not a value (by defn of small-step
semantics)

By E-If, if(t1, t2, t3)→ if(t̂1, t2, t3)
By induction hypothesis, t̂1 →∗ t ′1 means if(t̂1, t2, t3)→∗ if(t ′1, t2, t3)
Hence if(t1, t2, t3)→ if(t̂1, t2, t3)→∗ if(t ′1, t2, t3)
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Examples

Completeness of Big-Step Semantics
If t →∗ v then t ⇓ v

Proof: by induction on length of evaluation of t →∗ v

1 t = v : v ⇓ v by B-Value.

2 t → t̂ →∗ v : then t = if(t1, t2, t3).

Use the following lemma:

If if(t1, t2, t3)→∗ v then

t1 →∗ true and t2 →∗ v , or
t1 →∗ false and t3 →∗ v

and the evaluation sequences for t1 and t2 or t3 are strictly
shorter than the given evaluation sequence.

If t1 →∗ true, then by induction hypothesis, t1 ⇓ true and t2 ⇓ v

Hence by applying B-IfTrue, we get if(t1, t2, t3) ⇓ v .

Proof if t1 →∗ false is similar.
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