
Typed Arithmetic Expressions

Principles of Programming Languages

CSE 526

1 Typed Arithmetic Expressions

2 Simply-Typed λ-Calculus

Compiled at 18:30 on 2020/04/15

Programming Languages Typed Arithmetic Expressions CSE 526 1 / 11

Typed Arithmetic Expressions

Types

Types are way to classify terms (programs)

Meaningful terms (e.g. those that do not get stuck) should have a
type

A typing relation relates terms to types.

Two ways to define semantics:

Curry-style: Define terms and their semantics, then define types to
reject those terms whose semantics are problematic.
Church-style: Define terms and a typing relation, then define semantics
only for well-typed terms.

Programming Languages Typed Arithmetic Expressions CSE 526 2 / 11



Typed Arithmetic Expressions

Typed arithmetic expressions

t ::= true Terms
| false

| if(t, t, t)
| 0

| succ t
| pred t
| iszero t

T ::= Types

Bool

| Nat

Programming Languages Typed Arithmetic Expressions CSE 526 3 / 11

Typed Arithmetic Expressions

Typing relation for arithmetic expressions

The smallest binary relation “:” between types and terms satisfying all
instances of the following inference rules:

true : Bool T-True

false : Bool T-False

t1 : Bool t2 : T t3 : T

if(t1, t2, t3) : T
T-If

0 : Nat T-Zero

t1 : Nat

succ t1 : Nat
T-Succ

t1 : Nat

pred t1 : Nat
T-Pred

t1 : Nat

iszero t1 : Bool
T-IsZero

Programming Languages Typed Arithmetic Expressions CSE 526 4 / 11



Typed Arithmetic Expressions

Properties of the typing relation

A term t is said to be well-typed if there is a type T such that t : T .

Uniqueness of types: Each term t has at most one type T such
that t : T .

Progress: For every well-typed term t, either t is a value or there is a
t ′ such that t → t ′.

Preservation: If t : T and t → t ′ then t ′ : T .

Safety = Progress + Preservation

Programming Languages Typed Arithmetic Expressions CSE 526 5 / 11

Simply-Typed λ-Calculus

Enriched λ-Calculus

Recall booleans, numbers and operations on them can be encoded in
the pure λ-calculus

Nevertheless, it is convenient to include primitive data types in the
calculus as well

λB is an enriched calculus with boolean data types true and false,
and operation if.
λx . λy . if(x , y , x) is a term in λB.

λNB is a similarly enriched calculus with numbers and booleans
λx . λy . if(iszero(x), succ(y), x) is a term in λNB

Programming Languages Typed Arithmetic Expressions CSE 526 6 / 11



Simply-Typed λ-Calculus

Simply-Typed λ-Calculus

Syntax:

t ::= Terms

x Variable

| λx : T . t Abstraction

| t t Application

T ::= Types

A Base types
| T → T type of functions

Γ ::= Contexts

∅ Empty Context

| Γ, x : T Variable Binding

Programming Languages Typed Arithmetic Expressions CSE 526 7 / 11

Simply-Typed λ-Calculus

Evaluation (Call-By-Value)

Small-Step Evaluation Relation for simply-typed λ-calculus:

t1 → t ′1
t1 t2 → t ′1 t2

E-App1

t2 → t ′2
v1 t2 → v1 t ′2

E-Abs2

(λx : T . t1) v2 → [x 7→ v2]t1 E-AppAbs

Programming Languages Typed Arithmetic Expressions CSE 526 8 / 11



Simply-Typed λ-Calculus

Typing Relation

x : T ∈ Γ

Γ ` x : T
T-Var

Γ, x : T1 ` t2 : T2

Γ ` λx : T1. t2 : T1 → T2
T-Abs

Γ ` s : T1 → T2 Γ ` t : T1

Γ ` (s t) : T2
T-App

Programming Languages Typed Arithmetic Expressions CSE 526 9 / 11

Simply-Typed λ-Calculus

Properties of the typing relation

A term t is said to be well-typed in context Γ if there is a type T such
that t : T .

Uniqueness of types: In a context Γ, each term t has at most one
type T such that t : T .

Progress: For every closed, well-typed term t, either t is a value or
there is a t ′ such that t → t ′.

Preservation under substitution: If Γ, x : S ` t : T and Γ ` s : S ,
then Γ ` [x 7→ s]t : T

Preservation: If Γ ` t : T and t → t ′ then Γ ` t ′ : T .

Safety = Progress + Preservation

Programming Languages Typed Arithmetic Expressions CSE 526 10 / 11



Simply-Typed λ-Calculus

Erasure and Typability

erase is a function that maps simply-typed λ-terms to untyped λ-terms.

erase(x) = x
erase(λx : T . t) = λx . erase(t)

erase(t1 t2) = erase(t1) erase(t2)

If t → t ′ under typed evaluation relation, then erase(t) → erase(t ′)

If erase(t) → m′, then there is a simply-typed term t ′ such that
t → t ′ (under typed evaluation relation) and erase(t ′) = m′

An untyped term m is typable if there is some simply-typed term t
and type T and context Γ such that erase(t) = m and Γ ` t : T .

Not every untyped lambda term is typable!
Example: (x x)

Programming Languages Typed Arithmetic Expressions CSE 526 11 / 11


