Typed Arithmetic Expressions

Principles of Programming Languages

CSE 526

Typed Arithmetic Expressions

(2) Simply-Typed λ -Calculus

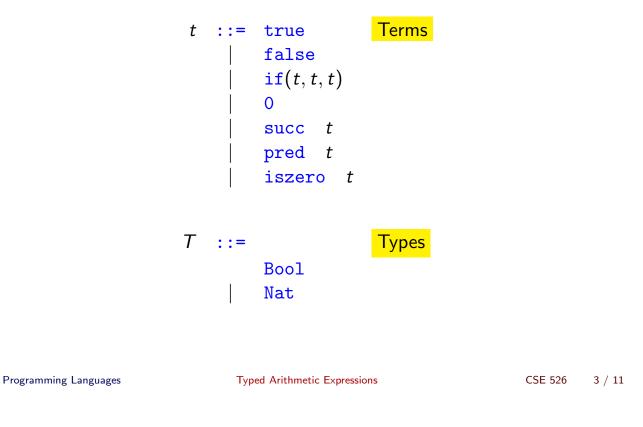
Compiled at 18:30 on 2020/04/15

Programming Languages	Typed Arithmetic Expressions	CSE 526	1 / 11
	Typed Arithmetic Expressions		

Types

- Types are way to classify terms (programs)
- Meaningful terms (e.g. those that do not get *stuck*) should have a type
- A typing relation relates terms to types.
- Two ways to define semantics:
 - *Curry-style:* Define terms and their semantics, then define types to reject those terms whose semantics are problematic.
 - Church-style: Define terms and a typing relation, then define semantics only for well-typed terms.

Typed arithmetic expressions



Typed Arithmetic Expressions

Typing relation for arithmetic expressions

The smallest binary relation ":" between types and terms satisfying all instances of the following inference rules:

	0:Nat	Γ-Zero	
true: Bool T-TRUE	t_1 : Nat	T-Succ	
	$ extsf{succ} t_1 : extsf{Nat}$	1-5000	
false:Bool T-FALSE	t_1 : Nat	T-Pred	
$\frac{t_1:\text{Bool}\ t_2:\ T\ t_3:\ T}{\text{T-IF}}$	pred t_1 : Nat		
$if(t_1, t_2, t_3) : T$	$t_1: \texttt{Nat}$		
	iszero <i>t</i> 1 : Bool	T-IsZero	

Properties of the typing relation

A term t is said to be *well-typed* if there is a type T such that t : T.

- Uniqueness of types: Each term t has at most one type T such that t : T.
- **Progress:** For every well-typed term t, either t is a value or there is a t' such that $t \rightarrow t'$.
- **Preservation:** If t : T and $t \to t'$ then t' : T.
- Safety = Progress + Preservation

Programming Languages

Typed Arithmetic Expressions

CSE 526 5 / 11

Simply-Typed λ -Calculus

Enriched λ -Calculus

- Recall booleans, numbers and operations on them can be encoded in the pure $\lambda\text{-calculus}$
- Nevertheless, it is convenient to include primitive data types in the calculus as well
- λB is an enriched calculus with boolean data types true and false, and operation if.

 $\lambda x. \lambda y. if(x, y, x)$ is a term in λB .

λNB is a similarly enriched calculus with numbers and booleans
 λx. λy. if(iszero(x), succ(y), x) is a term in λNB

Simply-Typed λ -Calculus

Syntax:

t	::=		Terms
		X	Variable
		λx : T . t	Abstraction
		t t	Application
_			
Т	::=		Types
		A	Base types
		$T \rightarrow T$	type of functions
Г	::=		Contexts
		Ø	Empty Context
		$\Gamma, x : T$	Variable Binding

Programming Languages

Typed Arithmetic Expressions

CSE 526 7 / 11

Simply-Typed λ -Calculus

Evaluation (Call-By-Value)

Small-Step Evaluation Relation for simply-typed λ -calculus:

$$\begin{array}{ccc} & \frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2} & \text{E-APP1} \\ \\ & \frac{t_2 \rightarrow t_2'}{v_1 \ t_2 \rightarrow v_1 \ t_2'} & \text{E-ABS2} \\ \\ & (\lambda x: \ T. \ t_1) \ v_2 \rightarrow [x \mapsto v_2] t_1 & \text{E-APPABS} \end{array}$$

Typing Relation

$$\frac{x: T \in \Gamma}{\Gamma \vdash x: T} \quad \text{T-VAR}$$

$$\frac{\Gamma, x: T_1 \vdash t_2: T_2}{\Gamma \vdash \lambda x: T_1. t_2: T_1 \rightarrow T_2} \quad \text{T-ABS}$$

$$\frac{\Gamma \vdash s: T_1 \rightarrow T_2 \quad \Gamma \vdash t: T_1}{\Gamma \vdash (s \ t): T_2} \quad \text{T-APP}$$

Programming Languages Typed Arithmetic Expressions CSE 526 9 / 11

Simply-Typed λ -Calculus

Properties of the typing relation

A term t is said to be *well-typed* in context Γ if there is a type T such that t : T.

- Uniqueness of types: In a context Γ, each term t has at most one type T such that t : T.
- **Progress:** For every closed, well-typed term t, either t is a value or there is a t' such that $t \rightarrow t'$.
- Preservation under substitution: If $\Gamma, x : S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$
- **Preservation:** If $\Gamma \vdash t : T$ and $t \rightarrow t'$ then $\Gamma \vdash t' : T$.
- Safety = Progress + Preservation

Erasure and Typability

erase is a function that maps simply-typed λ -terms to untyped λ -terms.

$$erase(x) = x$$

 $erase(\lambda x : T. t) = \lambda x. erase(t)$
 $erase(t_1 t_2) = erase(t_1) erase(t_2)$

- If $t \to t'$ under typed evaluation relation, then $erase(t) \to erase(t')$
- If $erase(t) \rightarrow m'$, then there is a simply-typed term t' such that $t \rightarrow t'$ (under typed evaluation relation) and erase(t') = m'
- An untyped term *m* is **typable** if there is some simply-typed term *t* and type *T* and context Γ such that erase(t) = m and $\Gamma \vdash t : T$.
- Not every untyped lambda term is typable! Example: (x x)

Programming Languages

Typed Arithmetic Expressions

CSE 526 11 / 11