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man(socrates)

@ Predicate logic

o Predicates (e.g. man, mortal) which define sets.

o Atoms (e.g. socrates) which are data values

o Variables (e.g. X) which range over data values

o Rules (e.g. VX. man(X) = mortal(X)) which define relationships
between predicates.
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Prolog Systems

e SWI Prolog (www.swi-prolog.org)

o Can be obtained for free and installed on Windows, Linux, Mac.

o Has a good development environment (command completion, help,
graphical debugger, etc.)

o On compute* (Unix) servers: ~cram/bin/swipl

@ XSB Prolog (xsb.sourceforge.net)

o Can be obtained for free and installed on Windows, Linux, Mac.
o Supports a powerful extension (memoization) to Prolog

o Command-line interface (e.g. no graphical debugger)

e On compute* (Unix) servers: ~cram/bin/xsb

Programming Languages Logic Programming CSE 526 5 /48


~cram/bin/swipl
~cram/bin/xsb

Introduction Systems
ooe

Using Prolog Systems

Prolog programs are in files with “.pl" extension (“.P" for XSB)

Prolog systems typically support an interactive mode.

“[filename] .” to compile and load a program in filename.pl
(filename.P in XSB).

@ “halt.” to exit the system.
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Prolog

®000000

Logic Programs

@ Programs are a set of rules (also called clauses).

Programming Languages Logic Programming CSE 526 7 /48



Introduction s Prolog Structures

®000000

Logic Programs

@ Programs are a set of rules (also called clauses).

@ Predicates in a logic program are analogous to procedures in
imperative programs.

Programming Languages Logic Programming CSE 526 7 /48



Introduction s Prolog Structures

®000000

Logic Programs

@ Programs are a set of rules (also called clauses).

@ Predicates in a logic program are analogous to procedures in
imperative programs.

@ One or more rules are used to define a predicate.

Programming Languages Logic Programming CSE 526 7 /48



Introduction s Prolog Structures

®000000

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

(]

Example:
inc(X,Y) :- Y is X+1.

Programming Languages Logic Programming CSE 526 7 /48



Introduction s Prolog Structures

®000000

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

(]

Example:
inc(X,Y) :- Y is X+1.

e X and Y are variables.

Programming Languages Logic Programming CSE 526 7 /48



Introduction s Prolog Structures

®000000

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

(]

Example:
inc(X,Y) :- Y is X+1.

e X and Y are variables.
e inc is a predicate.

Programming Languages Logic Programming CSE 526 7 /48



Introduction s Prolog Structures

®000000

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

(]

Example:
inc(X,Y) :- Y is X+1.

e X and Y are variables.
e inc is a predicate.
o The predicate is defined using a single rule.
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Logic Programs (contd.)

inc(X,Y) :- Y is X+1.

@ "“:-" separates the body of the rule from its head.

@ "“X" and “Y" are also “parameters” of the predicate.

In this case, X is the input parameter, and Y is the return parameter (where
the return values are stored).

@ “Y is X+1" defines Y in terms of X.
@ The period (“.") marks the end of a rule.

@ The predicate is called by giving values to its parameters. e.g.
inc(6, B) returns with B=7.
inc(11, B) returns with B=12.

Programming Languages Logic Programming CSE 526 8 /48



Introduction s Prolog Structures

00®0000

Syntax of Prolog

Variables are identifiers that begin with an upper case letter or
underscore.

e An underscore, by itself, represents an anonymous variable.
@ Predicate names (and later, data structure symbols) are identifiers
that begin with a lower case letter.

All variables are local to the clause in which they occur.

Different occurrences of the same variable in a clause denote the
same data.
Variables need not be declared, and have no type.

Programming Languages Logic Programming CSE 526
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How Prolog Works (An Example)

big(bear).
big(elephant) .

brown (bear) .
black(cat).
small(cat).
gray (elephant) .

dark(Z) :- black(Z).
dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

Programming Languages Logic Programming
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Derivations

big(bear) . brown(bear) . dark(Z)
big(elephant). black(cat). dark(Z)
small(cat). gray (elephant) .

dangerous (X) :- dark(X), big(X).

dangerous(Q)

Programming Languages Logic Programming
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How Prolog Works (the procedure)

@ A query is, in general, a conjunction of goals
@ To prove Gy, Gy, ..., G,
e Find a clause H: —By, By, ..., Bx such that G; and H match.
e Under that substitution for variables, prove By, By, ..., Bk, Gy, ..., G,.
o If nothing is left to prove then the proof is complete. If there are no
more clauses to match, the proof attempt fails.
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How Prolog Works (an example)
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black(Z), and prove black(Q), big(Q).
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To prove dangerous(Q):
© Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

@ To prove dark(Q) select the first clause of dark, i.e. dark(Z) :-
black(Z), and prove black(Q), big(Q).

© Now select the fact black(cat) and prove big(cat).
This proof attempt fails!

© Go back to step 2, and select the second clause of dark, i.e. dark(Z) :-
brown(Z), and prove brown(Q), big(Q).
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How Prolog Works (an example)

To prove dangerous(Q):
© Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

@ To prove dark(Q) select the first clause of dark, i.e. dark(Z) :-
black(Z), and prove black(Q), big(Q).

© Now select the fact black(cat) and prove big(cat).
This proof attempt fails!

© Go back to step 2, and select the second clause of dark, i.e. dark(Z) :-
brown(Z), and prove brown(Q), big(Q).

© Now select brown(bear) and prove big(bear).
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How Prolog Works (an example)

To prove dangerous(Q):
© Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

@ To prove dark(Q) select the first clause of dark, i.e. dark(Z) :-
black(Z), and prove black(Q), big(Q).

© Now select the fact black(cat) and prove big(cat).
This proof attempt fails!

© Go back to step 2, and select the second clause of dark, i.e. dark(Z) :-
brown(Z), and prove brown(Q), big(Q).

© Now select brown(bear) and prove big(bear).

@ Select the fact big(bear).

There is nothing left to prove, so the proof is complete
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Data Representation in Prolog

@ Prolog has no notion of data types
o All data is represented as terms, which can be:

o Variables
o Non-variable Terms

o Atomic data (Integers, floating point numbers, constants, ...)
e Compound Terms (Structures)

Programming Languages Logic Programming CSE 526 14 / 48
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Atomic Data

e Numeric constants: Integers, floating point numbers (e.g. 1024,
-42, 3.1415, 6.023e23 . )

o Atoms:

e Strings of characters enclosed in single quotes (e.g. ’cram’, ’Stony
Brook’)

o lIdentifiers: sequence of letters, digits, underscore, beginning with a
letter (e.g. cram, r2d2, x_24).

Programming Languages Logic Programming CSE 526 15 / 48
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Introduction

Data Structures

o If f is an identifier and ty, to, ... t, are terms, then f(t1,tp,...t,) is a

term.

@ In the above, f is called a function symbol (or functor) and t; is an
argument.

@ Structures are used to group related data items together (in some
ways similar to struct in C and objects in Java).

@ Structures are used to construct trees (and, as a special case, lists).

Programming Languages Logic Programming CSE 526 16 / 48



Data Structures
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@ Example: expression trees:
plus(minus(num(3), num(1)), star(num(4), num(2)))

plus
_—
minus star
num num num num
3 1 4 2

o Data structures may have variables. And the same variable may
occur multiple times in a data structure.

minus

plus

num

plus
_—
star minus
— — =
num num num num
Y 2 3 X

Programming Languages

Logic Programming

CSE 526 17 /48
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(We'll extend this to unification later)

@ t; = tp: find substitions for variables in t; and t> that make the two

terms identical.

plus

star
— T~
num num num
| o
Y 2 = 3

Programming Languages

Logic Programming

CSE 526 18 / 48
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Matching
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(We'll extend this to unification later)

@ t; = tp: find substitions for variables in t; and t> that make the two

terms identical.

plus

star
— T~
num num num
| o
Y 2 = 3

Yes, with X =1, Y = 4.

Programming Languages

Logic Programming
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Data Structures
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Matching (contd.)

plus plus
/
minus star minus star
— T~ — T~ — T~ — T~
num num num num num num num num
| | o, | | |
3 1 4 2 = 3 X Y 2

Programming Languages Logic Programming CSE 526 19 / 48



Data Structures
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Matching (contd.)

plus plus
/ /
minus star minus star
— T~ — T~ — T~ — T~
num num num num num num num num
| | | o, | | |
3 1 4 2 = 3 X Y 2

Yes, with X =1, Y = 4.
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Data Structures
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Matching (contd.)

plus plus
/ /
minus star minus star
—_— T~ — T~ —_— T~ — T~
num num num num num num num num
| | I, | | |
3 1 4 2 = 3 X X 2

Programming Languages Logic Programming CSE 526




Data Structures
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Matching (contd.)

plus plus
/
minus star minus star
—_— T~ — T~ —_— T~ — T~
num num num num num num num num
| | | I, | | | |
3 1 4 2 = 3 X X 2

No! X cannot be 1 and 4 at the same time

Programming Languages Logic Programming CSE 526 20 /




Introduction Systems Data Structures

0000000 @000000000000000

Accessing arguments of a structure

@ Matching is the common way to access a structure’s arguments.

@ Let date(’Sep’, 1, 2005) be a structure used to represent dates,
with the month, day and year as the three arguments (in that order).

@ Then date(M, D, Y) = date(’Sep’, 1, 2005) makes
M ="Sep’, D=1, Y =2005.

o If we want to get only the day, we can write date(_, D, _) =
date(’Sep’, 1, 2005). Then we get D = 1.

Programming Languages Logic Programming CSE 526 21 /48
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Lists

Prolog uses a special syntax to represent and manipulate lists.

o [1,2,3,4]: represents a list with 1, 2, 3 and 4, respectively.

@ This can also be written as [1 | [2,3,4]]: a list with 1 as the head
(its first element) and [2,3,4] as its tail (the list of remaining
elements).

elfX=1andY = [2,3,4] then [XIY] is same as [1,2,3,4].
@ The empty list is represented by [ 1].

@ The symbol “|" (called cons) and is used to separate the beginning
elements of a list from its tail.
For example: [1,2,3,4] = [1 | [2,3,4]]
=011 [2 1 [3,4]]1]
=[1,2 | [3,4]]

Programming Languages Logic Programming CSE 526 22 /48
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Lists (contd.)

@ Lists are special cases of trees.
For instance, the list [1,2,3,4] is represented by the following
structure:

PN
PN
PN
N
4 [l

@ The function symbol ./2 is the list constructor.
[1,2,3,4] issame as . (1, .(2, .(3, .4, [N

1
2

Programming Languages Logic Programming CSE 526 23 /48
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Programming with Lists — |

First example: member/2, to find if a given element occurs in a list:
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Introduction

Programming with Lists — |

First example: member/2, to find if a given element occurs in a list:

The program:
member (X, [X|_.]).
member (X, [_|Ys]) :- member(X, Ys).
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The program:
append([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:
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Programming Languages Logic Programming CSE 526 25 / 48



Data Structures

0000000000 00e0000000000

Programming with Lists — IlI

Define a predicate, 1en/2 that finds the length of a list (first argument).

Programming Languages Logic Programming CSE 526 26 / 48



Introduction Systems 4 Data Structures

0000000000 00e0000000000

Programming with Lists — IlI

Define a predicate, 1en/2 that finds the length of a list (first argument).

The program:
len([], 0).
len([_|Xs], N+1) :- len(Xs, N).

Programming Languages Logic Programming CSE 526 26 / 48



Introduction Systems 4 Data Structures

0000000000 00e0000000000

Programming with Lists — IlI

Define a predicate, 1en/2 that finds the length of a list (first argument).

The program:
len([], 0).
len([_|Xs], N+1) :- len(Xs, N).

Example queries:
len([], X
len([1,i,s,t], 4)
len([1,i,s,t], X)
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@ In Predicate logic, the basis for Prolog, the only symbols that have a
meaning are the predicates themselves.

@ In particular, function symbols are uninterpreted: have no special
meaning and can only be used to construct data structures.

@ Meaning for arithmetic expressions is given by the built-in predicate

is™:
e X is 1 + 2 succeeds, binding X to 3.
e 3 is 1 + 2 succeeds.
General form: R is E where E is an expression to be evaluated and R
is matched with the expression’s value.
e Y is X + 1 will give an error if X does not (yet) have a value.
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The list length example revisited

Define a predicate, length/2 that finds the length of a list (first
argument).

The program:

length([1, 0).
length([_|Xs], M) :- length(Xs, N), M is N+1.
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Define a predicate, length/2 that finds the length of a list (first
argument).

The program:
length([], 0).
length([_|Xs], M) :- length(Xs, N), M is N+1.

Example queries:
length([], X)
length([1,i,s,t], 4)
length([1,i,s,t], X)
length(List, 4)
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Conditional Evaluation
Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :-

@ N is the input parameter; and F is the output parameter.
@ The body of the rule specifies how the output is related to the input.
@ For factorial, there are two cases: N <=0 and N > 0.

o N<=0: F=1
o N>0: F=N=x(N-1)!

@ factorial(N, F) :-
(N >0
-> N1 is N-1, factorial(N1, F1), F is Nx*F1
; F=1
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Introduction

More Prolog Syntax

@ Assignments with arithmetic expressions is done using the keyword
is
o If-then-else is written as ( cond -> then-part ; else-part )
@ If more than one action needs to be performed in a rule, they are
written one after another, separated by a comma.
@ Arithmetic expressions are not directly used as arguments when
calling a predicate; they are first evaluated, and then passed to the

called predicate.
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Arithmetic Operators

Integer/Floating Point operators: +, -, *, /
Integer operators: mod, // (div)

Int <> Float operators: floor, ceiling

Comparison operators: <, >, =<, >=, =:=, =\=
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append/3: concatenate two lists to form the third list (sometimes called
conc/3).

The program:
append([], L, L).
append ([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

@ append([f,i,r], [s,t], L)
@ append(X, Y, [s,e,c,o,n,d])
@ append(X, [t,h]l, [f,o,u,r,t,h])
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r([1) -—> [1.
r([XI1Xs]) --> r(Xs), [X].

Translated to:

r([1, X, X).
r([XIXs], Z1, Z3) :- r(Xs, Z1, Z2), 722 = [X|Z3].

Equivalent to:

r([1, X, X).
r([X|Xs], z1, Z3) :- r(Xs, Z1, [XIz3]).

?- phrase(r([1,2,3,4]), L).

= r([1,2,3,4], L, [1)
L=[4,3,2,1]

@ A way to reverse a list in polynomial time!
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Unification

@ Operation done to “match” the goal atom with the head of a clause
in the program.
@ Forms the basis for the matching operation we used for Prolog
evaluation.
e f(a,Y) and £(X,b) unify when X=a and Y=b.
e f(a,X) and £(X,b) do not unify.
e X and £ (X) do not unify
(but they “match” in Prolog!)
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Substitutions

A substitution is a mapping between variables and values (terms).
@ Denoted by {X; — t1,Xo — t2,..., X, — t,} such that
o X; 7& t;, and
e X; and X; are distinct variables when i # j.
@ Empty subsititution is denoted by e.
@ A substition is said to be a renaming if it is of the form
{X1— Y1,...,Xn = Y} and Yi,..., Y, is a permutation of
X1y, Xn.

e Example: {X — Y, Y — X} is a renaming substitution.
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Substitutions and Terms

@ Application of a substitution:

e XO0=tifX—teh.
e X0 =Xif X—t¢&0 for any term t.

@ Application of a substitution {Xj +— t1,..., X, — t,} to a term s:
e is a term obtained by simultaneously replacing every occurrence of X;
ins by t;.

e Denoted by sf
and s@ is said to be an instance of s

o Example:

p(f(X,2),f(Y.a) {X—g(Y),Y — Z,Z — a}
= p(f(g(Y),a),f(Z,a))
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Composition of Substitutions

e Composition of substitutions § = {X; + s1,..., Xm — sy} and
oc={Y1—=t1,..., Yo = ty}:
o First form the set {X; — s10,..., Xin = smo, Yi = t1, ..., Yo = ta}

o Remove from the set X; — s;o if sic = X;
o Remove from the set Y — t; if Y] is identical to some variable X;

@ Example: Let 0 =0 ={X +— g(Y),Y — Z,Z+ a}. Then fo =

{X—=gY),Y—=2Z,Z— al{X—g(Y),Y— 2Z,Z a}
= {X—g(2),Yw—aZw— a}

@ More examples: Let 0 = {X — f(Y)} and 0 ={Y — a}
o o ={Xw—f(a),Y— a}
e fo ={Xm— f(Y),Y— a}

Composition is not commutative but is associative: 6(ovy) = (6o )y
Also, E(6o) = (Ef)o
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Idempotence

@ A subsitution 6 is idempotent iff 86 = 6.
@ Examples:
o {X—g(Y),Y— Z Z+ a} is not idempotent since

{X—gY),Y—2Z Z—al{X—g(Y),Y—2Z,7Z— a}
= {X—g(2),Yw—aZ— a}

o {X—g(Z),Y — a,Z — a} is not idempotent either since

{X—g(2),Y—aZ—al{X—g(2),Y— aZ— a}
= {X—ga),Y—aZ—a}
o {X— g(a),Y — a,Z+— a} is idempotent
@ For a substitution § = {X1 — t1,..., X, — tp},
o Dom(&) = {Xl, X2, .. Xn}
o Range(f) = set of all variables in t1,...t,
@ A substitution 6 is idempotent iff Dom(6) N Range(6) = ()
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Unifiers

@ A substitution 8 is a unifier of two terms s and t if s is identical to

t0.

@ 0 is a unifier of a set of equations {s; = t1,...,s, = t,}, if for all /,
50 = t;6.

@ A substitution 6 is more general than o (written as 0 = o) if there is
a substitution w such that o = 6w

@ A substitution 6 is a most general unifier (mgu) of two terms (or a
set of equations) if for every unifer o of the two terms (or equations)
0>oc

°

Example: Consider two terms f(g(X), Y,a, b) and f(Z, W, X, b).
o b ={Xw—a, Y b Z+— g(a), W b} is a unifier
o hh={Xr—aY— W, Z— g(a)}is also a unifier
e 0 is a most general unifier
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Equations and Unifiers

@ A set of equations & is in solved form if it is of the form
{Xl = ti,..., Xp = 1.',7} iff
e all X;'s are distinct, and
e no X; appears in any t;.
@ Given a set of equations in solved form & = {X; = t1,..., X, = t,}
the substitution {X1/t1,...X,/ts} is an idempotent mgu of £.

@ Two sets of equations & and &> are said to be equivalent iff they
have the same set of unifiers.

@ To find the mgu of two terms s and t, find a set of equations in
solved form that is equivalent to {s = t}.
If there is no equivalent solved form, there is no mgu.
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A Simple Unification Algorithm (via Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), Z)

{f(X.g(Y)) =f(s(2),2)} =
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A Simple Unification Algorithm (via Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), Z)

{f(X,g(Y)) =f(g(2),2)} = {X=g(2)8(Y)=2}
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A Simple Unification Algorithm (via Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), Z)

{f(X,g(Y)) =1f(g(2),2)y = {X=2g(2).8(Y)=2}
= {X=g(2),Z2=g(V)}
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A Simple Unification Algorithm (via Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), 2)
{f(X.g(Y)) =f(g(2),2)} = {X=g(2).8(Y)=2}

= {X=g(2),Z2=g(V)}
= {X=2g(g(v)),Z=s(Y)}
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A Simple Unification Algorithm (via Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), Z)

{f(X,g(Y)) =1f(g(2),2)y = {X=2g(2).8(Y)=2}
= {X=g(2),Z2=g(V)}
= {X=2g(g(v)),Z=s(Y)}
e Example 2: Find the mgu of (X, g(X), b) and f(a, g(2), 2)

{f(X,g(X),p) = f(a,8(2), 2)} =
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A Simple Unification Algorithm (via Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), Z)

{f(X,g(Y)) =1f(g(2),2)y = {X=2g(2).8(Y)=2}
= {X=g(2),Z2=g(V)}
= {X=2g(g(v)),Z=s(Y)}
e Example 2: Find the mgu of (X, g(X), b) and f(a, g(2), 2)

{f(X.g(X),p) = f(a,8(2), 2)} = {X=ag(X)=g(2),b=2}
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A Simple Unification Algorithm (via Examples)
e Example 1: Find the mgu of (X, g(Y)) and f(g(2), Z)

{f(X,g(Y)) =1f(g(2),2)y = {X=2g(2).8(Y)=2}
= {X=g(2),Z2=g(V)}
= {X=2g(g(v)),Z=s(Y)}
e Example 2: Find the mgu of (X, g(X), b) and f(a, g(2), 2)
[F(X,8(X).b) = F(2.8(2).2)} = {X=a.g(X)=g(2)b=2)
= {X=a¢g(a)=g(2),b=2}
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e Example 1: Find the mgu of (X, g(Y)) and f(g(2), Z)

{f(X.g(Y)) =

f(g(2).2)} =
=
=

{X=2g(2).8(Y)=2}
{X=g(2),Z=g(Y)}
{X =g(g(Y)),Z=g(Y)}

e Example 2: Find the mgu of (X, g(X), b) and f(a, g(2), 2)
{f(X,g(X),b) =f(a,8(2), 2)} =

Programming Languages

=
=

Logic Programming

{X=a¢g(X)=g(2),b=2}
{X=agl(a)=g(2),b=2}
{X=a,a=2Zb=27}
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e Example 1: Find the mgu of (X, g(Y)) and f(g(2), Z)

=

{X =g(g(Y)),Z=g(Y)}

e Example 2: Find the mgu of (X, g(X), b) and f(a, g(2), 2)
{f(X,g(X),b) =f(a,8(2), 2)} =

Programming Languages

=
=
=

Logic Programming

{X =a,g(X)=g(2),b= 2}
{X=ag(a)=g(2),b= 27}
{X=a,a=2Zb=27}
{X=aZ=ab=727}
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A Simple Unification Algorithm (via Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), Z)

{f(X,g(Y)) =1f(g(2),2)y = {X=2g(2).8(Y)=2}
= {X=g(2),Z2=g(V)}
= {X=g(g(Y)).Z=g(Y)}
e Example 2: Find the mgu of (X, g(X), b) and f(a, g(2), 2)
{f(X.g(X),p) = f(a,8(2), 2)} = {X=ag(X)=g(2),b=2}
= {X=a¢g(a)=g(2),b=2}
= {X=aa=2Zb=27}
= {X=aZ=ab=7}
= {X=aZ=ab=a}
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A Simple Unification Algorithm (via Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), Z)

{f(X,g(Y)) =1f(g(2),2)y = {X=2g(2).8(Y)=2}
= {X=g(2),Z2=g(V)}
= {X=2g(g(v)),Z=s(Y)}
e Example 2: Find the mgu of (X, g(X), b) and f(a, g(2), 2)
{f(X.g(X),p) = f(a,8(2), 2)} = {X=ag(X)=g(2),b=2}
= {X=a¢g(a)=g(2),b=2}
= {X=aa=2Zb=27}
= {X=aZ=ab=7}
= {X=aZ=ab=a}
= fail
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A Simple Unification Algorithm

Given a set of equations &:

repeat
select s =t € &;
case s = t of
1. f(517...75,7) = f(tl,...,t,,)Z
replace the equation by s; = t; for all i
2. f(st,-.-,50) =g(tr,- .-, tm), f A gorn#m:
halt with failure
3. X =X : remove the equation
4. t = X : where t is not a variable
replace equation by X =t
5. X =t : where X # t and X occurs more than once in &:
if X is a proper subterm of t
then halt with failure (5a)
else replace all other X in £ by t (5b)
until no action is possible for any equation in £
return £
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A Simple Unification Algorithm (More Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), 2)
{f(X.g(Y))=1(e(2).2)} =
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A Simple Unification Algorithm (More Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), 2)
{f(X,8(Y)) =1(g(2),2)} = {X=g(2).8(Y)=2} case 1
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A Simple Unification Algorithm (I\/Iore Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), 2)
{f(X,8(YV)) =1(g(2),2)} = {X=g(2) (Y)ZZ} case 1
= {X=g(2),Z2=¢g(Y)} case 4
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A Simple Unification Algorithm (I\/Iore Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), 2)
{f(X,g(Y)) =1f(g(2).2)} = {X=g(2), (Y) Z} case 1
= {(X=g(2),Z=¢g(Y)} case 4
~ (X =g(g(V)).Z = g(Y)} case b
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A Simple Unification Algorithm (More Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), 2)
(B =162 2) = (X=62)6()=2) el
= {X=8(2),Z=¢g(Y)}  case4
= {X=g(g(Y)), Z:g(Y)} case 5b
e Example 3: Find the mgu of f(X, g(X)) and f(Z, Z)
[F(X.g(X) = f(Z,2)} =
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A Simple Unification Algorithm (More Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), 2)
(X)) = F6(2).2)} = (X=g(2).8(Y)=2})  casel
= {X=g(2),Z=g(Y)} case 4
S (X Zg(g(V).Z = g(¥)} case 5b
e Example 3: Find the mgu of f(X, g(X)) and f(Z, Z)
{f(X,g(X)=1(Z,2)} = {(X=Z,g(X)=2} casel
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A Simple Unification Algorithm (More Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), 2)
(X)) = F6(2).2)} = (X=g(2).8(Y)=2})  casel
= {X=g(2),Z=g(Y)} case 4
S (X Zg(g(V).Z = g(¥)} case 5b
e Example 3: Find the mgu of (X, g(X)) and f(Z, Z)
{f(X,g(X)=1(Z,2)} = {(X=Z,g(X)=2} casel
= {X=Z,g(Z)=2Z} casebb
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A Simple Unification Algorithm (More Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(2), 2)
{f(X.g(Y) =f(e(2),2)} = {X=g(2)e(Y)=2} case 1
= {X=g(2),Z=g(Y)} case 4
S (X Zg(g()),Z = g(Y)} case 5b

e Example 3: Find the mgu of (X, g(X)) and f(Z, Z)

{f(X,g(X)=1(Z,2)} = {(X=Z,g(X)=2} casel

= {X=Z,g(Z)=2Z} casebb

= {X=2Z,Z=g(2)} case4
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A Simple Unification Algorithm (More Examples)

e Example 1: Find the mgu of (X, g(Y)) and f(g(Z2),2)
{f(X.e(Y) =f(e(2),2)} = {X=g(2), (Y): Z}  casel
= {X=g(2),2=¢g(Y)}  cases
= {X=g(g (Y)),Z g(Y)} case5b
e Example 3: Find the mgu of (X, g(X)) and f(Z, Z)
{f(X,g(X)=1(Z,2)} = {(X=Z,g(X)=2} casel
= {X=Z,g(Z)=2Z} casebb
= {X=2Z,Z=g(2)} case4
= fail case 5a

Programming Languages Logic Programming CSE 526 46 / 48
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Complexity of the unification algorithm

Consider
&= {g(X17 v 7Xn) = g(f(X07X0)7 f(X17X1)7 vy f(Xn—17Xn—1)}-

@ By applying case 1 of the algorithm, we get
{X1 = (X0, Xo), X2 = (X1, X1), ..., Xy = F(Xn—1, Xn1) }
o If terms are kept as trees, the final value for X, is a tree of size O(2").
@ Recall that for case b we need to first check if a variable appears in a
term, and this could now take O(2") time.
@ There are linear-time unification algorithms that share structures

(terms as DAGs).

@ X =t is the most common case for unification in Prolog. The fastest
algorithms are linear in t.

Prolog cuts corners by omitting case 5a (the occur check), thereby
doing X =t in constant time.
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Most General Unifiers

o Note that mgu stands for a most general unifier.
@ There may be more than one mgu. E.g. f(X) = f(Y) has two mgus:
° {X — Y}
o {Y — X}
@ If #is an mgu of s and t, and w is a renaming, then 6w is an mgu of
s and t.
@ If 6 and o are mgus of s and t, then there is a renaming w such that

0 =ow.
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