Prolog

Principles of Programming Languages

CSE 526

Logic and Programs

- "All men are mortal; Socrates is a man; Hence Socrates is mortal"

Logic and Programs

- "All men are mortal; Socrates is a man; Hence Socrates is mortal"

$$
\forall X \cdot \operatorname{man}(X) \Rightarrow \operatorname{mortal}(X)
$$

Logic and Programs

- "All men are mortal; Socrates is a man; Hence Socrates is mortal"

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\operatorname{man}(\text { socrates })
\end{array}
$$

Logic and Programs

- "All men are mortal; Socrates is a man; Hence Socrates is mortal"

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\operatorname{man}(\text { socrates })
\end{array}
$$

- Predicate logic

Logic and Programs

- "All men are mortal; Socrates is a man; Hence Socrates is mortal"

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\operatorname{man}(\text { socrates })
\end{array}
$$

- Predicate logic
- Predicates (e.g. man, mortal) which define sets.

Logic and Programs

- "All men are mortal; Socrates is a man; Hence Socrates is mortal"

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\operatorname{man}(\text { socrates })
\end{array}
$$

- Predicate logic
- Predicates (e.g. man, mortal) which define sets.
- Atoms (e.g. socrates) which are data values

Logic and Programs

- "All men are mortal; Socrates is a man; Hence Socrates is mortal"

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\operatorname{man}(\text { socrates })
\end{array}
$$

- Predicate logic
- Predicates (e.g. man, mortal) which define sets.
- Atoms (e.g. socrates) which are data values
- Variables (e.g. X) which range over data values

Logic and Programs

- "All men are mortal; Socrates is a man; Hence Socrates is mortal"

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\operatorname{man}(\text { socrates })
\end{array}
$$

- Predicate logic
- Predicates (e.g. man, mortal) which define sets.
- Atoms (e.g. socrates) which are data values
- Variables (e.g. X) which range over data values
- Rules (e.g. $\forall X$. $\operatorname{man}(X) \Rightarrow \operatorname{mortal}(X))$ which define relationships between predicates.

Logic Programs and Queries

$\forall X . \operatorname{man}(X) \Rightarrow \operatorname{mortal}(X)$

Logic Programs and Queries

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\text { man(socrates) }
\end{array}
$$

Logic Programs and Queries

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\text { man(socrates) }
\end{array}
$$

Logic Programs and Queries

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\text { man(socrates) }
\end{array}
$$

Logic "Program":
man(socrates).
mortal(X) :- man(X).

Logic Programs and Queries

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\text { man(socrates) }
\end{array}
$$

Logic "Program":
man(socrates).
mortal(X) :- man(X).
Queries:
?- mortal(socrates).
yes

Logic Programs and Queries

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\text { man(socrates) }
\end{array}
$$

Logic "Program":
man(socrates).
mortal(X) :- man(X).
Queries:
?- mortal(socrates).
yes
?- mortal(X).

Logic Programs and Queries

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\text { man(socrates) }
\end{array}
$$

Logic "Program":
man(socrates).
mortal(X) :- man(X).
Queries:
?- mortal(socrates).
yes
?- mortal(X).
X=socrates

Logic Programs and Queries

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\text { man(socrates) }
\end{array}
$$

Logic "Program":
man(socrates).
mortal(X) :- man(X).
Queries:
?- mortal(socrates).
yes
?- mortal(X).
X=socrates;

Logic Programs and Queries

$$
\begin{array}{r}
\forall X . \operatorname{man}(X) \Rightarrow \text { mortal }(X) \\
\text { man(socrates) }
\end{array}
$$

Logic "Program":
man(socrates).
mortal(X) :- man(X).
Queries:
?- mortal(socrates).
yes
?- mortal(X).
X=socrates;
no

Prolog

Programming in Logic

- Early development: Kowalski \& van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)

Prolog

Programming in Logic

- Early development: Kowalski \& van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)
- First efficient implementation: WAM of David H.D. Warren (Edinburgh) (mid '70s).

Prolog

Programming in Logic

- Early development: Kowalski \& van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)
- First efficient implementation: WAM of David H.D. Warren (Edinburgh) (mid '70s).
- Later developments:

Prolog

Programming in Logic

- Early development: Kowalski \& van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)
- First efficient implementation: WAM of David H.D. Warren (Edinburgh) (mid '70s).
- Later developments:
- Constraint Logic Programming: for applications in AI, planning, scheduling, etc. Jaffar \& Lassez (IBM Watson)

Prolog

Programming in Logic

- Early development: Kowalski \& van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)
- First efficient implementation: WAM of David H.D. Warren (Edinburgh) (mid '70s).
- Later developments:
- Constraint Logic Programming: for applications in AI, planning, scheduling, etc. Jaffar \& Lassez (IBM Watson)
- Memoization: Tamaki \& Sato (Tokyo); Warren et al (Stony Brook)

Prolog Systems

- SWI Prolog (www.swi-prolog.org)
- Can be obtained for free and installed on Windows, Linux, Mac.
- Has a good development environment (command completion, help, graphical debugger, etc.)
- On compute* (Unix) servers: ~cram/bin/swipl
- XSB Prolog (xsb.sourceforge.net)
- Can be obtained for free and installed on Windows, Linux, Mac.
- Supports a powerful extension (memoization) to Prolog
- Command-line interface (e.g. no graphical debugger)
- On compute* (Unix) servers: ~cram/bin/xsb

Using Prolog Systems

- Prolog programs are in files with ". pl" extension (".P" for XSB)
- Prolog systems typically support an interactive mode.
- "[filename]." to compile and load a program in filename.pl (filename. P in XSB).
- "halt." to exit the system.

Logic Programs

- Programs are a set of rules (also called clauses).

Logic Programs

- Programs are a set of rules (also called clauses).
- Predicates in a logic program are analogous to procedures in imperative programs.

Logic Programs

- Programs are a set of rules (also called clauses).
- Predicates in a logic program are analogous to procedures in imperative programs.
- One or more rules are used to define a predicate.

Logic Programs

- Programs are a set of rules (also called clauses).
- Predicates in a logic program are analogous to procedures in imperative programs.
- One or more rules are used to define a predicate.
- Example:

$$
\operatorname{inc}(X, Y):-Y \text { is } X+1
$$

Logic Programs

- Programs are a set of rules (also called clauses).
- Predicates in a logic program are analogous to procedures in imperative programs.
- One or more rules are used to define a predicate.
- Example:
inc(X,Y) :- Y is $\mathrm{X}+1$.
- X and Y are variables.

Logic Programs

- Programs are a set of rules (also called clauses).
- Predicates in a logic program are analogous to procedures in imperative programs.
- One or more rules are used to define a predicate.
- Example:
inc (X,Y) :- Y is $\mathrm{X}+1$.
- X and Y are variables.
- inc is a predicate.

Logic Programs

- Programs are a set of rules (also called clauses).
- Predicates in a logic program are analogous to procedures in imperative programs.
- One or more rules are used to define a predicate.
- Example:
inc (X,Y) :- Y is $\mathrm{X}+1$.
- X and Y are variables.
- inc is a predicate.
- The predicate is defined using a single rule.

Logic Programs

(contd.)

```
inc(X,Y) :- Y is X+1.
```

- ": -" separates the body of the rule from its head.
- "X" and " Y " are also "parameters" of the predicate. In this case, X is the input parameter, and Y is the return parameter (where the return values are stored).
- " Y is $X+1$ " defines Y in terms of X.
- The period (".") marks the end of a rule.
- The predicate is called by giving values to its parameters. e.g. inc ($6, B$) returns with $B=7$. inc (11, B) returns with $\mathrm{B}=12$.

Syntax of Prolog

- Variables are identifiers that begin with an upper case letter or underscore.
- An underscore, by itself, represents an anonymous variable.
- Predicate names (and later, data structure symbols) are identifiers that begin with a lower case letter.
- All variables are local to the clause in which they occur.
- Different occurrences of the same variable in a clause denote the same data.
- Variables need not be declared, and have no type.

How Prolog Works (An Example)

```
big(bear).
big(elephant).
brown(bear).
black(cat).
small(cat).
gray(elephant).
dark(Z) :- black(Z).
dark(Z) :- brown(Z).
dangerous(X) :- dark(X), big(X).
```


Derivations

```
big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant).
small(cat).
black(cat).
dark(Z) :- brown(Z).
dangerous(X) :- dark(X), big(X).
                                    dangerous(Q)
```


Derivations

```
big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant).
small(cat).
black(cat). dark(Z) :- brown(Z).
gray(elephant).
dangerous(X) :- dark(X), big(X).
                            dangerous(Q)
dangerous(X) :-
    dark(Q), big(Q)
```


Derivations

```
big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant).
small(cat).
black(cat). dark(Z) :- brown(Z).
gray(elephant).
dangerous(X) :- dark(X), big(X).
Mangerous(X), dangerous(Q)
dark(X) :-
    blackk (X)
    black(Q), big(Q)
```


Derivations

```
big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant).
small(cat).
black(cat). dark(Z) :- brown(Z).
gray(elephant).
dangerous(X) :- dark(X), big(X).
    Mangerous(X) &-- dangerous(Q)
    \operatorname{ark}(X):-
        black(Q), big(Q)
    black(cat)
                            big(cat)
```


Derivations

```
big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant).
small(cat).
black(cat).
dark(Z) :- brown(Z).
dangerous(X) :- dark(X), big(X).
```



```
    \operatorname{ark}(X):-
        black(Q), big(Q)
    black(cat)
        big(cat)
```


failure

Derivations

```
big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant).
small(cat).
black(cat).
dark(Z) :- brown(Z).
dangerous(X) :- dark(X), big(X).
    Mangerous(X)
    \operatorname{ark}(X):-
        \operatorname{dark}(X) :--
        black(Q), big(Q) brown(Q), big(Q)
    black(cat)
                            big(cat)
```


failure

Derivations

```
big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant).
small(cat).
black(cat).
dark(Z) :- brown(Z).
dangerous(X) :- dark(X), big(X).
    Mangerous(X) (X)
    \operatorname{ark}(X):-
        \}\begin{array}{c}{\operatorname{dark(X):-}}\\{\mathrm{ brown(X)}}\\{\mathrm{ brown(Q), big(Q)}}\\{|\mathrm{ brown(bear)}}\\{\mathrm{ big(bear)}}
```

failure

Derivations

```
big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant).
small(cat).
black(cat).
dark(Z) :- brown(Z).
dangerous(X) :- dark(X), big(X).
    Mangerous(X), i- dangerous(Q)
    \operatorname{ark}(X):-
        \}\begin{array}{l}{\operatorname{dark(X):-}}\\{\mathrm{ brown(X)}}\\{\operatorname{brown(Q),}\operatorname{big(Q)}}\\{|\mathrm{ brown(bear)}}\\{\mathrm{ big(bear)}}
    failure
    success
```


How Prolog Works (the procedure)

- A query is, in general, a conjunction of goals

How Prolog Works (the procedure)

- A query is, in general, a conjunction of goals
- To prove $G_{1}, G_{2}, \ldots, G_{n}$:

How Prolog Works (the procedure)

- A query is, in general, a conjunction of goals
- To prove $G_{1}, G_{2}, \ldots, G_{n}$:
- Find a clause $H:-B_{1}, B_{2}, \ldots, B_{k}$ such that G_{1} and H match.

How Prolog Works (the procedure)

- A query is, in general, a conjunction of goals
- To prove $G_{1}, G_{2}, \ldots, G_{n}$:
- Find a clause $H:-B_{1}, B_{2}, \ldots, B_{k}$ such that G_{1} and H match.
- Under that substitution for variables, prove $B_{1}, B_{2}, \ldots, B_{k}, G_{2}, \ldots, G_{n}$.

How Prolog Works (the procedure)

- A query is, in general, a conjunction of goals
- To prove $G_{1}, G_{2}, \ldots, G_{n}$:
- Find a clause $H:-B_{1}, B_{2}, \ldots, B_{k}$ such that G_{1} and H match.
- Under that substitution for variables, prove $B_{1}, B_{2}, \ldots, B_{k}, G_{2}, \ldots, G_{n}$.
- If nothing is left to prove then the proof is complete. If there are no more clauses to match, the proof attempt fails.

How Prolog Works (an example)

To prove dangerous(Q):

How Prolog Works (an example)

To prove dangerous(Q):
(1) Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

How Prolog Works (an example)

To prove dangerous (Q):
(1) Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).
(2) To prove dark (Q) select the first clause of dark, i.e. dark (Z) :black(Z), and prove black(Q), big(Q).

How Prolog Works (an example)

To prove dangerous(Q):
(1) Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).
(2) To prove dark (Q) select the first clause of dark, i.e. dark(Z) :black(Z), and prove black(Q), big(Q).
(3) Now select the fact black(cat) and prove big(cat).

This proof attempt fails!

How Prolog Works (an example)

To prove dangerous(Q):
(1) Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).
(2) To prove dark (Q) select the first clause of dark, i.e. dark (Z) :black (Z), and prove black(Q), big(Q).
(3) Now select the fact black (cat) and prove big(cat).

This proof attempt fails!
(9) Go back to step 2, and select the second clause of dark, i.e. $\operatorname{dark}(Z)$:brown (Z), and prove brown (Q), big(Q).

How Prolog Works (an example)

To prove dangerous(Q):
(1) Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).
(2) To prove dark (Q) select the first clause of dark, i.e. dark(Z) :black (Z), and prove black(Q), big(Q).
(3) Now select the fact black (cat) and prove big(cat).

This proof attempt fails!
(9) Go back to step 2, and select the second clause of dark, i.e. $\operatorname{dark}(Z)$:brown (Z), and prove brown (Q), $\operatorname{big}(\mathrm{Q})$.
(5) Now select brown(bear) and prove big(bear).

How Prolog Works (an example)

To prove dangerous(Q):
(1) Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).
(2) To prove dark (Q) select the first clause of dark, i.e. dark(Z) :black(Z), and prove black(Q), big(Q).
(3) Now select the fact black (cat) and prove big(cat).

This proof attempt fails!
(4) Go back to step 2, and select the second clause of dark, i.e. $\operatorname{dark}(Z)$:brown (Z), and prove brown (Q), big(Q).
(5) Now select brown(bear) and prove big(bear).
(0) Select the fact big(bear).

There is nothing left to prove, so the proof is complete

Data Representation in Prolog

- Prolog has no notion of data types
- All data is represented as terms, which can be:
- Variables
- Non-variable Terms
- Atomic data (Integers, floating point numbers, constants, ...)
- Compound Terms (Structures)

Atomic Data

- Numeric constants: Integers, floating point numbers (e.g. 1024, -42, 3.1415, 6.023e23 ...)
- Atoms:
- Strings of characters enclosed in single quotes (e.g. 'cram', 'Stony Brook')
- Identifiers: sequence of letters, digits, underscore, beginning with a letter (e.g. cram, r2d2, x_24).

Data Structures

- If f is an identifier and $t_{1}, t_{2}, \ldots t_{n}$ are terms, then $f\left(t_{1}, t_{2}, \ldots t_{n}\right)$ is a term.

- In the above, f is called a function symbol (or functor) and t_{i} is an argument.
- Structures are used to group related data items together (in some ways similar to struct in C and objects in Java).
- Structures are used to construct trees (and, as a special case, lists).

Trees

- Example: expression trees: plus(minus(num(3), num(1)), star(num(4), num(2)))

- Data structures may have variables. And the same variable may occur multiple times in a data structure.

Matching

(We'll extend this to unification later)

- $t_{1}=t_{2}$: find substitions for variables in t_{1} and t_{2} that make the two terms identical.

Matching

(We'll extend this to unification later)

- $t_{1}=t_{2}$: find substitions for variables in t_{1} and t_{2} that make the two terms identical.

Yes, with $X=1, Y=4$.

Matching

(contd.)

Matching

(contd.)

Yes, with $X=1, Y=4$.

Matching

(contd.)

Matching

(contd.)

No! X cannot be 1 and 4 at the same time

Accessing arguments of a structure

- Matching is the common way to access a structure's arguments.
- Let date('Sep', 1, 2005) be a structure used to represent dates, with the month, day and year as the three arguments (in that order).
- Then date(M, D, Y) = date('Sep', 1, 2005) makes $M=$ 'Sep', $D=1, Y=2005$.
- If we want to get only the day, we can write date (_, D, _) = date('Sep', 1, 2005). Then we get $D=1$.

Lists

Prolog uses a special syntax to represent and manipulate lists.

- [1, 2, 3, 4]: represents a list with $1,2,3$ and 4 , respectively.
- This can also be written as [1 | [2,3,4]]: a list with 1 as the head (its first element) and [2,3,4] as its tail (the list of remaining elements).
- If $X=1$ and $Y=[2,3,4]$ then $[X \mid Y]$ is same as $[1,2,3,4]$.
- The empty list is represented by [].
- The symbol "I" (called cons) and is used to separate the beginning elements of a list from its tail.
For example: $[1,2,3,4]=[1$ | $[2,3,4]]$
$=[1$ | [2 | [3,4]]]
$=[1,2 \mid[3,4]]$

Lists

(contd.)

- Lists are special cases of trees.

For instance, the list $[1,2,3,4]$ is represented by the following structure:

- The function symbol ./2 is the list constructor. $[1,2,3,4]$ is same as . (1, . (2, . (3, . (4, []))))

Programming with Lists - I

First example: member/2, to find if a given element occurs in a list:

Programming with Lists - I

First example: member/2, to find if a given element occurs in a list:

The program:

member $\left(X,\left[X \mid _\right]\right.$.
member $(X$, [_|Ys]) :- member(X, Ys).

Programming with Lists - I

First example: member/2, to find if a given element occurs in a list:

The program:

member $\left(X,\left[X \mid _\right]\right)$.
member $\left(X,\left[_\mid Y s\right]\right)$:- member(X, Ys).

Example queries:

```
member(s, [l,i,s,t])
member(X, [l,i,s,t])
member(f(X), [f(1), g(2), f(3), h(4), f(5)])
```


Programming with Lists - II

append/3: concatenate two lists to form the third list.

Programming with Lists - II

append/3: concatenate two lists to form the third list.
The program:
append ([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Programming with Lists - II

append/3: concatenate two lists to form the third list.

The program:

append ([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

append([f,i,r], [s,t], L)
$\operatorname{append}(X, Y,[s, e, c, o, n, d])$
append (X, [t,h], [f,o,u,r,t,h])

Programming with Lists - III

Define a predicate, len/2 that finds the length of a list (first argument).

Programming with Lists - III

Define a predicate, len/2 that finds the length of a list (first argument).
The program:
len([], 0).
len([_|Xs], N+1) :- len(Xs, N).

Programming with Lists - III

Define a predicate, len/2 that finds the length of a list (first argument).
The program:
$\operatorname{len}([], 0)$.
len([_|Xs], N+1) :- len(Xs, N).

Example queries:

len([], X)
len([l,i,s,t], 4)
len([1,i,s,t], X)

Arithmetic

$$
\text { | ?- } 1+2=3 .
$$

no

Arithmetic

| ? $-1+2=3$.
no

- In Predicate logic, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.

Arithmetic

| ? $-1+2=3$.
no

- In Predicate logic, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.

Arithmetic

| ?- $1+2=3$.
no

- In Predicate logic, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the built-in predicate "is":

Arithmetic

| ?- $1+2=3$.
no

- In Predicate logic, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the built-in predicate "is":
- X is $1+2$ succeeds, binding X to 3 .

Arithmetic

| ?- $1+2=3$.
no

- In Predicate logic, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the built-in predicate "is":
- X is $1+2$ succeeds, binding X to 3 .
- 3 is $1+2$ succeeds.

Arithmetic

| ?- $1+2=3$.
no

- In Predicate logic, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the built-in predicate "is":
- X is $1+2$ succeeds, binding X to 3 .
- 3 is $1+2$ succeeds.
- General form: R is E where E is an expression to be evaluated and R is matched with the expression's value.

Arithmetic

| ?- $1+2=3$.

- In Predicate logic, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the built-in predicate "is":
- X is $1+2$ succeeds, binding X to 3 .
- 3 is $1+2$ succeeds.
- General form: R is E where E is an expression to be evaluated and R is matched with the expression's value.
- Y is $X+1$ will give an error if X does not (yet) have a value.

The list length example revisited

Define a predicate, length/2 that finds the length of a list (first argument).

The program:

length([], 0).
length([_|Xs], M) :- length(Xs, N), M is $\mathrm{N}+1$.

The list length example revisited

Define a predicate, length/2 that finds the length of a list (first argument).

The program:

```
length([], 0).
length([_|s], M) :- length(Xs, N), M is N+1.
```


Example queries:

length([], X)
length([1,i,s,t], 4)
length([l,i,s,t], X)
length(List, 4)

Conditional Evaluation

Consider the computation of n !, i.e. the factorial of n.
factorial(N, F) :- ...

- N is the input parameter; and F is the output parameter.

Conditional Evaluation

Consider the computation of n !, i.e. the factorial of n.
factorial(N, F) :- ...

- N is the input parameter; and F is the output parameter.
- The body of the rule specifies how the output is related to the input.

Conditional Evaluation

Consider the computation of n !, i.e. the factorial of n.
factorial(N, F) :- ...

- N is the input parameter; and F is the output parameter.
- The body of the rule specifies how the output is related to the input.
- For factorial, there are two cases: $N<=0$ and $N>0$.

Conditional Evaluation

Consider the computation of $n!$, i.e. the factorial of n.
factorial(N, F) :- ...

- N is the input parameter; and F is the output parameter.
- The body of the rule specifies how the output is related to the input.
- For factorial, there are two cases: $N<=0$ and $N>0$.
- $N<=0: F=1$

Conditional Evaluation

Consider the computation of $n!$, i.e. the factorial of n.
factorial(N, F) :- ...

- N is the input parameter; and F is the output parameter.
- The body of the rule specifies how the output is related to the input.
- For factorial, there are two cases: $N<=0$ and $N>0$.
- $N<=0: F=1$
- $N>0: F=N *(N-1)$!

Conditional Evaluation

Consider the computation of $n!$, i.e. the factorial of n. factorial(N, F) :- ...

- N is the input parameter; and F is the output parameter.
- The body of the rule specifies how the output is related to the input.
- For factorial, there are two cases: $N<=0$ and $N>0$.
- $N<=0: F=1$
- $N>0: F=N *(N-1)$!
- factorial(N, F) :-

$$
\begin{aligned}
& \text { (} \mathrm{N} \text { > } 0 \\
& \text {-> N1 is N-1, factorial(N1, F1), F is N*F1 } \\
& \text {; } F=1 \\
& \text {). }
\end{aligned}
$$

More Prolog Syntax

- Assignments with arithmetic expressions is done using the keyword "is".

More Prolog Syntax

- Assignments with arithmetic expressions is done using the keyword "is".
- If-then-else is written as (cond -> then-part ; else-part)

More Prolog Syntax

- Assignments with arithmetic expressions is done using the keyword "is".
- If-then-else is written as (cond -> then-part ; else-part)
- If more than one action needs to be performed in a rule, they are written one after another, separated by a comma.

More Prolog Syntax

- Assignments with arithmetic expressions is done using the keyword "is".
- If-then-else is written as (cond -> then-part ; else-part)
- If more than one action needs to be performed in a rule, they are written one after another, separated by a comma.
- Arithmetic expressions are not directly used as arguments when calling a predicate; they are first evaluated, and then passed to the called predicate.

Arithmetic Operators

- Integer/Floating Point operators: +, -, *, /
- Integer operators: mod, // (div)
- Int \leftrightarrow Float operators: floor, ceiling
- Comparison operators: <, >, =<, >=, =:=, =\=

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called conc/3).

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called conc/3).

The program:

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called conc/3).

The program: append ([], L, L).

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called conc/3).

The program:
append([], L, L). append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called conc/3).

The program:
append ([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

- append([f,i,r], [s,t], L)

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called conc/3).

The program:
append ([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

- append([f,i,r], [s,t], L)
- append(X, Y, [s,e,c,o,n,d])

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called conc/3).

The program:
append ([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

- append([f,i,r], [s,t], L)
- append (X, Y, [s,e,c,o,n,d])
- append(X, [t,h], [f,o,u,r,t,h])

Mystery Program

```
m(X, X).
\(m(X 1, X 5):-a(X 1, X 2), m(X 2, X 3), b(X 3, X 4), m(X 4, X 5)\).
\(\mathrm{a}([\mathrm{O} \mid \mathrm{Y}], \mathrm{Y})\).
\(\mathrm{b}([1 \mid \mathrm{Y}], \mathrm{Y})\).
```


Mystery Program

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
a([0|Y], Y).
b([1|Y], Y).
```

?- $m([0,1,0,0,1,1], L)$.

Mystery Program

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
a([0|Y], Y).
b([1|Y],Y).
```

?- $m([0,1,0,0,1,1], L)$.

$$
\mathrm{L}=[0,1,0,0,1,1]
$$

Mystery Program

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
```

$a([0 \mid Y], Y)$.
b([1|Y], Y).

$$
\begin{aligned}
\text { ?- } m([0,1,0,0,1,1], L) & \\
L & =[0,1,0,0,1,1] \\
\mathrm{L} & =[0,0,1,1]
\end{aligned}
$$

Mystery Program

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
```

$a([0 \mid Y], Y)$.
b([1|Y], Y).
?- $m([0,1,0,0,1,1], L)$.

$$
\begin{aligned}
& \mathrm{L}=[0,1,0,0,1,1] \\
& \mathrm{L}=[0,0,1,1] \\
& \mathrm{L}=[]
\end{aligned}
$$

Mystery Program

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
```

$a([0 \mid Y], Y)$.
b([1|Y], Y).
?- m([0, $1,0,0,1,1], L)$.

$$
\begin{aligned}
& \mathrm{L}=[0,1,0,0,1,1] \\
& \mathrm{L}=[0,0,1,1] \\
& \mathrm{L}=[]
\end{aligned}
$$

?- m([0,0,1,1,1,0], L).

Mystery Program

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
```

a([0|Y], Y).
$\mathrm{b}([1 \mid \mathrm{Y}], \mathrm{Y})$.

$$
\begin{aligned}
& \text { ?- } m([0,1,0,0,1,1], \mathrm{L}) . \\
& \mathrm{L}=[0,1,0,0,1,1] \\
& \mathrm{L}=[0,0,1,1] \\
& \mathrm{L}
\end{aligned}=[] \quad \begin{aligned}
& \text { ?- } m([0,0,1,1,1,0], \mathrm{L}) . \\
& \mathrm{L}=[0,1,0,0,1,1]
\end{aligned}
$$

Mystery Program

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
```

a([0|Y], Y).
b([1|Y], Y).

$$
\begin{aligned}
& \text { ?- } m([0,1,0,0,1,1], \mathrm{L}) . \\
& \mathrm{L}=[0,1,0,0,1,1] \\
& \mathrm{L}
\end{aligned}=[0,0,1,1] \quad \begin{aligned}
& \mathrm{L}=[] \\
& \text { ?- } \mathrm{m}([0,0,1,1,1,0], \mathrm{L}) . \\
& \mathrm{L}=[0,1,0,0,1,1] \\
& \mathrm{L}=[1,0]
\end{aligned}
$$

Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```


Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```

?- $m([0,1,0,0,1,1], L)$.

Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```

?- $m([0,1,0,0,1,1], L)$.

$$
\mathrm{L}=[0,1,0,0,1,1], \ldots
$$

Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```

?- $m([0,1,0,0,1,1], L)$.
$\mathrm{L}=[0,1,0,0,1,1], \ldots$
?- phrase(m, $[0,1,0,0,1,1])$

Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```

?- $m([0,1,0,0,1,1], L)$.
$\mathrm{L}=[0,1,0,0,1,1], \ldots$
?- phrase(m, $[0,1,0,0,1,1])$

Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```

?- $m([0,1,0,0,1,1], L)$.
$\mathrm{L}=[0,1,0,0,1,1], \ldots$
?- phrase $(m,[0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1]$, [] $)$
yes

Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```

?- $m([0,1,0,0,1,1], L)$.
$\mathrm{L}=[0,1,0,0,1,1], \ldots$
?- phrase $(m,[0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1]$, [] $)$
yes
?- phrase(m, L).

Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```

?- $m([0,1,0,0,1,1], L)$.

$$
\mathrm{L}=[0,1,0,0,1,1], \ldots
$$

?- phrase $(m,[0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1]$, [] $)$

```
                        yes
```

?- phrase(m, L).

$$
\mathrm{L}=[]
$$

Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```

?- $m([0,1,0,0,1,1], L)$.

$$
\mathrm{L}=[0,1,0,0,1,1], \ldots
$$

?- phrase $(m,[0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1]$, [] $)$

```
yes
```

?- phrase(m, L).

$$
\begin{aligned}
& \mathrm{L}=[] \\
& \mathrm{L}=[0,1]
\end{aligned}
$$

Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```

?- $m([0,1,0,0,1,1], L)$.

$$
\mathrm{L}=[0,1,0,0,1,1], \ldots
$$

?- phrase $(m,[0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1]$, [] $)$
yes
?- phrase(m, L).

$$
\begin{aligned}
& \mathrm{L}=[] \\
& \mathrm{L}=[0,1] \\
& \mathrm{L}=[0,1,0,1]
\end{aligned}
$$

Definite Clause Grammars

```
m --> [].
m --> a, m, b, m.
a --> [0].
b --> [1].
```

 ?- \(m([0,1,0,0,1,1], L)\).
 \(\mathrm{L}=[0,1,0,0,1,1], \ldots\)
 ?- phrase \((m,[0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1]\), [] \()\)
 yes
 ?- phrase(m, L).

$$
\begin{aligned}
& \mathrm{L}=[] \\
& \mathrm{L}=[0,1] \\
& \mathrm{L}=[0,1,0,1]
\end{aligned}
$$

Definite Clause Grammars (Magic?)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```


Definite Clause Grammars (Magic?)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```

?- phrase(r([1,2,3,4]), L).

Definite Clause Grammars (Magic?)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```

?- phrase(r([1,2,3,4]), L).

$$
\mathrm{L}=[4,3,2,1]
$$

Definite Clause Grammars (Magic?)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```

?- phrase(r([1,2,3,4]), L).

$$
\mathrm{L}=[4,3,2,1]
$$

?- phrase(r(Q), $[1,2,3,4])$.

Definite Clause Grammars (Magic?)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```

?- phrase(r([1,2,3,4]), L).

$$
\mathrm{L}=[4,3,2,1]
$$

?- phrase(r(Q), $[1,2,3,4])$.

$$
\mathrm{Q}=[4,3,2,1]
$$

Definite Clause Grammars (Trick exposed!)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```


Definite Clause Grammars (Trick exposed!)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```

Translated to:
$r([], X, X)$.
r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Definite Clause Grammars (Trick exposed!)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```

Translated to:
r([], X, X).
r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].
Equivalent to:
$r([], X, X)$.
r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).
?- phrase(r([1,2,3,4]), L).

Definite Clause Grammars (Trick exposed!)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```

Translated to:
r([], X, X).
r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].
Equivalent to:
r([], X, X).
r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).
?- phrase(r([1,2,3,4]), L).

$$
\equiv \mathrm{r}([1,2,3,4], \mathrm{L}, \quad[])
$$

Definite Clause Grammars (Trick exposed!)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```

Translated to:
r([], X, X).
r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].
Equivalent to:
r([], X, X).
r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).
?- phrase(r([1,2,3,4]), L).

$$
\begin{aligned}
& \equiv \underset{\mathrm{L}=[4,3,2,1]}{\mathrm{r}}[(1,2,3,4], \mathrm{L}, \quad[]) \\
&
\end{aligned}
$$

Definite Clause Grammars (Trick exposed!)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```

Translated to:
r([], X, X).
r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].
Equivalent to:
r([], X, X).
r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).
?- phrase(r([1,2,3,4]), L).

$$
\begin{aligned}
& \equiv \underset{\mathrm{L}=[4,3,2,1]}{\mathrm{r}}([1,2,3,4], \mathrm{L}, \quad[])
\end{aligned}
$$

- A way to reverse a list in polynomial time!

Unification

- Operation done to "match" the goal atom with the head of a clause in the program.
- Forms the basis for the matching operation we used for Prolog evaluation.
- $f(a, Y)$ and $f(X, b)$ unify when $X=a$ and $Y=b$.
- $f(a, X)$ and $f(X, b)$ do not unify.
- X and $f(X)$ do not unify (but they "match" in Prolog!)

Substitutions

A substitution is a mapping between variables and values (terms).

- Denoted by $\left\{X_{1} \mapsto t_{1}, X_{2} \mapsto t_{2}, \ldots, X_{n} \mapsto t_{n}\right\}$ such that
- $X_{i} \neq t_{i}$, and
- X_{i} and X_{j} are distinct variables when $i \neq j$.
- Empty subsititution is denoted by ϵ.
- A substition is said to be a renaming if it is of the form $\left\{X_{1} \mapsto Y_{1}, \ldots, X_{n} \mapsto Y_{n}\right\}$ and Y_{1}, \ldots, Y_{n} is a permutation of X_{1}, \ldots, X_{n}.
- Example: $\{X \mapsto Y, Y \mapsto X\}$ is a renaming substitution.

Substitutions and Terms

- Application of a substitution:
- $X \theta=t$ if $X \mapsto t \in \theta$.
- $X \theta=X$ if $X \mapsto t \notin \theta$ for any term t.
- Application of a substitution $\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}$ to a term s :
- is a term obtained by simultaneously replacing every occurrence of X_{i} in s by t_{i}.
- Denoted by $s \theta$ and $s \theta$ is said to be an instance of s
- Example:

$$
\begin{aligned}
& p(f(X, Z), f(Y, a))\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\} \\
= & p(f(g(Y), a), f(Z, a))
\end{aligned}
$$

Composition of Substitutions

- Composition of substitutions $\theta=\left\{X_{1} \mapsto s_{1}, \ldots, X_{m} \mapsto s_{m}\right\}$ and $\sigma=\left\{Y_{1} \mapsto t_{1}, \ldots, Y_{n} \mapsto t_{n}\right\}:$
- First form the set $\left\{X_{1} \mapsto s_{1} \sigma, \ldots, X_{m} \mapsto s_{m} \sigma, Y_{1} \mapsto t_{1}, \ldots, Y_{n} \mapsto t_{n}\right\}$
- Remove from the set $X_{i} \mapsto s_{i} \sigma$ if $s_{i} \sigma=X_{i}$
- Remove from the set $Y_{j} \mapsto t_{j}$ if Y_{j} is identical to some variable X_{i}
- Example: Let $\theta=\sigma=\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$. Then $\theta \sigma=$

$$
\begin{aligned}
& \{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\} \\
= & \{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}
\end{aligned}
$$

- More examples: Let $\theta=\{X \mapsto f(Y)\}$ and $\sigma=\{Y \mapsto a\}$
- $\theta \sigma=\{X \mapsto f(a), Y \mapsto a\}$
- $\theta \sigma=\{X \mapsto f(Y), Y \mapsto a\}$
- Composition is not commutative but is associative: $\theta(\sigma \gamma)=(\theta \sigma) \gamma$
- Also, $E(\theta \sigma)=(E \theta) \sigma$

Idempotence

- A subsitution θ is idempotent iff $\theta \theta=\theta$.
- Examples:
- $\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$ is not idempotent since

$$
\begin{aligned}
& \{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\} \\
= & \{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}
\end{aligned}
$$

- $\{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$ is not idempotent either since

$$
\begin{aligned}
& \{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}\{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\} \\
= & \{X \mapsto g(a), Y \mapsto a, Z \mapsto a\}
\end{aligned}
$$

- $\{X \mapsto g(a), Y \mapsto a, Z \mapsto a\}$ is idempotent
- For a substitution $\theta=\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}$,
- $\operatorname{Dom}(\theta)=\left\{X_{1}, X_{2}, \ldots X_{n}\right\}$
- Range $(\theta)=$ set of all variables in $t_{1}, \ldots t_{n}$
- A substitution θ is idempotent iff $\operatorname{Dom}(\theta) \cap \operatorname{Range}(\theta)=\emptyset$

Unifiers

- A substitution θ is a unifier of two terms s and t if $s \theta$ is identical to $t \theta$.
- θ is a unifier of a set of equations $\left\{s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}\right\}$, if for all i, $s_{i} \theta=t_{i} \theta$.
- A substitution θ is more general than σ (written as $\theta \succeq \sigma$) if there is a substitution ω such that $\sigma=\theta \omega$
- A substitution θ is a most general unifier (mgu) of two terms (or a set of equations) if for every unifer σ of the two terms (or equations) $\theta \succeq \sigma$
- Example: Consider two terms $f(g(X), Y, a, b)$ and $f(Z, W, X, b)$.
- $\theta_{1}=\{X \mapsto a, Y \mapsto b, Z \mapsto g(a), W \mapsto b\}$ is a unifier
- $\theta_{2}=\{X \mapsto a, Y \mapsto W, Z \mapsto g(a)\}$ is also a unifier
- θ_{2} is a most general unifier

Equations and Unifiers

- A set of equations \mathcal{E} is in solved form if it is of the form $\left\{X_{1} \doteq t_{1}, \ldots, X_{n} \doteq t_{n}\right\}$ iff
- all X_{i} 's are distinct, and
- no X_{i} appears in any t_{j}.
- Given a set of equations in solved form $\mathcal{E}=\left\{X_{1} \doteq t_{1}, \ldots, X_{n} \doteq t_{n}\right\}$ the substitution $\left\{X_{1} / t_{1}, \ldots X_{n} / t_{n}\right\}$ is an idempotent mgu of \mathcal{E}.
- Two sets of equations \mathcal{E}_{1} and \mathcal{E}_{2} are said to be equivalent iff they have the same set of unifiers.
- To find the mgu of two terms s and t, find a set of equations in solved form that is equivalent to $\{s \doteq t\}$.
If there is no equivalent solved form, there is no mgu.

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\{f(X, g(Y)) \doteq f(g(Z), Z)\} \quad \Rightarrow
$$

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\{f(X, g(Y)) \doteq f(g(Z), Z)\} \quad \Rightarrow \quad\{X \doteq g(Z), g(Y) \doteq Z\}
$$

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\}
\end{aligned}
$$

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\}
\end{aligned}
$$

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\}
\end{aligned}
$$

- Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

$$
\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} \quad \Rightarrow
$$

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\}
\end{aligned}
$$

- Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

$$
\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} \quad \Rightarrow \quad\{X \doteq a, g(X) \doteq g(Z), b \doteq Z\}
$$

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\}
\end{aligned}
$$

- Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} & \Rightarrow\{X \doteq a, g(X) \doteq g(Z), b \doteq Z\} \\
& \Rightarrow\{X \doteq a, g(a) \doteq g(Z), b \doteq Z\}
\end{aligned}
$$

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\}
\end{aligned}
$$

- Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} & \Rightarrow\{X \doteq a, g(X) \doteq g(Z), b \doteq Z\} \\
& \Rightarrow\{X \doteq a, g(a) \doteq g(Z), b \doteq Z\} \\
& \Rightarrow\{X \doteq a, a \doteq Z, b \doteq Z\}
\end{aligned}
$$

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\}
\end{aligned}
$$

- Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} & \Rightarrow\{X \doteq a, g(X) \doteq g(Z), b \doteq Z\} \\
& \Rightarrow\{X \doteq a, g(a) \doteq g(Z), b \doteq Z\} \\
& \Rightarrow\{X \doteq a, a \doteq Z, b \doteq Z\} \\
& \Rightarrow\{X \doteq a, Z \doteq a, b \doteq Z\}
\end{aligned}
$$

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\}
\end{aligned}
$$

- Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} & \Rightarrow\{X \doteq a, g(X) \doteq g(Z), b \doteq Z\} \\
& \Rightarrow\{X \doteq a, g(a) \doteq g(Z), b \doteq Z\} \\
& \Rightarrow\{X \doteq a, a \doteq Z, b \doteq Z\} \\
& \Rightarrow\{X \doteq a, Z \doteq a, b \doteq Z\} \\
& \Rightarrow\{X \doteq a, Z \doteq a, b \doteq a\}
\end{aligned}
$$

A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\}
\end{aligned}
$$

- Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} & \Rightarrow\{X \doteq a, g(X) \doteq g(Z), b \doteq Z\} \\
& \Rightarrow\{X \doteq a, g(a) \doteq g(Z), b \doteq Z\} \\
& \Rightarrow\{X \doteq a, a \doteq Z, b \doteq Z\} \\
& \Rightarrow\{X \doteq a, Z \doteq a, b \doteq Z\} \\
& \Rightarrow\{X \doteq a, Z \doteq a, b \doteq a\} \\
& \Rightarrow \text { fail }
\end{aligned}
$$

A Simple Unification Algorithm

Given a set of equations \mathcal{E} :
repeat
select $s \doteq t \in \mathcal{E}$;
case $s=t$ of

1. $f\left(s_{1}, \ldots, s_{n}\right) \doteq f\left(t_{1}, \ldots, t_{n}\right)$:
replace the equation by $s_{i} \doteq t_{i}$ for all i
2. $f\left(s_{1}, \ldots, s_{n}\right) \doteq g\left(t_{1}, \ldots, t_{m}\right), f \neq g$ or $n \neq m$:
halt with failure
3. $X \doteq X$: remove the equation
4. $t \doteq X:$ where t is not a variable replace equation by $X \doteq t$
5. $X \doteq t$: where $X \neq t$ and X occurs more than once in \mathcal{E} :
if X is a proper subterm of t
then halt with failure (5a)
else replace all other X in \mathcal{E} by t (5b)
until no action is possible for any equation in \mathcal{E} return \mathcal{E}

A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$ $\{f(X, g(Y)) \doteq f(g(Z), Z)\} \quad \Rightarrow$

A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$ $\{f(X, g(Y)) \doteq f(g(Z), Z)\} \quad\{X \doteq g(Z), g(Y) \doteq Z\}$
case 1

A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\}
\end{aligned} \quad \text { case } 1
$$

A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} & \text { case } 1 \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} & \text { case } 4 \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\} & \text { case } 5 \mathrm{~b}
\end{aligned}
$$

A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{array}{rlr}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} & \text { case } 1 \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} & \text { case } 4 \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\} & \text { case } 5 \mathrm{~b}
\end{array}
$$

- Example 3: Find the mgu of $f(X, g(X))$ and $f(Z, Z)$

$$
\{f(X, g(X)) \doteq f(Z, Z)\} \quad \Rightarrow
$$

A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{array}{rlr}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} & \text { case } 1 \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} & \text { case } 4 \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\} & \text { case } 5 \mathrm{~b}
\end{array}
$$

- Example 3: Find the mgu of $f(X, g(X))$ and $f(Z, Z)$

$$
\{f(X, g(X)) \doteq f(Z, Z)\} \quad \Rightarrow \quad\{X \doteq Z, g(X) \doteq Z\} \quad \text { case } 1
$$

A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{array}{rlr}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} & \text { case } 1 \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} & \text { case } 4 \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\} & \text { case } 5 \mathrm{~b}
\end{array}
$$

- Example 3: Find the mgu of $f(X, g(X))$ and $f(Z, Z)$

$$
\begin{aligned}
\{f(X, g(X)) \doteq f(Z, Z)\} & \Rightarrow\{X \doteq Z, g(X) \doteq Z\}
\end{aligned} \quad \text { case } 1
$$

A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} & \text { case } 1 \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} & \text { case } 4 \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\} & \text { case } 5 \mathrm{~b}
\end{aligned}
$$

- Example 3: Find the mgu of $f(X, g(X))$ and $f(Z, Z)$

$$
\begin{aligned}
\{f(X, g(X)) \doteq f(Z, Z)\} & \Rightarrow\{X \doteq Z, g(X) \doteq Z\} & \text { case } 1 \\
& \Rightarrow\{X \doteq Z, g(Z) \doteq Z\} & \text { case } 5 b \\
& \Rightarrow\{X \doteq Z, Z \doteq g(Z)\} & \text { case } 4
\end{aligned}
$$

A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

$$
\begin{aligned}
\{f(X, g(Y)) \doteq f(g(Z), Z)\} & \Rightarrow\{X \doteq g(Z), g(Y) \doteq Z\} & \text { case } 1 \\
& \Rightarrow\{X \doteq g(Z), Z \doteq g(Y)\} & \text { case } 4 \\
& \Rightarrow\{X \doteq g(g(Y)), Z \doteq g(Y)\} & \text { case } 5 \mathrm{~b}
\end{aligned}
$$

- Example 3: Find the mgu of $f(X, g(X))$ and $f(Z, Z)$

$$
\begin{aligned}
\{f(X, g(X)) \doteq f(Z, Z)\} & \Rightarrow\{X \doteq Z, g(X) \doteq Z\} & \text { case } 1 \\
& \Rightarrow\{X \doteq Z, g(Z) \doteq Z\} & \text { case } 5 b \\
& \Rightarrow\{X \doteq Z, Z \doteq g(Z)\} & \text { case } 4 \\
& \Rightarrow \text { fail } & \text { case 5a }
\end{aligned}
$$

Complexity of the unification algorithm

Consider
$\mathcal{E}=\left\{g\left(X_{1}, \ldots, X_{n}\right)=g\left(f\left(X_{0}, X_{0}\right), f\left(X_{1}, X_{1}\right), \ldots, f\left(X_{n-1}, X_{n-1}\right)\right\}\right.$.

- By applying case 1 of the algorithm, we get

$$
\left\{X_{1}=f\left(X_{0}, X_{0}\right), X_{2}=f\left(X_{1}, X_{1}\right), \ldots, X_{n}=f\left(X_{n-1}, X_{n-1}\right)\right\}
$$

- If terms are kept as trees, the final value for X_{n} is a tree of size $O\left(2^{n}\right)$.
- Recall that for case 5 we need to first check if a variable appears in a term, and this could now take $O\left(2^{n}\right)$ time.
- There are linear-time unification algorithms that share structures (terms as DAGs).
- $X=t$ is the most common case for unification in Prolog. The fastest algorithms are linear in t.
- Prolog cuts corners by omitting case 5a (the occur check), thereby doing $X=t$ in constant time.

Most General Unifiers

- Note that mgu stands for a most general unifier.
- There may be more than one mgu. E.g. $f(X) \doteq f(Y)$ has two mgus:
- $\{X \mapsto Y\}$
- $\{Y \mapsto X\}$
- If θ is an mgu of s and t, and ω is a renaming, then $\theta \omega$ is an mgu of s and t.
- If θ and σ are mgus of s and t, then there is a renaming ω such that $\theta=\sigma \omega$.

