
Introduction Systems Prolog Data Structures Unification

Prolog

Principles of Programming Languages

CSE 526

1 Introduction

2 Systems

3 Prolog

4 Data Structures

5 Unification

Compiled at 08:55 on 2019/02/18

Programming Languages Logic Programming CSE 526 1 / 48

Introduction Systems Prolog Data Structures Unification

Logic and Programs

“All men are mortal; Socrates is a man; Hence Socrates is mortal”

∀X . man(X)⇒ mortal(X)

man(socrates)

Predicate logic

Predicates (e.g. man, mortal) which define sets.
Atoms (e.g. socrates) which are data values
Variables (e.g. X) which range over data values
Rules (e.g. ∀X . man(X)⇒ mortal(X)) which define relationships
between predicates.

Programming Languages Logic Programming CSE 526 2 / 48

Introduction Systems Prolog Data Structures Unification

Logic and Programs

“All men are mortal; Socrates is a man; Hence Socrates is mortal”

∀X . man(X)⇒ mortal(X)

man(socrates)

Predicate logic

Predicates (e.g. man, mortal) which define sets.
Atoms (e.g. socrates) which are data values
Variables (e.g. X) which range over data values
Rules (e.g. ∀X . man(X)⇒ mortal(X)) which define relationships
between predicates.

Programming Languages Logic Programming CSE 526 2 / 48

Introduction Systems Prolog Data Structures Unification

Logic and Programs

“All men are mortal; Socrates is a man; Hence Socrates is mortal”

∀X . man(X)⇒ mortal(X)

man(socrates)

Predicate logic

Predicates (e.g. man, mortal) which define sets.
Atoms (e.g. socrates) which are data values
Variables (e.g. X) which range over data values
Rules (e.g. ∀X . man(X)⇒ mortal(X)) which define relationships
between predicates.

Programming Languages Logic Programming CSE 526 2 / 48

Introduction Systems Prolog Data Structures Unification

Logic and Programs

“All men are mortal; Socrates is a man; Hence Socrates is mortal”

∀X . man(X)⇒ mortal(X)

man(socrates)

Predicate logic

Predicates (e.g. man, mortal) which define sets.
Atoms (e.g. socrates) which are data values
Variables (e.g. X) which range over data values
Rules (e.g. ∀X . man(X)⇒ mortal(X)) which define relationships
between predicates.

Programming Languages Logic Programming CSE 526 2 / 48

Introduction Systems Prolog Data Structures Unification

Logic and Programs

“All men are mortal; Socrates is a man; Hence Socrates is mortal”

∀X . man(X)⇒ mortal(X)

man(socrates)

Predicate logic

Predicates (e.g. man, mortal) which define sets.

Atoms (e.g. socrates) which are data values
Variables (e.g. X) which range over data values
Rules (e.g. ∀X . man(X)⇒ mortal(X)) which define relationships
between predicates.

Programming Languages Logic Programming CSE 526 2 / 48

Introduction Systems Prolog Data Structures Unification

Logic and Programs

“All men are mortal; Socrates is a man; Hence Socrates is mortal”

∀X . man(X)⇒ mortal(X)

man(socrates)

Predicate logic

Predicates (e.g. man, mortal) which define sets.
Atoms (e.g. socrates) which are data values

Variables (e.g. X) which range over data values
Rules (e.g. ∀X . man(X)⇒ mortal(X)) which define relationships
between predicates.

Programming Languages Logic Programming CSE 526 2 / 48

Introduction Systems Prolog Data Structures Unification

Logic and Programs

“All men are mortal; Socrates is a man; Hence Socrates is mortal”

∀X . man(X)⇒ mortal(X)

man(socrates)

Predicate logic

Predicates (e.g. man, mortal) which define sets.
Atoms (e.g. socrates) which are data values
Variables (e.g. X) which range over data values

Rules (e.g. ∀X . man(X)⇒ mortal(X)) which define relationships
between predicates.

Programming Languages Logic Programming CSE 526 2 / 48

Introduction Systems Prolog Data Structures Unification

Logic and Programs

“All men are mortal; Socrates is a man; Hence Socrates is mortal”

∀X . man(X)⇒ mortal(X)

man(socrates)

Predicate logic

Predicates (e.g. man, mortal) which define sets.
Atoms (e.g. socrates) which are data values
Variables (e.g. X) which range over data values
Rules (e.g. ∀X . man(X)⇒ mortal(X)) which define relationships
between predicates.

Programming Languages Logic Programming CSE 526 2 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs and Queries

∀X . man(X)⇒ mortal(X)

man(socrates)

Logic “Program”:
man(socrates).
mortal(X) :- man(X).

Queries:
?- mortal(socrates).

yes

?- mortal(X).
X=socrates;

no

Programming Languages Logic Programming CSE 526 3 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs and Queries

∀X . man(X)⇒ mortal(X)

man(socrates)

Logic “Program”:
man(socrates).
mortal(X) :- man(X).

Queries:
?- mortal(socrates).

yes

?- mortal(X).
X=socrates;

no

Programming Languages Logic Programming CSE 526 3 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs and Queries

∀X . man(X)⇒ mortal(X)

man(socrates)

Logic “Program”:
man(socrates).
mortal(X) :- man(X).

Queries:
?- mortal(socrates).

yes

?- mortal(X).
X=socrates;

no

Programming Languages Logic Programming CSE 526 3 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs and Queries

∀X . man(X)⇒ mortal(X)

man(socrates)

Logic “Program”:
man(socrates).
mortal(X) :- man(X).

Queries:
?- mortal(socrates).

yes

?- mortal(X).
X=socrates;

no

Programming Languages Logic Programming CSE 526 3 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs and Queries

∀X . man(X)⇒ mortal(X)

man(socrates)

Logic “Program”:
man(socrates).
mortal(X) :- man(X).

Queries:
?- mortal(socrates).
yes

?- mortal(X).
X=socrates;

no

Programming Languages Logic Programming CSE 526 3 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs and Queries

∀X . man(X)⇒ mortal(X)

man(socrates)

Logic “Program”:
man(socrates).
mortal(X) :- man(X).

Queries:
?- mortal(socrates).
yes

?- mortal(X).

X=socrates;

no

Programming Languages Logic Programming CSE 526 3 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs and Queries

∀X . man(X)⇒ mortal(X)

man(socrates)

Logic “Program”:
man(socrates).
mortal(X) :- man(X).

Queries:
?- mortal(socrates).
yes

?- mortal(X).
X=socrates

;

no

Programming Languages Logic Programming CSE 526 3 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs and Queries

∀X . man(X)⇒ mortal(X)

man(socrates)

Logic “Program”:
man(socrates).
mortal(X) :- man(X).

Queries:
?- mortal(socrates).
yes

?- mortal(X).
X=socrates;

no

Programming Languages Logic Programming CSE 526 3 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs and Queries

∀X . man(X)⇒ mortal(X)

man(socrates)

Logic “Program”:
man(socrates).
mortal(X) :- man(X).

Queries:
?- mortal(socrates).
yes

?- mortal(X).
X=socrates;

no

Programming Languages Logic Programming CSE 526 3 / 48

Introduction Systems Prolog Data Structures Unification

Prolog

Programming in Logic

Early development: Kowalski & van Emden (Edinburgh); Colmerauer
(Marseilles) (early ’70s)

First efficient implementation: WAM of David H.D. Warren
(Edinburgh) (mid ’70s).

Later developments:

Constraint Logic Programming: for applications in AI, planning,
scheduling, etc. Jaffar & Lassez (IBM Watson)
Memoization: Tamaki & Sato (Tokyo); Warren et al (Stony Brook)

Programming Languages Logic Programming CSE 526 4 / 48

Introduction Systems Prolog Data Structures Unification

Prolog

Programming in Logic

Early development: Kowalski & van Emden (Edinburgh); Colmerauer
(Marseilles) (early ’70s)

First efficient implementation: WAM of David H.D. Warren
(Edinburgh) (mid ’70s).

Later developments:

Constraint Logic Programming: for applications in AI, planning,
scheduling, etc. Jaffar & Lassez (IBM Watson)
Memoization: Tamaki & Sato (Tokyo); Warren et al (Stony Brook)

Programming Languages Logic Programming CSE 526 4 / 48

Introduction Systems Prolog Data Structures Unification

Prolog

Programming in Logic

Early development: Kowalski & van Emden (Edinburgh); Colmerauer
(Marseilles) (early ’70s)

First efficient implementation: WAM of David H.D. Warren
(Edinburgh) (mid ’70s).

Later developments:

Constraint Logic Programming: for applications in AI, planning,
scheduling, etc. Jaffar & Lassez (IBM Watson)
Memoization: Tamaki & Sato (Tokyo); Warren et al (Stony Brook)

Programming Languages Logic Programming CSE 526 4 / 48

Introduction Systems Prolog Data Structures Unification

Prolog

Programming in Logic

Early development: Kowalski & van Emden (Edinburgh); Colmerauer
(Marseilles) (early ’70s)

First efficient implementation: WAM of David H.D. Warren
(Edinburgh) (mid ’70s).

Later developments:

Constraint Logic Programming: for applications in AI, planning,
scheduling, etc. Jaffar & Lassez (IBM Watson)

Memoization: Tamaki & Sato (Tokyo); Warren et al (Stony Brook)

Programming Languages Logic Programming CSE 526 4 / 48

Introduction Systems Prolog Data Structures Unification

Prolog

Programming in Logic

Early development: Kowalski & van Emden (Edinburgh); Colmerauer
(Marseilles) (early ’70s)

First efficient implementation: WAM of David H.D. Warren
(Edinburgh) (mid ’70s).

Later developments:

Constraint Logic Programming: for applications in AI, planning,
scheduling, etc. Jaffar & Lassez (IBM Watson)
Memoization: Tamaki & Sato (Tokyo); Warren et al (Stony Brook)

Programming Languages Logic Programming CSE 526 4 / 48

Introduction Systems Prolog Data Structures Unification

Prolog Systems

SWI Prolog (www.swi-prolog.org)

Can be obtained for free and installed on Windows, Linux, Mac.
Has a good development environment (command completion, help,
graphical debugger, etc.)
On compute* (Unix) servers: ~cram/bin/swipl

XSB Prolog (xsb.sourceforge.net)

Can be obtained for free and installed on Windows, Linux, Mac.
Supports a powerful extension (memoization) to Prolog
Command-line interface (e.g. no graphical debugger)
On compute* (Unix) servers: ~cram/bin/xsb

Programming Languages Logic Programming CSE 526 5 / 48

~cram/bin/swipl
~cram/bin/xsb

Introduction Systems Prolog Data Structures Unification

Using Prolog Systems

Prolog programs are in files with “.pl” extension (“.P” for XSB)

Prolog systems typically support an interactive mode.

“[filename].” to compile and load a program in filename.pl

(filename.P in XSB).

“halt.” to exit the system.

Programming Languages Logic Programming CSE 526 6 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

Example:

inc(X,Y) :- Y is X+1.

X and Y are variables.
inc is a predicate.
The predicate is defined using a single rule.

Programming Languages Logic Programming CSE 526 7 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

Example:

inc(X,Y) :- Y is X+1.

X and Y are variables.
inc is a predicate.
The predicate is defined using a single rule.

Programming Languages Logic Programming CSE 526 7 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

Example:

inc(X,Y) :- Y is X+1.

X and Y are variables.
inc is a predicate.
The predicate is defined using a single rule.

Programming Languages Logic Programming CSE 526 7 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

Example:

inc(X,Y) :- Y is X+1.

X and Y are variables.
inc is a predicate.
The predicate is defined using a single rule.

Programming Languages Logic Programming CSE 526 7 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

Example:

inc(X,Y) :- Y is X+1.

X and Y are variables.

inc is a predicate.
The predicate is defined using a single rule.

Programming Languages Logic Programming CSE 526 7 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

Example:

inc(X,Y) :- Y is X+1.

X and Y are variables.
inc is a predicate.

The predicate is defined using a single rule.

Programming Languages Logic Programming CSE 526 7 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs

Programs are a set of rules (also called clauses).

Predicates in a logic program are analogous to procedures in
imperative programs.

One or more rules are used to define a predicate.

Example:

inc(X,Y) :- Y is X+1.

X and Y are variables.
inc is a predicate.
The predicate is defined using a single rule.

Programming Languages Logic Programming CSE 526 7 / 48

Introduction Systems Prolog Data Structures Unification

Logic Programs (contd.)

inc(X,Y) :- Y is X+1.

“:-” separates the body of the rule from its head.

“X” and “Y” are also “parameters” of the predicate.

In this case, X is the input parameter, and Y is the return parameter (where
the return values are stored).

“Y is X+1” defines Y in terms of X.

The period (“.”) marks the end of a rule.

The predicate is called by giving values to its parameters. e.g.

inc(6, B) returns with B=7.

inc(11, B) returns with B=12.

Programming Languages Logic Programming CSE 526 8 / 48

Introduction Systems Prolog Data Structures Unification

Syntax of Prolog

Variables are identifiers that begin with an upper case letter or
underscore.

An underscore, by itself, represents an anonymous variable.

Predicate names (and later, data structure symbols) are identifiers
that begin with a lower case letter.

All variables are local to the clause in which they occur.

Different occurrences of the same variable in a clause denote the
same data.

Variables need not be declared, and have no type.

Programming Languages Logic Programming CSE 526 9 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (An Example)

big(bear).

big(elephant).

brown(bear).

black(cat).

small(cat).

gray(elephant).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

Programming Languages Logic Programming CSE 526 10 / 48

Introduction Systems Prolog Data Structures Unification

Derivations

big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant). black(cat). dark(Z) :- brown(Z).
small(cat). gray(elephant).

dangerous(X) :- dark(X), big(X).

dangerous(Q)

dark(Q), big(Q)

dangerous(X) :-
dark(X), big(X)

��
black(Q), big(Q)

dark(X) :-
black(X)

big(cat)

black(cat)

failure

@@
brown(Q), big(Q)

dark(X) :-
brown(X)

big(bear)

brown(bear)

success

Programming Languages Logic Programming CSE 526 11 / 48

Introduction Systems Prolog Data Structures Unification

Derivations

big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant). black(cat). dark(Z) :- brown(Z).
small(cat). gray(elephant).

dangerous(X) :- dark(X), big(X).

dangerous(Q)

dark(Q), big(Q)

dangerous(X) :-
dark(X), big(X)

��
black(Q), big(Q)

dark(X) :-
black(X)

big(cat)

black(cat)

failure

@@
brown(Q), big(Q)

dark(X) :-
brown(X)

big(bear)

brown(bear)

success

Programming Languages Logic Programming CSE 526 11 / 48

Introduction Systems Prolog Data Structures Unification

Derivations

big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant). black(cat). dark(Z) :- brown(Z).
small(cat). gray(elephant).

dangerous(X) :- dark(X), big(X).

dangerous(Q)

dark(Q), big(Q)

dangerous(X) :-
dark(X), big(X)

��
black(Q), big(Q)

dark(X) :-
black(X)

big(cat)

black(cat)

failure

@@
brown(Q), big(Q)

dark(X) :-
brown(X)

big(bear)

brown(bear)

success

Programming Languages Logic Programming CSE 526 11 / 48

Introduction Systems Prolog Data Structures Unification

Derivations

big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant). black(cat). dark(Z) :- brown(Z).
small(cat). gray(elephant).

dangerous(X) :- dark(X), big(X).

dangerous(Q)

dark(Q), big(Q)

dangerous(X) :-
dark(X), big(X)

��
black(Q), big(Q)

dark(X) :-
black(X)

big(cat)

black(cat)

failure

@@
brown(Q), big(Q)

dark(X) :-
brown(X)

big(bear)

brown(bear)

success

Programming Languages Logic Programming CSE 526 11 / 48

Introduction Systems Prolog Data Structures Unification

Derivations

big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant). black(cat). dark(Z) :- brown(Z).
small(cat). gray(elephant).

dangerous(X) :- dark(X), big(X).

dangerous(Q)

dark(Q), big(Q)

dangerous(X) :-
dark(X), big(X)

��
black(Q), big(Q)

dark(X) :-
black(X)

big(cat)

black(cat)

failure

@@
brown(Q), big(Q)

dark(X) :-
brown(X)

big(bear)

brown(bear)

success

Programming Languages Logic Programming CSE 526 11 / 48

Introduction Systems Prolog Data Structures Unification

Derivations

big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant). black(cat). dark(Z) :- brown(Z).
small(cat). gray(elephant).

dangerous(X) :- dark(X), big(X).

dangerous(Q)

dark(Q), big(Q)

dangerous(X) :-
dark(X), big(X)

��
black(Q), big(Q)

dark(X) :-
black(X)

big(cat)

black(cat)

failure

@@
brown(Q), big(Q)

dark(X) :-
brown(X)

big(bear)

brown(bear)

success

Programming Languages Logic Programming CSE 526 11 / 48

Introduction Systems Prolog Data Structures Unification

Derivations

big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant). black(cat). dark(Z) :- brown(Z).
small(cat). gray(elephant).

dangerous(X) :- dark(X), big(X).

dangerous(Q)

dark(Q), big(Q)

dangerous(X) :-
dark(X), big(X)

��
black(Q), big(Q)

dark(X) :-
black(X)

big(cat)

black(cat)

failure

@@
brown(Q), big(Q)

dark(X) :-
brown(X)

big(bear)

brown(bear)

success

Programming Languages Logic Programming CSE 526 11 / 48

Introduction Systems Prolog Data Structures Unification

Derivations

big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant). black(cat). dark(Z) :- brown(Z).
small(cat). gray(elephant).

dangerous(X) :- dark(X), big(X).

dangerous(Q)

dark(Q), big(Q)

dangerous(X) :-
dark(X), big(X)

��
black(Q), big(Q)

dark(X) :-
black(X)

big(cat)

black(cat)

failure

@@
brown(Q), big(Q)

dark(X) :-
brown(X)

big(bear)

brown(bear)

success

Programming Languages Logic Programming CSE 526 11 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (the procedure)

A query is, in general, a conjunction of goals

To prove G1,G2, . . . ,Gn:

Find a clause H : −B1,B2, . . . ,Bk such that G1 and H match.
Under that substitution for variables, prove B1,B2, . . . ,Bk ,G2, . . . ,Gn.
If nothing is left to prove then the proof is complete. If there are no
more clauses to match, the proof attempt fails.

Programming Languages Logic Programming CSE 526 12 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (the procedure)

A query is, in general, a conjunction of goals

To prove G1,G2, . . . ,Gn:

Find a clause H : −B1,B2, . . . ,Bk such that G1 and H match.
Under that substitution for variables, prove B1,B2, . . . ,Bk ,G2, . . . ,Gn.
If nothing is left to prove then the proof is complete. If there are no
more clauses to match, the proof attempt fails.

Programming Languages Logic Programming CSE 526 12 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (the procedure)

A query is, in general, a conjunction of goals

To prove G1,G2, . . . ,Gn:

Find a clause H : −B1,B2, . . . ,Bk such that G1 and H match.

Under that substitution for variables, prove B1,B2, . . . ,Bk ,G2, . . . ,Gn.
If nothing is left to prove then the proof is complete. If there are no
more clauses to match, the proof attempt fails.

Programming Languages Logic Programming CSE 526 12 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (the procedure)

A query is, in general, a conjunction of goals

To prove G1,G2, . . . ,Gn:

Find a clause H : −B1,B2, . . . ,Bk such that G1 and H match.
Under that substitution for variables, prove B1,B2, . . . ,Bk ,G2, . . . ,Gn.

If nothing is left to prove then the proof is complete. If there are no
more clauses to match, the proof attempt fails.

Programming Languages Logic Programming CSE 526 12 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (the procedure)

A query is, in general, a conjunction of goals

To prove G1,G2, . . . ,Gn:

Find a clause H : −B1,B2, . . . ,Bk such that G1 and H match.
Under that substitution for variables, prove B1,B2, . . . ,Bk ,G2, . . . ,Gn.
If nothing is left to prove then the proof is complete. If there are no
more clauses to match, the proof attempt fails.

Programming Languages Logic Programming CSE 526 12 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (an example)

To prove dangerous(Q):

1 Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

2 To prove dark(Q) select the first clause of dark, i.e. dark(Z) :-

black(Z), and prove black(Q), big(Q).

3 Now select the fact black(cat) and prove big(cat).

This proof attempt fails!

4 Go back to step 2, and select the second clause of dark, i.e. dark(Z) :-

brown(Z), and prove brown(Q), big(Q).

5 Now select brown(bear) and prove big(bear).

6 Select the fact big(bear).

There is nothing left to prove, so the proof is complete

Programming Languages Logic Programming CSE 526 13 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (an example)

To prove dangerous(Q):

1 Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

2 To prove dark(Q) select the first clause of dark, i.e. dark(Z) :-

black(Z), and prove black(Q), big(Q).

3 Now select the fact black(cat) and prove big(cat).

This proof attempt fails!

4 Go back to step 2, and select the second clause of dark, i.e. dark(Z) :-

brown(Z), and prove brown(Q), big(Q).

5 Now select brown(bear) and prove big(bear).

6 Select the fact big(bear).

There is nothing left to prove, so the proof is complete

Programming Languages Logic Programming CSE 526 13 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (an example)

To prove dangerous(Q):

1 Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

2 To prove dark(Q) select the first clause of dark, i.e. dark(Z) :-

black(Z), and prove black(Q), big(Q).

3 Now select the fact black(cat) and prove big(cat).

This proof attempt fails!

4 Go back to step 2, and select the second clause of dark, i.e. dark(Z) :-

brown(Z), and prove brown(Q), big(Q).

5 Now select brown(bear) and prove big(bear).

6 Select the fact big(bear).

There is nothing left to prove, so the proof is complete

Programming Languages Logic Programming CSE 526 13 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (an example)

To prove dangerous(Q):

1 Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

2 To prove dark(Q) select the first clause of dark, i.e. dark(Z) :-

black(Z), and prove black(Q), big(Q).

3 Now select the fact black(cat) and prove big(cat).

This proof attempt fails!

4 Go back to step 2, and select the second clause of dark, i.e. dark(Z) :-

brown(Z), and prove brown(Q), big(Q).

5 Now select brown(bear) and prove big(bear).

6 Select the fact big(bear).

There is nothing left to prove, so the proof is complete

Programming Languages Logic Programming CSE 526 13 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (an example)

To prove dangerous(Q):

1 Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

2 To prove dark(Q) select the first clause of dark, i.e. dark(Z) :-

black(Z), and prove black(Q), big(Q).

3 Now select the fact black(cat) and prove big(cat).

This proof attempt fails!

4 Go back to step 2, and select the second clause of dark, i.e. dark(Z) :-

brown(Z), and prove brown(Q), big(Q).

5 Now select brown(bear) and prove big(bear).

6 Select the fact big(bear).

There is nothing left to prove, so the proof is complete

Programming Languages Logic Programming CSE 526 13 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (an example)

To prove dangerous(Q):

1 Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

2 To prove dark(Q) select the first clause of dark, i.e. dark(Z) :-

black(Z), and prove black(Q), big(Q).

3 Now select the fact black(cat) and prove big(cat).

This proof attempt fails!

4 Go back to step 2, and select the second clause of dark, i.e. dark(Z) :-

brown(Z), and prove brown(Q), big(Q).

5 Now select brown(bear) and prove big(bear).

6 Select the fact big(bear).

There is nothing left to prove, so the proof is complete

Programming Languages Logic Programming CSE 526 13 / 48

Introduction Systems Prolog Data Structures Unification

How Prolog Works (an example)

To prove dangerous(Q):

1 Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

2 To prove dark(Q) select the first clause of dark, i.e. dark(Z) :-

black(Z), and prove black(Q), big(Q).

3 Now select the fact black(cat) and prove big(cat).

This proof attempt fails!

4 Go back to step 2, and select the second clause of dark, i.e. dark(Z) :-

brown(Z), and prove brown(Q), big(Q).

5 Now select brown(bear) and prove big(bear).

6 Select the fact big(bear).

There is nothing left to prove, so the proof is complete

Programming Languages Logic Programming CSE 526 13 / 48

Introduction Systems Prolog Data Structures Unification

Data Representation in Prolog

Prolog has no notion of data types

All data is represented as terms, which can be:

Variables
Non-variable Terms

Atomic data (Integers, floating point numbers, constants, . . .)
Compound Terms (Structures)

Programming Languages Logic Programming CSE 526 14 / 48

Introduction Systems Prolog Data Structures Unification

Atomic Data

Numeric constants: Integers, floating point numbers (e.g. 1024,
-42, 3.1415, 6.023e23 . . .)

Atoms:

Strings of characters enclosed in single quotes (e.g. ’cram’, ’Stony
Brook’)
Identifiers: sequence of letters, digits, underscore, beginning with a
letter (e.g. cram, r2d2, x 24).

Programming Languages Logic Programming CSE 526 15 / 48

Introduction Systems Prolog Data Structures Unification

Data Structures

If f is an identifier and t1, t2, . . . tn are terms, then f (t1, t2, . . . tn) is a
term.

t
1

f

.t
2

t
n

In the above, f is called a function symbol (or functor) and ti is an
argument.

Structures are used to group related data items together (in some
ways similar to struct in C and objects in Java).

Structures are used to construct trees (and, as a special case, lists).

Programming Languages Logic Programming CSE 526 16 / 48

Introduction Systems Prolog Data Structures Unification

Trees

Example: expression trees:
plus(minus(num(3), num(1)), star(num(4), num(2)))

plus

minus

num numnumnum

star

1 43 2

Data structures may have variables. And the same variable may
occur multiple times in a data structure.

plus

minus

num numnumnum

star

X Y3 2

plus

minus

num numnumnum

star

X3 2X

Programming Languages Logic Programming CSE 526 17 / 48

Introduction Systems Prolog Data Structures Unification

Matching

(We’ll extend this to unification later)

t1 = t2: find substitions for variables in t1 and t2 that make the two
terms identical.

plus

minus

num numnumnum

star

X Y3 2
?
=

plus

minus

num numnumnum

star

1 43 2

Yes, with X = 1, Y = 4.

Programming Languages Logic Programming CSE 526 18 / 48

Introduction Systems Prolog Data Structures Unification

Matching

(We’ll extend this to unification later)

t1 = t2: find substitions for variables in t1 and t2 that make the two
terms identical.

plus

minus

num numnumnum

star

X Y3 2
?
=

plus

minus

num numnumnum

star

1 43 2

Yes, with X = 1, Y = 4.

Programming Languages Logic Programming CSE 526 18 / 48

Introduction Systems Prolog Data Structures Unification

Matching (contd.)

plus

minus

num numnumnum

star

1 43 2
?
=

plus

minus

num numnumnum

star

X Y3 2

Yes, with X = 1, Y = 4.

Programming Languages Logic Programming CSE 526 19 / 48

Introduction Systems Prolog Data Structures Unification

Matching (contd.)

plus

minus

num numnumnum

star

1 43 2
?
=

plus

minus

num numnumnum

star

X Y3 2

Yes, with X = 1, Y = 4.

Programming Languages Logic Programming CSE 526 19 / 48

Introduction Systems Prolog Data Structures Unification

Matching (contd.)

plus

minus

num numnumnum

star

1 43 2
?
=

plus

minus

num numnumnum

star

X3 2X

No! X cannot be 1 and 4 at the same time

Programming Languages Logic Programming CSE 526 20 / 48

Introduction Systems Prolog Data Structures Unification

Matching (contd.)

plus

minus

num numnumnum

star

1 43 2
?
=

plus

minus

num numnumnum

star

X3 2X

No! X cannot be 1 and 4 at the same time

Programming Languages Logic Programming CSE 526 20 / 48

Introduction Systems Prolog Data Structures Unification

Accessing arguments of a structure

Matching is the common way to access a structure’s arguments.

Let date(’Sep’, 1, 2005) be a structure used to represent dates,
with the month, day and year as the three arguments (in that order).

Then date(M, D, Y) = date(’Sep’, 1, 2005) makes
M = ’Sep’, D = 1, Y = 2005.

If we want to get only the day, we can write date(, D,) =

date(’Sep’, 1, 2005). Then we get D = 1.

Programming Languages Logic Programming CSE 526 21 / 48

Introduction Systems Prolog Data Structures Unification

Lists

Prolog uses a special syntax to represent and manipulate lists.

[1,2,3,4]: represents a list with 1, 2, 3 and 4, respectively.

This can also be written as [1 | [2,3,4]]: a list with 1 as the head
(its first element) and [2,3,4] as its tail (the list of remaining
elements).

If X = 1 and Y = [2,3,4] then [X|Y] is same as [1,2,3,4].

The empty list is represented by [].

The symbol “|” (called cons) and is used to separate the beginning
elements of a list from its tail.
For example: [1,2,3,4] = [1 | [2,3,4]]

= [1 | [2 | [3,4]]]

= [1,2 | [3,4]]

Programming Languages Logic Programming CSE 526 22 / 48

Introduction Systems Prolog Data Structures Unification

Lists (contd.)

Lists are special cases of trees.
For instance, the list [1,2,3,4] is represented by the following
structure:

1

2

3

4 []

.
.

.
.

The function symbol ./2 is the list constructor.
[1,2,3,4] is same as .(1, .(2, .(3, .(4, []))))

Programming Languages Logic Programming CSE 526 23 / 48

Introduction Systems Prolog Data Structures Unification

Programming with Lists — I

First example: member/2, to find if a given element occurs in a list:

The program:
member(X, [X|]).

member(X, [|Ys]) :- member(X, Ys).

Example queries:
member(s, [l,i,s,t])

member(X, [l,i,s,t])

member(f(X), [f(1), g(2), f(3), h(4), f(5)])

Programming Languages Logic Programming CSE 526 24 / 48

Introduction Systems Prolog Data Structures Unification

Programming with Lists — I

First example: member/2, to find if a given element occurs in a list:

The program:
member(X, [X|]).

member(X, [|Ys]) :- member(X, Ys).

Example queries:
member(s, [l,i,s,t])

member(X, [l,i,s,t])

member(f(X), [f(1), g(2), f(3), h(4), f(5)])

Programming Languages Logic Programming CSE 526 24 / 48

Introduction Systems Prolog Data Structures Unification

Programming with Lists — I

First example: member/2, to find if a given element occurs in a list:

The program:
member(X, [X|]).

member(X, [|Ys]) :- member(X, Ys).

Example queries:
member(s, [l,i,s,t])

member(X, [l,i,s,t])

member(f(X), [f(1), g(2), f(3), h(4), f(5)])

Programming Languages Logic Programming CSE 526 24 / 48

Introduction Systems Prolog Data Structures Unification

Programming with Lists — II

append/3: concatenate two lists to form the third list.

The program:
append([], L, L).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:
append([f,i,r], [s,t], L)

append(X, Y, [s,e,c,o,n,d])

append(X, [t,h], [f,o,u,r,t,h])

Programming Languages Logic Programming CSE 526 25 / 48

Introduction Systems Prolog Data Structures Unification

Programming with Lists — II

append/3: concatenate two lists to form the third list.

The program:
append([], L, L).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:
append([f,i,r], [s,t], L)

append(X, Y, [s,e,c,o,n,d])

append(X, [t,h], [f,o,u,r,t,h])

Programming Languages Logic Programming CSE 526 25 / 48

Introduction Systems Prolog Data Structures Unification

Programming with Lists — II

append/3: concatenate two lists to form the third list.

The program:
append([], L, L).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:
append([f,i,r], [s,t], L)

append(X, Y, [s,e,c,o,n,d])

append(X, [t,h], [f,o,u,r,t,h])

Programming Languages Logic Programming CSE 526 25 / 48

Introduction Systems Prolog Data Structures Unification

Programming with Lists — III

Define a predicate, len/2 that finds the length of a list (first argument).

The program:
len([], 0).

len([|Xs], N+1) :- len(Xs, N).

Example queries:
len([], X)

len([l,i,s,t], 4)

len([l,i,s,t], X)

Programming Languages Logic Programming CSE 526 26 / 48

Introduction Systems Prolog Data Structures Unification

Programming with Lists — III

Define a predicate, len/2 that finds the length of a list (first argument).

The program:
len([], 0).

len([|Xs], N+1) :- len(Xs, N).

Example queries:
len([], X)

len([l,i,s,t], 4)

len([l,i,s,t], X)

Programming Languages Logic Programming CSE 526 26 / 48

Introduction Systems Prolog Data Structures Unification

Programming with Lists — III

Define a predicate, len/2 that finds the length of a list (first argument).

The program:
len([], 0).

len([|Xs], N+1) :- len(Xs, N).

Example queries:
len([], X)

len([l,i,s,t], 4)

len([l,i,s,t], X)

Programming Languages Logic Programming CSE 526 26 / 48

Introduction Systems Prolog Data Structures Unification

Arithmetic

| ?- 1+2 = 3.

no

In Predicate logic, the basis for Prolog, the only symbols that have a
meaning are the predicates themselves.

In particular, function symbols are uninterpreted: have no special
meaning and can only be used to construct data structures.

Meaning for arithmetic expressions is given by the built-in predicate
“is”:

X is 1 + 2 succeeds, binding X to 3.
3 is 1 + 2 succeeds.
General form: R is E where E is an expression to be evaluated and R
is matched with the expression’s value.
Y is X + 1 will give an error if X does not (yet) have a value.

Programming Languages Logic Programming CSE 526 27 / 48

Introduction Systems Prolog Data Structures Unification

Arithmetic

| ?- 1+2 = 3.

no

In Predicate logic, the basis for Prolog, the only symbols that have a
meaning are the predicates themselves.

In particular, function symbols are uninterpreted: have no special
meaning and can only be used to construct data structures.

Meaning for arithmetic expressions is given by the built-in predicate
“is”:

X is 1 + 2 succeeds, binding X to 3.
3 is 1 + 2 succeeds.
General form: R is E where E is an expression to be evaluated and R
is matched with the expression’s value.
Y is X + 1 will give an error if X does not (yet) have a value.

Programming Languages Logic Programming CSE 526 27 / 48

Introduction Systems Prolog Data Structures Unification

Arithmetic

| ?- 1+2 = 3.

no

In Predicate logic, the basis for Prolog, the only symbols that have a
meaning are the predicates themselves.

In particular, function symbols are uninterpreted: have no special
meaning and can only be used to construct data structures.

Meaning for arithmetic expressions is given by the built-in predicate
“is”:

X is 1 + 2 succeeds, binding X to 3.
3 is 1 + 2 succeeds.
General form: R is E where E is an expression to be evaluated and R
is matched with the expression’s value.
Y is X + 1 will give an error if X does not (yet) have a value.

Programming Languages Logic Programming CSE 526 27 / 48

Introduction Systems Prolog Data Structures Unification

Arithmetic

| ?- 1+2 = 3.

no

In Predicate logic, the basis for Prolog, the only symbols that have a
meaning are the predicates themselves.

In particular, function symbols are uninterpreted: have no special
meaning and can only be used to construct data structures.

Meaning for arithmetic expressions is given by the built-in predicate
“is”:

X is 1 + 2 succeeds, binding X to 3.
3 is 1 + 2 succeeds.
General form: R is E where E is an expression to be evaluated and R
is matched with the expression’s value.
Y is X + 1 will give an error if X does not (yet) have a value.

Programming Languages Logic Programming CSE 526 27 / 48

Introduction Systems Prolog Data Structures Unification

Arithmetic

| ?- 1+2 = 3.

no

In Predicate logic, the basis for Prolog, the only symbols that have a
meaning are the predicates themselves.

In particular, function symbols are uninterpreted: have no special
meaning and can only be used to construct data structures.

Meaning for arithmetic expressions is given by the built-in predicate
“is”:

X is 1 + 2 succeeds, binding X to 3.

3 is 1 + 2 succeeds.
General form: R is E where E is an expression to be evaluated and R
is matched with the expression’s value.
Y is X + 1 will give an error if X does not (yet) have a value.

Programming Languages Logic Programming CSE 526 27 / 48

Introduction Systems Prolog Data Structures Unification

Arithmetic

| ?- 1+2 = 3.

no

In Predicate logic, the basis for Prolog, the only symbols that have a
meaning are the predicates themselves.

In particular, function symbols are uninterpreted: have no special
meaning and can only be used to construct data structures.

Meaning for arithmetic expressions is given by the built-in predicate
“is”:

X is 1 + 2 succeeds, binding X to 3.
3 is 1 + 2 succeeds.

General form: R is E where E is an expression to be evaluated and R
is matched with the expression’s value.
Y is X + 1 will give an error if X does not (yet) have a value.

Programming Languages Logic Programming CSE 526 27 / 48

Introduction Systems Prolog Data Structures Unification

Arithmetic

| ?- 1+2 = 3.

no

In Predicate logic, the basis for Prolog, the only symbols that have a
meaning are the predicates themselves.

In particular, function symbols are uninterpreted: have no special
meaning and can only be used to construct data structures.

Meaning for arithmetic expressions is given by the built-in predicate
“is”:

X is 1 + 2 succeeds, binding X to 3.
3 is 1 + 2 succeeds.
General form: R is E where E is an expression to be evaluated and R
is matched with the expression’s value.

Y is X + 1 will give an error if X does not (yet) have a value.

Programming Languages Logic Programming CSE 526 27 / 48

Introduction Systems Prolog Data Structures Unification

Arithmetic

| ?- 1+2 = 3.

no

In Predicate logic, the basis for Prolog, the only symbols that have a
meaning are the predicates themselves.

In particular, function symbols are uninterpreted: have no special
meaning and can only be used to construct data structures.

Meaning for arithmetic expressions is given by the built-in predicate
“is”:

X is 1 + 2 succeeds, binding X to 3.
3 is 1 + 2 succeeds.
General form: R is E where E is an expression to be evaluated and R
is matched with the expression’s value.
Y is X + 1 will give an error if X does not (yet) have a value.

Programming Languages Logic Programming CSE 526 27 / 48

Introduction Systems Prolog Data Structures Unification

The list length example revisited

Define a predicate, length/2 that finds the length of a list (first
argument).

The program:
length([], 0).

length([|Xs], M) :- length(Xs, N), M is N+1.

Example queries:
length([], X)

length([l,i,s,t], 4)

length([l,i,s,t], X)

length(List, 4)

Programming Languages Logic Programming CSE 526 28 / 48

Introduction Systems Prolog Data Structures Unification

The list length example revisited

Define a predicate, length/2 that finds the length of a list (first
argument).

The program:
length([], 0).

length([|Xs], M) :- length(Xs, N), M is N+1.

Example queries:
length([], X)

length([l,i,s,t], 4)

length([l,i,s,t], X)

length(List, 4)

Programming Languages Logic Programming CSE 526 28 / 48

Introduction Systems Prolog Data Structures Unification

Conditional Evaluation

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

N is the input parameter; and F is the output parameter.

The body of the rule specifies how the output is related to the input.

For factorial, there are two cases: N <= 0 and N > 0.

N <= 0: F = 1
N > 0: F = N ∗ (N − 1)!

factorial(N, F) :-

(N > 0

-> N1 is N-1, factorial(N1, F1), F is N*F1

; F = 1

).

Programming Languages Logic Programming CSE 526 29 / 48

Introduction Systems Prolog Data Structures Unification

Conditional Evaluation

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

N is the input parameter; and F is the output parameter.

The body of the rule specifies how the output is related to the input.

For factorial, there are two cases: N <= 0 and N > 0.

N <= 0: F = 1
N > 0: F = N ∗ (N − 1)!

factorial(N, F) :-

(N > 0

-> N1 is N-1, factorial(N1, F1), F is N*F1

; F = 1

).

Programming Languages Logic Programming CSE 526 29 / 48

Introduction Systems Prolog Data Structures Unification

Conditional Evaluation

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

N is the input parameter; and F is the output parameter.

The body of the rule specifies how the output is related to the input.

For factorial, there are two cases: N <= 0 and N > 0.

N <= 0: F = 1
N > 0: F = N ∗ (N − 1)!

factorial(N, F) :-

(N > 0

-> N1 is N-1, factorial(N1, F1), F is N*F1

; F = 1

).

Programming Languages Logic Programming CSE 526 29 / 48

Introduction Systems Prolog Data Structures Unification

Conditional Evaluation

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

N is the input parameter; and F is the output parameter.

The body of the rule specifies how the output is related to the input.

For factorial, there are two cases: N <= 0 and N > 0.

N <= 0: F = 1

N > 0: F = N ∗ (N − 1)!

factorial(N, F) :-

(N > 0

-> N1 is N-1, factorial(N1, F1), F is N*F1

; F = 1

).

Programming Languages Logic Programming CSE 526 29 / 48

Introduction Systems Prolog Data Structures Unification

Conditional Evaluation

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

N is the input parameter; and F is the output parameter.

The body of the rule specifies how the output is related to the input.

For factorial, there are two cases: N <= 0 and N > 0.

N <= 0: F = 1
N > 0: F = N ∗ (N − 1)!

factorial(N, F) :-

(N > 0

-> N1 is N-1, factorial(N1, F1), F is N*F1

; F = 1

).

Programming Languages Logic Programming CSE 526 29 / 48

Introduction Systems Prolog Data Structures Unification

Conditional Evaluation

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

N is the input parameter; and F is the output parameter.

The body of the rule specifies how the output is related to the input.

For factorial, there are two cases: N <= 0 and N > 0.

N <= 0: F = 1
N > 0: F = N ∗ (N − 1)!

factorial(N, F) :-

(N > 0

-> N1 is N-1, factorial(N1, F1), F is N*F1

; F = 1

).

Programming Languages Logic Programming CSE 526 29 / 48

Introduction Systems Prolog Data Structures Unification

More Prolog Syntax

Assignments with arithmetic expressions is done using the keyword
“is”.

If-then-else is written as (cond -> then-part ; else-part)

If more than one action needs to be performed in a rule, they are
written one after another, separated by a comma.

Arithmetic expressions are not directly used as arguments when
calling a predicate; they are first evaluated, and then passed to the
called predicate.

Programming Languages Logic Programming CSE 526 30 / 48

Introduction Systems Prolog Data Structures Unification

More Prolog Syntax

Assignments with arithmetic expressions is done using the keyword
“is”.

If-then-else is written as (cond -> then-part ; else-part)

If more than one action needs to be performed in a rule, they are
written one after another, separated by a comma.

Arithmetic expressions are not directly used as arguments when
calling a predicate; they are first evaluated, and then passed to the
called predicate.

Programming Languages Logic Programming CSE 526 30 / 48

Introduction Systems Prolog Data Structures Unification

More Prolog Syntax

Assignments with arithmetic expressions is done using the keyword
“is”.

If-then-else is written as (cond -> then-part ; else-part)

If more than one action needs to be performed in a rule, they are
written one after another, separated by a comma.

Arithmetic expressions are not directly used as arguments when
calling a predicate; they are first evaluated, and then passed to the
called predicate.

Programming Languages Logic Programming CSE 526 30 / 48

Introduction Systems Prolog Data Structures Unification

More Prolog Syntax

Assignments with arithmetic expressions is done using the keyword
“is”.

If-then-else is written as (cond -> then-part ; else-part)

If more than one action needs to be performed in a rule, they are
written one after another, separated by a comma.

Arithmetic expressions are not directly used as arguments when
calling a predicate; they are first evaluated, and then passed to the
called predicate.

Programming Languages Logic Programming CSE 526 30 / 48

Introduction Systems Prolog Data Structures Unification

Arithmetic Operators

Integer/Floating Point operators: +, -, *, /

Integer operators: mod, // (div)

Int ↔ Float operators: floor, ceiling

Comparison operators: <, >, =<, >=, =:=, =\=

Programming Languages Logic Programming CSE 526 31 / 48

Introduction Systems Prolog Data Structures Unification

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called
conc/3).

The program:
append([], L, L).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

append([f,i,r], [s,t], L)

append(X, Y, [s,e,c,o,n,d])

append(X, [t,h], [f,o,u,r,t,h])

Programming Languages Logic Programming CSE 526 32 / 48

Introduction Systems Prolog Data Structures Unification

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called
conc/3).

The program:

append([], L, L).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

append([f,i,r], [s,t], L)

append(X, Y, [s,e,c,o,n,d])

append(X, [t,h], [f,o,u,r,t,h])

Programming Languages Logic Programming CSE 526 32 / 48

Introduction Systems Prolog Data Structures Unification

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called
conc/3).

The program:
append([], L, L).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

append([f,i,r], [s,t], L)

append(X, Y, [s,e,c,o,n,d])

append(X, [t,h], [f,o,u,r,t,h])

Programming Languages Logic Programming CSE 526 32 / 48

Introduction Systems Prolog Data Structures Unification

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called
conc/3).

The program:
append([], L, L).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

append([f,i,r], [s,t], L)

append(X, Y, [s,e,c,o,n,d])

append(X, [t,h], [f,o,u,r,t,h])

Programming Languages Logic Programming CSE 526 32 / 48

Introduction Systems Prolog Data Structures Unification

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called
conc/3).

The program:
append([], L, L).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

append([f,i,r], [s,t], L)

append(X, Y, [s,e,c,o,n,d])

append(X, [t,h], [f,o,u,r,t,h])

Programming Languages Logic Programming CSE 526 32 / 48

Introduction Systems Prolog Data Structures Unification

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called
conc/3).

The program:
append([], L, L).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

append([f,i,r], [s,t], L)

append(X, Y, [s,e,c,o,n,d])

append(X, [t,h], [f,o,u,r,t,h])

Programming Languages Logic Programming CSE 526 32 / 48

Introduction Systems Prolog Data Structures Unification

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called
conc/3).

The program:
append([], L, L).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:

append([f,i,r], [s,t], L)

append(X, Y, [s,e,c,o,n,d])

append(X, [t,h], [f,o,u,r,t,h])

Programming Languages Logic Programming CSE 526 32 / 48

Introduction Systems Prolog Data Structures Unification

Mystery Program

m(X, X).

m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).

a([0|Y], Y).

b([1|Y], Y).

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1]

L=[0,0,1,1]

L=[]

?- m([0,0,1,1,1,0], L).

L=[0,1,0,0,1,1]

L=[1,0]

Programming Languages Logic Programming CSE 526 33 / 48

Introduction Systems Prolog Data Structures Unification

Mystery Program

m(X, X).

m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).

a([0|Y], Y).

b([1|Y], Y).

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1]

L=[0,0,1,1]

L=[]

?- m([0,0,1,1,1,0], L).

L=[0,1,0,0,1,1]

L=[1,0]

Programming Languages Logic Programming CSE 526 33 / 48

Introduction Systems Prolog Data Structures Unification

Mystery Program

m(X, X).

m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).

a([0|Y], Y).

b([1|Y], Y).

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1]

L=[0,0,1,1]

L=[]

?- m([0,0,1,1,1,0], L).

L=[0,1,0,0,1,1]

L=[1,0]

Programming Languages Logic Programming CSE 526 33 / 48

Introduction Systems Prolog Data Structures Unification

Mystery Program

m(X, X).

m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).

a([0|Y], Y).

b([1|Y], Y).

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1]

L=[0,0,1,1]

L=[]

?- m([0,0,1,1,1,0], L).

L=[0,1,0,0,1,1]

L=[1,0]

Programming Languages Logic Programming CSE 526 33 / 48

Introduction Systems Prolog Data Structures Unification

Mystery Program

m(X, X).

m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).

a([0|Y], Y).

b([1|Y], Y).

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1]

L=[0,0,1,1]

L=[]

?- m([0,0,1,1,1,0], L).

L=[0,1,0,0,1,1]

L=[1,0]

Programming Languages Logic Programming CSE 526 33 / 48

Introduction Systems Prolog Data Structures Unification

Mystery Program

m(X, X).

m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).

a([0|Y], Y).

b([1|Y], Y).

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1]

L=[0,0,1,1]

L=[]

?- m([0,0,1,1,1,0], L).

L=[0,1,0,0,1,1]

L=[1,0]

Programming Languages Logic Programming CSE 526 33 / 48

Introduction Systems Prolog Data Structures Unification

Mystery Program

m(X, X).

m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).

a([0|Y], Y).

b([1|Y], Y).

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1]

L=[0,0,1,1]

L=[]

?- m([0,0,1,1,1,0], L).

L=[0,1,0,0,1,1]

L=[1,0]

Programming Languages Logic Programming CSE 526 33 / 48

Introduction Systems Prolog Data Structures Unification

Mystery Program

m(X, X).

m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).

a([0|Y], Y).

b([1|Y], Y).

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1]

L=[0,0,1,1]

L=[]

?- m([0,0,1,1,1,0], L).

L=[0,1,0,0,1,1]

L=[1,0]

Programming Languages Logic Programming CSE 526 33 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1]) ≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]
...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1])

≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]
...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1])

≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]
...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1])

≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]
...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1])

≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]
...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1]) ≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]
...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1]) ≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]
...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1]) ≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]
...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1]) ≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]
...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1]) ≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]

...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars

m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].

?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], . . .

?- phrase(m, [0,1,0,0,1,1]) ≡ m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]
...

Programming Languages Logic Programming CSE 526 34 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Magic?)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

?- phrase(r([1,2,3,4]), L).

L=[4,3,2,1]

?- phrase(r(Q), [1,2,3,4]).

Q=[4,3,2,1]

Programming Languages Logic Programming CSE 526 35 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Magic?)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

?- phrase(r([1,2,3,4]), L).

L=[4,3,2,1]

?- phrase(r(Q), [1,2,3,4]).

Q=[4,3,2,1]

Programming Languages Logic Programming CSE 526 35 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Magic?)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

?- phrase(r([1,2,3,4]), L).

L=[4,3,2,1]

?- phrase(r(Q), [1,2,3,4]).

Q=[4,3,2,1]

Programming Languages Logic Programming CSE 526 35 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Magic?)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

?- phrase(r([1,2,3,4]), L).

L=[4,3,2,1]

?- phrase(r(Q), [1,2,3,4]).

Q=[4,3,2,1]

Programming Languages Logic Programming CSE 526 35 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Magic?)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

?- phrase(r([1,2,3,4]), L).

L=[4,3,2,1]

?- phrase(r(Q), [1,2,3,4]).

Q=[4,3,2,1]

Programming Languages Logic Programming CSE 526 35 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Trick exposed!)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

Translated to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Equivalent to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).

?- phrase(r([1,2,3,4]), L).

≡ r([1,2,3,4], L, [])

L=[4,3,2,1]

A way to reverse a list in polynomial time!

Programming Languages Logic Programming CSE 526 36 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Trick exposed!)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

Translated to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Equivalent to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).

?- phrase(r([1,2,3,4]), L).

≡ r([1,2,3,4], L, [])

L=[4,3,2,1]

A way to reverse a list in polynomial time!

Programming Languages Logic Programming CSE 526 36 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Trick exposed!)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

Translated to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Equivalent to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).

?- phrase(r([1,2,3,4]), L).

≡ r([1,2,3,4], L, [])

L=[4,3,2,1]

A way to reverse a list in polynomial time!

Programming Languages Logic Programming CSE 526 36 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Trick exposed!)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

Translated to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Equivalent to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).

?- phrase(r([1,2,3,4]), L).

≡ r([1,2,3,4], L, [])

L=[4,3,2,1]

A way to reverse a list in polynomial time!

Programming Languages Logic Programming CSE 526 36 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Trick exposed!)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

Translated to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Equivalent to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).

?- phrase(r([1,2,3,4]), L).

≡ r([1,2,3,4], L, [])

L=[4,3,2,1]

A way to reverse a list in polynomial time!

Programming Languages Logic Programming CSE 526 36 / 48

Introduction Systems Prolog Data Structures Unification

Definite Clause Grammars (Trick exposed!)

r([]) --> [].

r([X|Xs]) --> r(Xs), [X].

Translated to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Equivalent to:

r([], X, X).

r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).

?- phrase(r([1,2,3,4]), L).

≡ r([1,2,3,4], L, [])

L=[4,3,2,1]

A way to reverse a list in polynomial time!

Programming Languages Logic Programming CSE 526 36 / 48

Introduction Systems Prolog Data Structures Unification

Unification

Operation done to “match” the goal atom with the head of a clause
in the program.

Forms the basis for the matching operation we used for Prolog
evaluation.

f(a,Y) and f(X,b) unify when X=a and Y=b.
f(a,X) and f(X,b) do not unify.
X and f(X) do not unify
(but they “match” in Prolog!)

Programming Languages Logic Programming CSE 526 37 / 48

Introduction Systems Prolog Data Structures Unification

Substitutions

A substitution is a mapping between variables and values (terms).

Denoted by {X1 7→ t1,X2 7→ t2, . . . ,Xn 7→ tn} such that

Xi 6= ti , and
Xi and Xj are distinct variables when i 6= j .

Empty subsititution is denoted by ε.

A substition is said to be a renaming if it is of the form
{X1 7→ Y1, . . . ,Xn 7→ Yn} and Y1, . . . ,Yn is a permutation of
X1, . . . ,Xn.

Example: {X 7→ Y ,Y 7→ X} is a renaming substitution.

Programming Languages Logic Programming CSE 526 38 / 48

Introduction Systems Prolog Data Structures Unification

Substitutions and Terms

Application of a substitution:

Xθ = t if X 7→ t ∈ θ.
Xθ = X if X 7→ t 6∈ θ for any term t.

Application of a substitution {X1 7→ t1, . . . ,Xn 7→ tn} to a term s:

is a term obtained by simultaneously replacing every occurrence of Xi

in s by ti .
Denoted by sθ
and sθ is said to be an instance of s

Example:

p(f (X ,Z), f (Y , a)) {X 7→ g(Y),Y 7→ Z ,Z 7→ a}
= p(f (g(Y), a), f (Z , a))

Programming Languages Logic Programming CSE 526 39 / 48

Introduction Systems Prolog Data Structures Unification

Composition of Substitutions

Composition of substitutions θ = {X1 7→ s1, . . . ,Xm 7→ sm} and
σ = {Y1 7→ t1, . . . ,Yn 7→ tn}:

First form the set {X1 7→ s1σ, . . . ,Xm 7→ smσ,Y1 7→ t1, . . . ,Yn 7→ tn}
Remove from the set Xi 7→ siσ if siσ = Xi

Remove from the set Yj 7→ tj if Yj is identical to some variable Xi

Example: Let θ = σ = {X 7→ g(Y),Y 7→ Z ,Z 7→ a}. Then θσ =

{X 7→ g(Y),Y 7→ Z ,Z 7→ a}{X 7→ g(Y),Y 7→ Z ,Z 7→ a}
= {X 7→ g(Z),Y 7→ a,Z 7→ a}

More examples: Let θ = {X 7→ f (Y)} and σ = {Y 7→ a}
θσ = {X 7→ f (a),Y 7→ a}
θσ = {X 7→ f (Y),Y 7→ a}

Composition is not commutative but is associative: θ(σγ) = (θσ)γ

Also, E (θσ) = (Eθ)σ

Programming Languages Logic Programming CSE 526 40 / 48

Introduction Systems Prolog Data Structures Unification

Idempotence

A subsitution θ is idempotent iff θθ = θ.

Examples:
{X 7→ g(Y),Y 7→ Z ,Z 7→ a} is not idempotent since

{X 7→ g(Y),Y 7→ Z ,Z 7→ a}{X 7→ g(Y),Y 7→ Z ,Z 7→ a}
= {X 7→ g(Z),Y 7→ a,Z 7→ a}

{X 7→ g(Z),Y 7→ a,Z 7→ a} is not idempotent either since

{X 7→ g(Z),Y 7→ a,Z 7→ a}{X 7→ g(Z),Y 7→ a,Z 7→ a}
= {X 7→ g(a),Y 7→ a,Z 7→ a}

{X 7→ g(a),Y 7→ a,Z 7→ a} is idempotent

For a substitution θ = {X1 7→ t1, . . . ,Xn 7→ tn},
Dom(θ) = {X1,X2, . . .Xn}
Range(θ) = set of all variables in t1, . . . tn

A substitution θ is idempotent iff Dom(θ) ∩ Range(θ) = ∅
Programming Languages Logic Programming CSE 526 41 / 48

Introduction Systems Prolog Data Structures Unification

Unifiers

A substitution θ is a unifier of two terms s and t if sθ is identical to
tθ.

θ is a unifier of a set of equations {s1
·

= t1, . . . , sn
·

= tn}, if for all i ,
siθ = tiθ.

A substitution θ is more general than σ (written as θ � σ) if there is
a substitution ω such that σ = θω

A substitution θ is a most general unifier (mgu) of two terms (or a
set of equations) if for every unifer σ of the two terms (or equations)
θ � σ
Example: Consider two terms f (g(X),Y , a, b) and f (Z ,W ,X , b).

θ1 = {X 7→ a,Y 7→ b,Z 7→ g(a),W 7→ b} is a unifier
θ2 = {X 7→ a,Y 7→W ,Z 7→ g(a)} is also a unifier
θ2 is a most general unifier

Programming Languages Logic Programming CSE 526 42 / 48

Introduction Systems Prolog Data Structures Unification

Equations and Unifiers

A set of equations E is in solved form if it is of the form

{X1
·

= t1, . . . ,Xn
·

= tn} iff

all Xi ’s are distinct, and
no Xi appears in any tj .

Given a set of equations in solved form E = {X1
·

= t1, . . . ,Xn
·

= tn}
the substitution {X1/t1, . . .Xn/tn} is an idempotent mgu of E .

Two sets of equations E1 and E2 are said to be equivalent iff they
have the same set of unifiers.

To find the mgu of two terms s and t, find a set of equations in
solved form that is equivalent to {s ·

= t}.
If there is no equivalent solved form, there is no mgu.

Programming Languages Logic Programming CSE 526 43 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒

{X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒

{X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒ {X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒

{X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒ {X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒

{X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒ {X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒

{X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒ {X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒

{X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒ {X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒ {X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒ {X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒ {X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒ {X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒ {X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒ {X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒ {X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒ {X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒ {X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)

{f (X , g(Y))
·

= f (g(Z),Z)} ⇒ {X ·
= g(Z), g(Y)

·
= Z}

⇒ {X ·
= g(Z),Z

·
= g(Y)}

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)}

Example 2: Find the mgu of f (X , g(X), b) and f (a, g(Z),Z)

{f (X , g(X), b)
·

= f (a, g(Z),Z)} ⇒ {X ·
= a, g(X)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, g(a)

·
= g(Z), b

·
= Z}

⇒ {X ·
= a, a

·
= Z , b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= Z}

⇒ {X ·
= a,Z

·
= a, b

·
= a}

⇒ fail

Programming Languages Logic Programming CSE 526 44 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm

Given a set of equations E :

repeat

select s
·

= t ∈ E ;

case s
·

= t of

1. f (s1, . . . , sn)
·

= f (t1, . . . , tn):

replace the equation by si
·

= ti for all i

2. f (s1, . . . , sn)
·

= g(t1, . . . , tm), f 6= g or n 6= m:
halt with failure

3. X
·

= X : remove the equation

4. t
·

= X : where t is not a variable

replace equation by X
·

= t

5. X
·

= t : where X 6= t and X occurs more than once in E :
if X is a proper subterm of t
then halt with failure (5a)
else replace all other X in E by t (5b)

until no action is possible for any equation in E
return E

Programming Languages Logic Programming CSE 526 45 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (More Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)
{f (X , g(Y))

·
= f (g(Z),Z)} ⇒

{X ·
= g(Z), g(Y)

·
= Z} case 1

⇒ {X ·
= g(Z),Z

·
= g(Y)} case 4

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)} case 5b

Example 3: Find the mgu of f (X , g(X)) and f (Z ,Z)
{f (X , g(X))

·
= f (Z ,Z)} ⇒

{X ·
= Z , g(X)

·
= Z} case 1

⇒ {X ·
= Z , g(Z)

·
= Z} case 5b

⇒ {X ·
= Z ,Z

·
= g(Z)} case 4

⇒ fail case 5a

Programming Languages Logic Programming CSE 526 46 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (More Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)
{f (X , g(Y))

·
= f (g(Z),Z)} ⇒ {X ·

= g(Z), g(Y)
·

= Z} case 1

⇒ {X ·
= g(Z),Z

·
= g(Y)} case 4

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)} case 5b

Example 3: Find the mgu of f (X , g(X)) and f (Z ,Z)
{f (X , g(X))

·
= f (Z ,Z)} ⇒

{X ·
= Z , g(X)

·
= Z} case 1

⇒ {X ·
= Z , g(Z)

·
= Z} case 5b

⇒ {X ·
= Z ,Z

·
= g(Z)} case 4

⇒ fail case 5a

Programming Languages Logic Programming CSE 526 46 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (More Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)
{f (X , g(Y))

·
= f (g(Z),Z)} ⇒ {X ·

= g(Z), g(Y)
·

= Z} case 1

⇒ {X ·
= g(Z),Z

·
= g(Y)} case 4

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)} case 5b

Example 3: Find the mgu of f (X , g(X)) and f (Z ,Z)
{f (X , g(X))

·
= f (Z ,Z)} ⇒

{X ·
= Z , g(X)

·
= Z} case 1

⇒ {X ·
= Z , g(Z)

·
= Z} case 5b

⇒ {X ·
= Z ,Z

·
= g(Z)} case 4

⇒ fail case 5a

Programming Languages Logic Programming CSE 526 46 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (More Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)
{f (X , g(Y))

·
= f (g(Z),Z)} ⇒ {X ·

= g(Z), g(Y)
·

= Z} case 1

⇒ {X ·
= g(Z),Z

·
= g(Y)} case 4

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)} case 5b

Example 3: Find the mgu of f (X , g(X)) and f (Z ,Z)
{f (X , g(X))

·
= f (Z ,Z)} ⇒

{X ·
= Z , g(X)

·
= Z} case 1

⇒ {X ·
= Z , g(Z)

·
= Z} case 5b

⇒ {X ·
= Z ,Z

·
= g(Z)} case 4

⇒ fail case 5a

Programming Languages Logic Programming CSE 526 46 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (More Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)
{f (X , g(Y))

·
= f (g(Z),Z)} ⇒ {X ·

= g(Z), g(Y)
·

= Z} case 1

⇒ {X ·
= g(Z),Z

·
= g(Y)} case 4

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)} case 5b

Example 3: Find the mgu of f (X , g(X)) and f (Z ,Z)
{f (X , g(X))

·
= f (Z ,Z)} ⇒

{X ·
= Z , g(X)

·
= Z} case 1

⇒ {X ·
= Z , g(Z)

·
= Z} case 5b

⇒ {X ·
= Z ,Z

·
= g(Z)} case 4

⇒ fail case 5a

Programming Languages Logic Programming CSE 526 46 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (More Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)
{f (X , g(Y))

·
= f (g(Z),Z)} ⇒ {X ·

= g(Z), g(Y)
·

= Z} case 1

⇒ {X ·
= g(Z),Z

·
= g(Y)} case 4

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)} case 5b

Example 3: Find the mgu of f (X , g(X)) and f (Z ,Z)
{f (X , g(X))

·
= f (Z ,Z)} ⇒ {X ·

= Z , g(X)
·

= Z} case 1

⇒ {X ·
= Z , g(Z)

·
= Z} case 5b

⇒ {X ·
= Z ,Z

·
= g(Z)} case 4

⇒ fail case 5a

Programming Languages Logic Programming CSE 526 46 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (More Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)
{f (X , g(Y))

·
= f (g(Z),Z)} ⇒ {X ·

= g(Z), g(Y)
·

= Z} case 1

⇒ {X ·
= g(Z),Z

·
= g(Y)} case 4

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)} case 5b

Example 3: Find the mgu of f (X , g(X)) and f (Z ,Z)
{f (X , g(X))

·
= f (Z ,Z)} ⇒ {X ·

= Z , g(X)
·

= Z} case 1

⇒ {X ·
= Z , g(Z)

·
= Z} case 5b

⇒ {X ·
= Z ,Z

·
= g(Z)} case 4

⇒ fail case 5a

Programming Languages Logic Programming CSE 526 46 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (More Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)
{f (X , g(Y))

·
= f (g(Z),Z)} ⇒ {X ·

= g(Z), g(Y)
·

= Z} case 1

⇒ {X ·
= g(Z),Z

·
= g(Y)} case 4

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)} case 5b

Example 3: Find the mgu of f (X , g(X)) and f (Z ,Z)
{f (X , g(X))

·
= f (Z ,Z)} ⇒ {X ·

= Z , g(X)
·

= Z} case 1

⇒ {X ·
= Z , g(Z)

·
= Z} case 5b

⇒ {X ·
= Z ,Z

·
= g(Z)} case 4

⇒ fail case 5a

Programming Languages Logic Programming CSE 526 46 / 48

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (More Examples)

Example 1: Find the mgu of f (X , g(Y)) and f (g(Z),Z)
{f (X , g(Y))

·
= f (g(Z),Z)} ⇒ {X ·

= g(Z), g(Y)
·

= Z} case 1

⇒ {X ·
= g(Z),Z

·
= g(Y)} case 4

⇒ {X ·
= g(g(Y)),Z

·
= g(Y)} case 5b

Example 3: Find the mgu of f (X , g(X)) and f (Z ,Z)
{f (X , g(X))

·
= f (Z ,Z)} ⇒ {X ·

= Z , g(X)
·

= Z} case 1

⇒ {X ·
= Z , g(Z)

·
= Z} case 5b

⇒ {X ·
= Z ,Z

·
= g(Z)} case 4

⇒ fail case 5a

Programming Languages Logic Programming CSE 526 46 / 48

Introduction Systems Prolog Data Structures Unification

Complexity of the unification algorithm

Consider
E = {g(X1, . . . ,Xn)

·
= g(f (X0,X0), f (X1,X1), . . . , f (Xn−1,Xn−1)}.

By applying case 1 of the algorithm, we get

{X1 = f (X0,X0),X2 = f (X1,X1), . . . ,Xn = f (Xn−1,Xn−1)}

If terms are kept as trees, the final value for Xn is a tree of size O(2n).

Recall that for case 5 we need to first check if a variable appears in a
term, and this could now take O(2n) time.

There are linear-time unification algorithms that share structures
(terms as DAGs).

X = t is the most common case for unification in Prolog. The fastest
algorithms are linear in t.

Prolog cuts corners by omitting case 5a (the occur check), thereby
doing X = t in constant time.

Programming Languages Logic Programming CSE 526 47 / 48

Introduction Systems Prolog Data Structures Unification

Most General Unifiers

Note that mgu stands for a most general unifier.

There may be more than one mgu. E.g. f (X)
·

= f (Y) has two mgus:

{X 7→ Y }
{Y 7→ X}

If θ is an mgu of s and t, and ω is a renaming, then θω is an mgu of
s and t.

If θ and σ are mgus of s and t, then there is a renaming ω such that
θ = σω.

Programming Languages Logic Programming CSE 526 48 / 48

