Introduction 00	Systems 000	Prolog 0000000	Data Structures 0000000000000000000000000	Unification 000000000000
		P	rolog	

Principles of Programming Languages

CSE 526

Unification 5

Compiled at 08:55 on 2019/02

Image: A matrix

.

 $\forall X. man(X) \Rightarrow mortal(X)$

 $\forall X. \ man(X) \Rightarrow mortal(X)$ man(socrates)

- ∢ 🗇 እ

 $\forall X. \ man(X) \Rightarrow mortal(X)$ man(socrates)

• Predicate logic

(3)

$$\forall X. \ man(X) \Rightarrow mortal(X)$$
$$man(\texttt{socrates})$$

- Predicate logic
 - Predicates (e.g. man, mortal) which define sets.

$$\forall X. \ man(X) \Rightarrow mortal(X)$$
$$man(\texttt{socrates})$$

- Predicate logic
 - Predicates (e.g. man, mortal) which define sets.
 - Atoms (e.g. socrates) which are data values

< ∃ > <

$$\forall X. \ man(X) \Rightarrow mortal(X)$$
$$man(\texttt{socrates})$$

- Predicate logic
 - Predicates (e.g. man, mortal) which define sets.
 - Atoms (e.g. socrates) which are data values
 - Variables (e.g. X) which range over data values

 $\forall X. \ man(X) \Rightarrow mortal(X)$ man(socrates)

Predicate logic

- Predicates (e.g. man, mortal) which define sets.
- Atoms (e.g. socrates) which are data values
- Variables (e.g. X) which range over data values
- Rules (e.g. ∀X. man(X) ⇒ mortal(X)) which define relationships between predicates.

- - E + - E +

$\forall X. man(X) \Rightarrow mortal(X)$

$\forall X. \ man(X) \Rightarrow mortal(X)$ man(socrates)

$\forall X. \ man(X) \Rightarrow mortal(X)$ man(socrates)

Introduction Systems Prolog Data Structures Unification

$\forall X. man(X) \Rightarrow mortal(X)$ man(socrates)

```
Logic "Program":
man(socrates).
mortal(X) :- man(X).
```

Image: Image:

.

$\forall X. \ man(X) \Rightarrow mortal(X)$ man(socrates)

```
Logic "Program":
man(socrates).
mortal(X) :- man(X).
```

```
Queries:
?- mortal(socrates).
yes
```

- ∢ 🗇 እ

$\forall X. \ man(X) \Rightarrow mortal(X)$ man(socrates)

```
Logic "Program":
man(socrates).
mortal(X) :- man(X).
```

```
Queries:
    ?- mortal(socrates).
    yes
    ?- mortal(X).
```

- ∢ ⊢⊒ →

$\forall X. man(X) \Rightarrow mortal(X)$ man(socrates)

```
Logic "Program":
man(socrates).
mortal(X) :- man(X).
```

```
Queries:

?- mortal(socrates).

yes

?- mortal(X).

X=socrates
```

- ∢ 🗇 እ

$\forall X. man(X) \Rightarrow mortal(X)$ man(socrates)

```
Logic "Program":
man(socrates).
mortal(X) :- man(X).
```

```
Queries:

?- mortal(socrates).

yes

?- mortal(X).

X=socrates;
```

- ∢ 🗇 እ

$\forall X. man(X) \Rightarrow mortal(X)$ man(socrates)

```
Logic "Program":
man(socrates).
mortal(X) :- man(X).
```

```
Queries:
  ?- mortal(socrates).
  yes
  ?- mortal(X).
  X=socrates;
```

no

- ∢ 🗇 እ

Introduction	Systems	Prolog	Data Structures	Unification
00	●00	0000000		000000000000000000000000000000000000
Prolog				

• Early development: Kowalski & van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)

.

Introduction	Systems	Prolog	Data Structures	Unification
00	●00	0000000		000000000000000000000000000000000000
Prolog				

- Early development: Kowalski & van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)
- First efficient implementation: WAM of David H.D. Warren (Edinburgh) (mid '70s).

< ∃ > <

Introduction	Systems	Prolog	Data Structures	Unification
00	●00	0000000		000000000000000000000000000000000000
Prolog				

- Early development: Kowalski & van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)
- First efficient implementation: WAM of David H.D. Warren (Edinburgh) (mid '70s).
- Later developments:

Introduction	Systems	Prolog	Data Structures 000000000000000000000000000000000000	Unification
00	●00	0000000		000000000000
Prolog				

- Early development: Kowalski & van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)
- First efficient implementation: WAM of David H.D. Warren (Edinburgh) (mid '70s).
- Later developments:
 - Constraint Logic Programming: for applications in AI, planning, scheduling, etc. Jaffar & Lassez (IBM Watson)

Introduction	Systems	Prolog	Data Structures	Unification
00	●00	0000000	000000000000000000000000000000000000	000000000000
Prolog				

- Early development: Kowalski & van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)
- First efficient implementation: WAM of David H.D. Warren (Edinburgh) (mid '70s).
- Later developments:
 - Constraint Logic Programming: for applications in AI, planning, scheduling, etc. Jaffar & Lassez (IBM Watson)
 - Memoization: Tamaki & Sato (Tokyo); Warren et al (Stony Brook)

- SWI Prolog (www.swi-prolog.org)
 - Can be obtained for free and installed on Windows, Linux, Mac.
 - Has a good development environment (command completion, help, graphical debugger, etc.)
 - On compute* (Unix) servers: ~cram/bin/swipl
- XSB Prolog (xsb.sourceforge.net)
 - Can be obtained for free and installed on Windows, Linux, Mac.
 - Supports a powerful extension (memoization) to Prolog
 - Command-line interface (e.g. no graphical debugger)
 - On compute* (Unix) servers: ~cram/bin/xsb

.

Using Prolog Systems

- Prolog programs are in files with ".pl" extension (".P" for XSB)
- Prolog systems typically support an interactive mode.
- "[filename]." to compile and load a program in filename.pl (filename.P in XSB).
- "halt." to exit the system.

< □ > < ---->

.

• Programs are a set of *rules* (also called *clauses*).

- Programs are a set of *rules* (also called *clauses*).
- *Predicates* in a logic program are analogous to *procedures* in imperative programs.

Image: A matrix

.

- Programs are a set of *rules* (also called *clauses*).
- *Predicates* in a logic program are analogous to *procedures* in imperative programs.
- One or more rules are used to define a predicate.

- ∢ 🗇 እ

- Programs are a set of *rules* (also called *clauses*).
- *Predicates* in a logic program are analogous to *procedures* in imperative programs.
- One or more rules are used to define a predicate.
- Example:

inc(X,Y) := Y is X+1.

Image: Image:

.

- Programs are a set of *rules* (also called *clauses*).
- *Predicates* in a logic program are analogous to *procedures* in imperative programs.
- One or more rules are used to define a predicate.
- Example:

inc(X,Y) :- Y is X+1.

• X and Y are variables.

Image: Image:

- Programs are a set of *rules* (also called *clauses*).
- *Predicates* in a logic program are analogous to *procedures* in imperative programs.
- One or more rules are used to define a predicate.
- Example:

inc(X,Y) := Y is X+1.

- X and Y are variables.
- inc is a predicate.

- Programs are a set of *rules* (also called *clauses*).
- *Predicates* in a logic program are analogous to *procedures* in imperative programs.
- One or more rules are used to define a predicate.
- Example:

inc(X,Y) :- Y is X+1.

- X and Y are variables.
- inc is a predicate.
- The predicate is defined using a single rule.

< 3 > < 3 >

inc(X,Y) := Y is X+1.

- ":-" separates the *body* of the rule from its head.
- "X" and "Y" are also "parameters" of the predicate.
 In this case, X is the input parameter, and Y is the return parameter (where the return values are stored).
- "Y is X+1" defines Y in terms of X.
- The period (".") marks the end of a rule.
- The predicate is *called* by giving values to its parameters. e.g. inc(6, B) returns with B=7.
 - inc(11, B) returns with B=12.

(日) (周) (三) (三)

- *Variables* are identifiers that begin with an upper case letter or underscore.
 - An underscore, by itself, represents an anonymous variable.
- *Predicate* names (and later, data structure symbols) are identifiers that begin with a lower case letter.
- All variables are *local* to the clause in which they occur.
- Different occurrences of the same variable in a clause denote the same data.
- Variables need not be declared, and have no type.

How Prolog Works (An Example)

```
big(bear).
big(elephant).
```

brown(bear).

black(cat).

small(cat).

gray(elephant).

```
dark(Z) :- black(Z).
dark(Z) :- brown(Z).
```

```
dangerous(X) :- dark(X), big(X).
```

(日) (周) (三) (三)

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000●00		000000000000
Derivatio	ons			

```
big(bear).
big(elephant).
small(cat).
```

brown(bear).
black(cat).
gray(elephant).

dark(Z) :- black(Z). dark(Z) :- brown(Z).

```
dangerous(X) :- dark(X), big(X).
```

dangerous(Q)

3

<ロ> (日) (日) (日) (日) (日)
Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000●00	000000000000000000000000000000000000	000000000000
Derivatio	ons			

```
big(bear).brown(bear).big(elephant).black(cat).small(cat).gray(elephant).
```

dark(Z) :- black(Z). dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

```
dangerous(Q)

dangerous(X) :-

dark(X), big(X)

dark(Q), big(Q)
```

イロト イヨト イヨト イヨト

Introduction	Systems	Prolog	Data Structures 000000000000000000000000000000000000	Unification
00	000	0000●00		000000000000
Derivatio	ons			

```
big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant). black(cat). dark(Z) :- brown(Z).
small(cat). gray(elephant).
dangerous(X) :- dark(X), big(X).
dangerous(Q)
dark(X), big(X) |
dark(Q), big(Q)
black(Q), big(Q)
```

イロト イ理ト イヨト イヨトー

Introduction	Systems	Prolog	Data Structures 000000000000000000000000000000000000	Unification
00	000	0000●00		000000000000
Derivatio	ons			

```
big(bear).
                                 brown(bear).
                                                              dark(Z) := black(Z).
big(elephant).
                                 black(cat).
                                                              dark(Z) := brown(Z).
small(cat).
                                 gray(elephant).
dangerous(X) :- dark(X), big(X).
                    \begin{array}{c|c} & \text{dangerous}(\mathbb{Q}) \\ angerous(X) & :- \\ & dark(X), big(X) \end{array} \end{vmatrix}
                                         dark(Q), big(Q)
                    dark(X) :-
   black(X)/
                          black(Q), big(Q)
                    black(cat)
                                big(cat)
```

<ロト < 団ト < 団ト < 団ト

Introduction	Systems	Prolog	Data Structures 000000000000000000000000000000000000	Unification
00	000	0000●00		000000000000
Derivatio	ons			

```
big(bear).
                          brown(bear).
                                                 dark(Z) := black(Z).
big(elephant).
                          black(cat).
                                                 dark(Z) := brown(Z).
small(cat).
                          gray(elephant).
dangerous(X) :- dark(X), big(X).
                                  dangerous(Q)
                dangerous(X) :-
    dark(X), big(X)
                                dark(Q), big(Q)
                dark(X) :-
   black(X)/
                    black(Q), big(Q)
                black(cat)
                         big(cat)
```

failure

L'en aren po po un a	DIDATIONOC
FIDVIALITIUV	
og.anning	Languages

イロト イヨト イヨト イヨト

failure

Execution particular 1 a	DOCUDOCOC.
FILIPLATION A	IIV HAVES
r rogranning Ea	ngaages

CSE 526 11 / 48

KO MKO IND IND UD M	angulagoe
TOVIALITITIV	
- ogranning -	Langaages
	0 0

-		
L'ro gro pa	100 110 07	anguages
FIOPIAID		Languages

How Prolog Works (the procedure)

• A query is, in general, a conjunction of goals

イロト イ団ト イヨト イヨト

How Prolog Works (the procedure)

- A query is, in general, a conjunction of goals
- To prove *G*₁, *G*₂, ..., *G*_n:

イロト イ団ト イヨト イヨト

How Prolog Works (the procedure)

- A query is, in general, a conjunction of goals
- To prove *G*₁, *G*₂, ..., *G*_n:
 - Find a clause $H: -B_1, B_2, \ldots, B_k$ such that G_1 and H match.

イロト イヨト イヨト

How Prolog Works (the procedure)

- A query is, in general, a conjunction of goals
- To prove *G*₁, *G*₂, ..., *G*_n:
 - Find a clause $H: -B_1, B_2, \ldots, B_k$ such that G_1 and H match.
 - Under that substitution for variables, prove $B_1, B_2, \ldots, B_k, G_2, \ldots, G_n$.

イロト イポト イヨト イヨト

How Prolog Works (the procedure)

- A query is, in general, a conjunction of goals
- To prove *G*₁, *G*₂, ..., *G*_n:
 - Find a clause $H: -B_1, B_2, \ldots, B_k$ such that G_1 and H match.
 - Under that substitution for variables, prove $B_1, B_2, \ldots, B_k, G_2, \ldots, G_n$.
 - If nothing is left to prove then the proof is complete. If there are no more clauses to match, the proof attempt fails.

イロト イポト イヨト イヨト

To prove dangerous(Q):

_
1

イロト イ団ト イヨト イヨト

To prove dangerous(Q):

Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).

-		
_	KO MKO DO DO LO M	anguagoe
-	TOVIATION NO	
	10grammig	Langaages

Image: Image:

.

To prove dangerous(Q):

- Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).
- To prove dark(Q) select the first clause of dark, i.e. dark(Z) :black(Z), and prove black(Q), big(Q).

(日) (同) (三) (三)

To prove dangerous(Q):

- Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).
- To prove dark(Q) select the first clause of dark, i.e. dark(Z) :black(Z), and prove black(Q), big(Q).
- Now select the fact black(cat) and prove big(cat). This proof attempt fails!

Image: A matrix

- 4 3 6 4 3 6

To prove dangerous(Q):

- Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).
- To prove dark(Q) select the first clause of dark, i.e. dark(Z) :black(Z), and prove black(Q), big(Q).
- Now select the fact black(cat) and prove big(cat). This proof attempt fails!
- Go back to step 2, and select the second clause of dark, i.e. dark(Z) :brown(Z), and prove brown(Q), big(Q).

.

To prove dangerous(Q):

- Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).
- To prove dark(Q) select the first clause of dark, i.e. dark(Z) :black(Z), and prove black(Q), big(Q).
- Now select the fact black(cat) and prove big(cat). This proof attempt fails!
- Go back to step 2, and select the second clause of dark, i.e. dark(Z) :brown(Z), and prove brown(Q), big(Q).
- Sow select brown(bear) and prove big(bear).

.

To prove dangerous(Q):

- Select dangerous(X) :- dark(X), big(X) and prove dark(Q), big(Q).
- To prove dark(Q) select the first clause of dark, i.e. dark(Z) :black(Z), and prove black(Q), big(Q).
- Now select the fact black(cat) and prove big(cat). This proof attempt fails!
- Go back to step 2, and select the second clause of dark, i.e. dark(Z) :brown(Z), and prove brown(Q), big(Q).
- Sow select brown(bear) and prove big(bear).
- Select the fact big(bear).

There is nothing left to prove, so the proof is complete

Image: A matrix

- - E + - E +

Data Representation in Prolog

- Prolog has no notion of data types
- All data is represented as *terms*, which can be:
 - Variables
 - Non-variable Terms
 - Atomic data (Integers, floating point numbers, constants, ...)
 - Compound Terms (Structures)

.

- Numeric constants: Integers, floating point numbers (e.g. 1024, -42, 3.1415, 6.023e23 ...)
- Atoms:
 - Strings of characters enclosed in single quotes (e.g. 'cram', 'Stony Brook')
 - Identifiers: sequence of letters, digits, underscore, beginning with a letter (e.g. cram, r2d2, x_24).

イロト イポト イヨト イヨト

• If f is an identifier and $t_1, t_2, \ldots t_n$ are terms, then $f(t_1, t_2, \ldots t_n)$ is a term.

- In the above, *f* is called a *function symbol* (or *functor*) and *t_i* is an *argument*.
- Structures are used to group related data items together (in some ways similar to struct in C and objects in Java).
- Structures are used to construct trees (and, as a special case, lists).

(日) (同) (三) (三)

Introduction 00	Systems 000	Prolog 0000000	Data Structures	Unification
Trees				

• Example: expression trees: plus(minus(num(3), num(1)), star(num(4), num(2)))

• Data structures may have variables. And the same variable may occur multiple times in a data structure.

(ロト (母) (ヨ) (ヨ) (ヨ) つへ(

Introduction	Systems 000	Prolog 0000000	Data Structures	Unification 000000000000
Matching				

(We'll extend this to unification later)

• $t_1 = t_2$: find substitions for variables in t_1 and t_2 that make the two terms identical.

	au a a a a a
FIOPLALIDIUM LAD	PLIAPES
	<u></u>

(We'll extend this to unification later)

• $t_1 = t_2$: find substitions for variables in t_1 and t_2 that make the two terms identical.

-		
_	KO MKO DO DO LO M	anguagoe
	TOPTAILITIE	Languages

Image: Image:

∃ ▶ ∢

- ·	
LYCC CK D DD DD UD C	
FIDVIAIIIIIIIV	
r rogrammig	Languages

・ 注 うへの CSE 526 19 / 48

イロト イヨト イヨト イヨト

-		
L'ro gro m	00100	anguages
FIOPIAIL		Languages

● ■ ● ■ ● ○ ○ ○
 CSE 526 20 / 48

イロト イヨト イヨト イヨト

No! X cannot be 1 and 4 at the same time

< □ > < ---->

∃ → (∃ →

Accessing arguments of a structure

- Matching is the common way to access a structure's arguments.
- Let date('Sep', 1, 2005) be a structure used to represent dates, with the month, day and year as the three arguments (in that order).
- Then date(M, D, Y) = date('Sep', 1, 2005) makes M = 'Sep', D = 1, Y = 2005.
- If we want to get only the day, we can write date(_, D, _) = date('Sep', 1, 2005). Then we get D = 1.

(日) (周) (三) (三)

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000		000000000000
Lists				

Prolog uses a special syntax to represent and manipulate lists.

- [1,2,3,4]: represents a list with 1, 2, 3 and 4, respectively.
- This can also be written as [1 | [2,3,4]]: a list with 1 as the head (its first element) and [2,3,4] as its tail (the list of remaining elements).
- If X = 1 and Y = [2,3,4] then [X|Y] is same as [1,2,3,4].
- The empty list is represented by [].
- The symbol "|" (called *cons*) and is used to separate the beginning elements of a list from its tail.
 For example: [1,2,3,4] = [1 | [2,3,4]]
 = [1 | [2 | [3,4]]]
 = [1,2 | [3,4]]

Introduction	Systems	Prolog	Data Structures	Unification
00	000	000000	0000000000000000000000000	000000000000
Lists			(contd.)	

• Lists are special cases of trees. For instance, the list [1,2,3,4] is represented by the following structure:

The function symbol ./2 is the list constructor.
 [1,2,3,4] is same as .(1, .(2, .(3, .(4, []))))

Programming with Lists — I

First example: member/2, to find if a given element occurs in a list:

-		
-	KO (KKO 100 100 110 (K)	L D D M L D M O C
	I DVI ALI II III IV	
	10grammig	Langaages

Image: A matrix

→ 3 → 4 3

Programming with Lists — I

First example: member/2, to find if a given element occurs in a list:

The program: member(X, [X|_]). member(X, [_|Ys]) :- member(X, Ys).

(日) (周) (三) (三)

Programming with Lists — I

First example: member/2, to find if a given element occurs in a list:

The program: member(X, [X|_]). member(X, [_|Ys]) :- member(X, Ys).

Example queries: member(s, [l,i,s,t]) member(X, [l,i,s,t]) member(f(X), [f(1), g(2), f(3), h(4), f(5)])

Programming with Lists — II

append/3: concatenate two lists to form the third list.

-		
-	KO (KKO 100 100 110 (K)	L D D M L D M O C
	I DVI ALI II III IV	
	10grammig	Langaages

(日) (同) (三) (三)
Programming with Lists — II

append/3: concatenate two lists to form the third list.

The program:
append([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Programming with Lists — II

append/3: concatenate two lists to form the third list.

```
The program:
append([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
```

Example queries: append([f,i,r], [s,t], L) append(X, Y, [s,e,c,o,n,d]) append(X, [t,h], [f,o,u,r,t,h])

Programming with Lists — III

Define a predicate, len/2 that finds the length of a list (first argument).

-				
-	rogra	mmmmmm	Languages	
	TOP A		Lauguages	

Image: A matrix

.

Programming with Lists — III

Define a predicate, len/2 that finds the length of a list (first argument).

The program: len([], 0). len([_|Xs], N+1) :- len(Xs, N).

Programming with Lists — III

Define a predicate, len/2 that finds the length of a list (first argument).

The program: len([], 0). len([_|Xs], N+1) :- len(Xs, N).

Example queries: len([], X) len([l,i,s,t], 4) len([l,i,s,t], X)

イロト イポト イヨト イヨト

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000	000000000000000000000000000000000000	000000000000
Arithmetic				

no

ł	'rogram	iming	Langua	ages
---	---------	-------	--------	------

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

Introduction	Systems 000	Prolog 0000000	Data Structures	Unification 000000000000
Arithmetic	2			

no

• In *Predicate logic*, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.

< ∃ > <

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000	000000000000000000000000000000000000	
Arithmet	ic			

no

- In *Predicate logic*, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000		000000000000
Arithmetic				

no

- In *Predicate logic*, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the *built-in* predicate "is":

no

- In *Predicate logic*, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the *built-in* predicate "is":
 - X is 1 + 2 succeeds, binding X to 3.

no

- In *Predicate logic*, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the *built-in* predicate "is":
 - X is 1 + 2 succeeds, binding X to 3.
 - 3 is 1 + 2 succeeds.

no

- In *Predicate logic*, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the *built-in* predicate "is":
 - X is 1 + 2 succeeds, binding X to 3.
 - 3 is 1 + 2 succeeds.
 - General form: *R* is *E* where *E* is an expression to be evaluated and *R* is matched with the expression's value.

Image: Image:

- A I I I A I I I I

no

- In *Predicate logic*, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the *built-in* predicate "is":
 - X is 1 + 2 succeeds, binding X to 3.
 - 3 is 1 + 2 succeeds.
 - General form: *R* is *E* where *E* is an expression to be evaluated and *R* is matched with the expression's value.
 - Y is X + 1 will give an error if X does not (yet) have a value.

The list length example revisited

Define a predicate, length/2 that finds the length of a list (first argument).

The program:

length([], 0).
length([_|Xs], M) :- length(Xs, N), M is N+1.

Image: A matrix

- 4 3 6 4 3 6

The list length example revisited

Define a predicate, length/2 that finds the length of a list (first argument).

The program: length([], 0). length([_|Xs], M) :- length(Xs, N), M is N+1.

Example queries: length([], X) length([l,i,s,t], 4) length([l,i,s,t], X) length(List, 4)

イロト イポト イヨト イヨト

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

• *N* is the input parameter; and *F* is the output parameter.

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

- *N* is the input parameter; and *F* is the output parameter.
- The body of the rule specifies how the output is related to the input.

< □ > < ---->

(4) (3) (4) (4) (4)

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

- *N* is the input parameter; and *F* is the output parameter.
- The body of the rule specifies how the output is related to the input.
- For factorial, there are two cases: $N \ll 0$ and N > 0.

Image: Image:

.

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

- *N* is the input parameter; and *F* is the output parameter.
- The body of the rule specifies how the output is related to the input.
- For factorial, there are two cases: $N \le 0$ and N > 0.

Image: Image:

.

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

- *N* is the input parameter; and *F* is the output parameter.
- The body of the rule specifies how the output is related to the input.
- For factorial, there are two cases: $N \ll 0$ and N > 0.

•
$$N <= 0$$
: $F = 1$

• N > 0: F = N * (N - 1)!

Consider the computation of n!, i.e. the factorial of n.

factorial(N, F) :- ...

- *N* is the input parameter; and *F* is the output parameter.
- The body of the rule specifies how the output is related to the input.
- For factorial, there are two cases: $N \le 0$ and N > 0.

A B F A B F

Image: Image:

• Assignments with arithmetic expressions is done using the keyword "is".

< ロ > < 同 > < 三 > < 三

- Assignments with arithmetic expressions is done using the keyword "is".
- If-then-else is written as (cond -> then-part ; else-part)

More Prolog Syntax

- Assignments with arithmetic expressions is done using the keyword "is".
- If-then-else is written as (*cond -> then-part* ; *else-part*)
- If more than one action needs to be performed in a rule, they are written one after another, separated by a comma.

More Prolog Syntax

- Assignments with arithmetic expressions is done using the keyword "is".
- If-then-else is written as (*cond* -> *then-part* ; *else-part*)
- If more than one action needs to be performed in a rule, they are written one after another, separated by a comma.
- Arithmetic expressions are not directly used as arguments when calling a predicate; they are first evaluated, and then passed to the called predicate.

Integer/Floating Point operators: +, -, *, /

• Comparison operators: <, >, =<, >=, =:=, =\=

Int ↔ Float operators: floor, ceiling

• Integer operators: mod, // (div)

イロト イポト イヨト イヨト

The program:

-		
_	KO MKO DO DO LO M	anguagoe
	TOPTAILITIE	Languages

< □ > < ---->

→ 3 → 4 3

The program: append([], L, L).


```
The program:
append([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
```



```
The program:
append([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
```

Example queries:

• append([f,i,r], [s,t], L)


```
The program:
append([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
```

Example queries:

- append([f,i,r], [s,t], L)
- append(X, Y, [s,e,c,o,n,d])


```
The program:
```

```
append([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
```

Example queries:

- append([f,i,r], [s,t], L)
- append(X, Y, [s,e,c,o,n,d])
- append(X, [t,h], [f,o,u,r,t,h])


```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
```

a([0|Y], Y). b([1|Y], Y).

Programming Language	s
----------------------	---

イロト イ団ト イヨト イヨト


```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
a([0|Y], Y).
b([1|Y], Y).
```

```
?- m([0,1,0,0,1,1], L).
```

norus acc
Invulages


```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
a([0|Y], Y).
b([1|Y], Y).
```

```
?- m([0,1,0,0,1,1], L).
L=[0,1,0,0,1,1]
```

_	KO (KKO 100 100 110 (K)	anguagoe
-	TOPTATION	Lauguages
```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
a([0|Y], Y).
b([1|Y], Y).
```

```
?- m([0,1,0,0,1,1], L).
    L=[0,1,0,0,1,1]
    L=[0,0,1,1]
```

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
a([0|Y], Y).
b([1|Y], Y).
```

```
?- m([0,1,0,0,1,1], L).
    L=[0,1,0,0,1,1]
    L=[0,0,1,1]
    L=[]
```

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
a([0|Y], Y).
b([1|Y], Y).
```

```
?- m([0,1,0,0,1,1], L).
            L=[0,1,0,0,1,1]
            L=[0,0,1,1]
            L=[]
?- m([0,0,1,1,1,0], L).
```

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
a([0|Y], Y).
b([1|Y], Y).
```

```
m(X, X).
m(X1, X5) :- a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).
a([0|Y], Y).
b([1|Y], Y).
```

Introduction	Systems	Prolog	Data Structures	Unification
00	000	000000	000000000000000000000000000000000000000	00000000000
D (1 1)				
Definite	Clause G	rammars		

- m --> [].
- m --> a, m, b, m.
- a --> [0].
- b --> [1].

-		
-	KO CKO DO DO LO C	DIDATIONOC
-	TOPTATION	Languages

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

Introduction	Systems	Prolog	Data Structures	Unification
			000000000000000000000000000000000000000	
D (1 1	~ ~			
Detinite	(Jause ()	rammars		

- m --> [].
- m --> a, m, b, m.
- a --> [0].
- b --> [1].
 - ?- m([0,1,0,0,1,1], L).

_	KO MKO IND IND UD M	anguagoe
-	TOPTATION IN	Languages

Introduction	Systems	Prolog	Data Structures	Unification
	000	0000000	000000000000000000000000000000000000	000000000000
Definite	Clause G	rammars		

- m --> [].
- m --> a, m, b, m.
- a --> [0].
- b --> [1].

?- m([0,1,0,0,1,1], L). L=[0,1,0,0,1,1],...

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Introduction	Systems	Prolog	Data Structures	Unification
00		0000000	000000000000000000000000000000000000	000000000000
Definite	Clause	Grammars		

- m --> [].
- m --> a, m, b, m.
- a --> [0]. b --> [1].
 - ?- m([0,1,0,0,1,1], L). L=[0,1,0,0,1,1],... ?- phrase(m, [0,1,0,0,1,1])

・ロト ・聞 ト ・ ヨト ・ ヨト …

Introduction	Systems	Prolog	Data Structures	Unification
00		0000000	000000000000000000000000000000000000	000000000000
Definite	Clause	Grammars		

- m --> [].
- m --> a, m, b, m.
- a --> [0]. b --> [1].
 - ?- m([0,1,0,0,1,1], L). L=[0,1,0,0,1,1],... ?- phrase(m, [0,1,0,0,1,1])

・ロト ・聞 ト ・ ヨト ・ ヨト …

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000		000000000000
Definite	Clause G	rammars		

a --> [0]. b --> [1].

> ?- m([0,1,0,0,1,1], L). L=[0,1,0,0,1,1], ... ?- phrase(m, [0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1], []) yes

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000		000000000000
Definite	Clause Gr	rammars		

a --> [0]. b --> [1].

> ?- m([0,1,0,0,1,1], L). L=[0,1,0,0,1,1], ...?- phrase(m, $[0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1], [])$ yes ?- phrase(m, L).

- 4 同 6 4 日 6 4 日 6

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000	000000000000000000000000000000000000	000000000000
Definite	Clause Gi	rammars		

a --> [0]. b --> [1].

> ?- m([0,1,0,0,1,1], L). L=[0,1,0,0,1,1], ...?- phrase(m, $[0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1], [])$ yes ?- phrase(m, L). L=[]

< 🗇 🕨

Introduction	Systems	Prolog	Data Structures	Unification
00	000	000000		000000000000
Definite	Clause Gi	rammars		

a --> [0]. b --> [1].

?-
$$m([0,1,0,0,1,1], L)$$
.
 $L=[0,1,0,0,1,1], ...$
?- phrase(m, $[0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1], [])$
yes
?- phrase(m, L).
 $L=[]$
 $L=[0,1]$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000		000000000000
Definite	Clause G	rammars		

a --> [0]. b --> [1].

> ?- m([0,1,0,0,1,1], L). L=[0,1,0,0,1,1], ...?- phrase(m, $[0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1], [])$ yes ?- phrase(m, L). L=[] L=[0,1]L=[0,1,0,1]

A B F A B F

< 67 ▶

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000	000000000000000000000000000000000000	000000000000
Definite	Clause Gi	rammars		

a --> [0]. b --> [1].

Definite Clause Grammars (Magic?)

r([]) --> []. r([X|Xs]) --> r(Xs), [X].

-		
÷	rogramming	T languages
	IVELANNIN	

Definite Clause Grammars (Magic?)

r([]) --> []. r([X|Xs]) --> r(Xs), [X].

?- phrase(r([1,2,3,4]), L).

norus acc
Invulages

Definite Clause Grammars (Magic?)

r([]) --> []. r([X|Xs]) --> r(Xs), [X].

```
?- phrase(r([1,2,3,4]), L).
    L=[4,3,2,1]
```

Definite Clause Grammars (Magic?)

r([]) --> []. r([X|Xs]) --> r(Xs), [X].

```
?- phrase(r([1,2,3,4]), L).
        L=[4,3,2,1]
?- phrase(r(Q), [1,2,3,4]).
```

Definite Clause Grammars (Magic?)

r([]) --> []. r([X|Xs]) --> r(Xs), [X].

Introduction	Systems 000	Prolog 0000000	Data Structures 0000000000000000000000000	Unification
Definite	Clause G	rammars (⁻	Trick exposed!)	

イロン イ理 とくほと くほとう

 Introduction
 Systems
 Prolog
 Data Structures
 Unification

 Openinite
 Clause
 Grammars
 (Trick
 exposed!)
 Openinite

r([]) --> []. r([X|Xs]) --> r(Xs), [X].

Translated to:

r([], X, X). r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

-		
_	KO (KKO 100 100 110 (K)	1 2000000000
	TOPTATION	Languages

<ロト < 団ト < 団ト < 団ト

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000	0000000000000000000000000	0000000000
Definite	Clause Gr	ammars (⁻	Trick exposed!)	

Translated to:

r([], X, X). r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Equivalent to:

r([], X, X). r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).

?- phrase(r([1,2,3,4]), L).

< □ > < ---->

(4) (3) (4) (4) (4)

Introduction 00	Systems 000	Prolog 0000000	Data Structures	Unification
Definite	Clause Gr	rammars (Trick exposed!)	

Translated to:

r([], X, X). r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Equivalent to:

r([], X, X). r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).

Introduction	Systems	Prolog	Data Structures	Unification
00	000	0000000	0000000000000000000000000	0000000000
Definite	Clause G	rammars (Trick exposed!)	

Translated to:

r([], X, X). r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Equivalent to:

r([], X, X). r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).

?- phrase(r([1,2,3,4]), L).

$$\equiv$$
 r([1,2,3,4], L, [])
L=[4,3,2,1]

< □ > < ---->

.

Introduction 00	Systems 000	Prolog 0000000	Data Structures 000000000000000000000000	Unification 000000000000
Definite	Clause Gi	rammars ([*]	Trick exposed!)	
r([])> r([X Xs])	[]. > r(Xs),	, [X].		
Translated ·	to:			

r([], X, X). r([X|Xs], Z1, Z3) :- r(Xs, Z1, Z2), Z2 = [X|Z3].

Equivalent to:

r([], X, X). r([X|Xs], Z1, Z3) :- r(Xs, Z1, [X|Z3]).

?- phrase(r([1,2,3,4]), L).

$$\equiv$$
 r([1,2,3,4], L, [])
L=[4,3,2,1]

• A way to reverse a list in polynomial time!

Programming Languages

< ∃ > <

- Operation done to "match" the goal atom with the head of a clause in the program.
- Forms the basis for the *matching* operation we used for Prolog evaluation.
 - f(a,Y) and f(X,b) unify when X=a and Y=b.
 - f(a,X) and f(X,b) do not unify.
 - X and f(X) do not unify (but they "match" in Prolog!)

(3)

A substitution is a mapping between variables and values (terms).

- Denoted by $\{X_1\mapsto t_1, X_2\mapsto t_2, \ldots, X_n\mapsto t_n\}$ such that
 - $X_i \neq t_i$, and
 - X_i and X_j are distinct variables when $i \neq j$.
- Empty subsititution is denoted by ϵ .
- A substition is said to be a **renaming** if it is of the form $\{X_1 \mapsto Y_1, \ldots, X_n \mapsto Y_n\}$ and Y_1, \ldots, Y_n is a permutation of X_1, \ldots, X_n .
- Example: $\{X \mapsto Y, Y \mapsto X\}$ is a renaming substitution.

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

Substitutions and Terms

- Application of a substitution:
 - $X\theta = t$ if $X \mapsto t \in \theta$.
 - $X\theta = X$ if $X \mapsto t \notin \theta$ for any term t.
- Application of a substitution $\{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$ to a *term s*:
 - is a term obtained by <u>simultaneously</u> replacing every occurrence of X_i in s by t_i.
 - Denoted by sθ and sθ is said to be an *instance* of s
- Example:

$$p(f(X,Z), f(Y,a)) \{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$$

= $p(f(g(Y), a), f(Z, a))$

• = • • =

Composition of Substitutions

- Composition of substitutions $\theta = \{X_1 \mapsto s_1, \dots, X_m \mapsto s_m\}$ and $\sigma = \{Y_1 \mapsto t_1, \dots, Y_n \mapsto t_n\}$:
 - First form the set $\{X_1 \mapsto s_1 \sigma, \dots, X_m \mapsto s_m \sigma, Y_1 \mapsto t_1, \dots, Y_n \mapsto t_n\}$
 - Remove from the set $X_i \mapsto s_i \sigma$ if $s_i \sigma = X_i$
 - Remove from the set $Y_j \mapsto t_j$ if Y_j is identical to some variable X_i

• Example: Let $\theta = \sigma = \{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$. Then $\theta \sigma =$

$$\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$$
$$= \{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$$

• More examples: Let $\theta = \{X \mapsto f(Y)\}$ and $\sigma = \{Y \mapsto a\}$

•
$$\theta \sigma = \{X \mapsto f(a), Y \mapsto a\}$$

• $\theta \sigma = \{X \mapsto f(Y), Y \mapsto a\}$

Composition is not *commutative* but is *associative*: θ(σγ) = (θσ)γ
Also, E(θσ) = (Eθ)σ

- A substitution θ is **idempotent** iff $\theta \theta = \theta$.
- Examples:
 - $\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$ is not idempotent since

$$\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$$
$$= \{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$$

• $\{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$ is not idempotent either since

$$\{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\} \{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$$
$$= \{X \mapsto g(a), Y \mapsto a, Z \mapsto a\}$$

- $\{X \mapsto g(a), Y \mapsto a, Z \mapsto a\}$ is idempotent
- For a substitution $\theta = \{X_1 \mapsto t_1, \dots, X_n \mapsto t_n\}$,
 - $Dom(\theta) = \{X_1, X_2, ..., X_n\}$
 - $Range(\theta) = set of all variables in t_1, \ldots, t_n$
- A substitution θ is idempotent iff $Dom(\theta) \cap Range(\theta) = \emptyset$

Introduction	Systems	Prolog	Data Structures 000000000000000000000000000000000000	Unification
00	000	0000000		000000000000
Unifiers				

- A substitution θ is a <u>unifier</u> of two terms s and t if $s\theta$ is identical to $t\theta$.
- θ is a unifier of a set of equations $\{s_1 \stackrel{\cdot}{=} t_1, \ldots, s_n \stackrel{\cdot}{=} t_n\}$, if for all *i*, $s_i \theta = t_i \theta$.
- A substitution θ is more general than σ (written as θ ≥ σ) if there is a substitution ω such that σ = θω
- A substitution θ is a <u>most general unifier</u> (mgu) of two terms (or a set of equations) if for every unifer σ of the two terms (or equations) θ ≥ σ
- Example: Consider two terms f(g(X), Y, a, b) and f(Z, W, X, b).
 - $\theta_1 = \{X \mapsto a, Y \mapsto b, Z \mapsto g(a), W \mapsto b\}$ is a unifier
 - $\theta_2 = \{X \mapsto a, Y \mapsto W, Z \mapsto g(a)\}$ is also a unifier
 - θ_2 is a most general unifier

イロト イヨト イヨト

Equations and Unifiers

- A set of equations \mathcal{E} is in <u>solved form</u> if it is of the form $\{X_1 \doteq t_1, \dots, X_n \doteq t_n\}$ iff
 - all X_i's are distinct, and
 - no X_i appears in any t_j .
- Given a set of equations in solved form $\mathcal{E} = \{X_1 \doteq t_1, \dots, X_n \doteq t_n\}$ the substitution $\{X_1/t_1, \dots, X_n/t_n\}$ is an idempotent mgu of \mathcal{E} .
- Two sets of equations \mathcal{E}_1 and \mathcal{E}_2 are said to be <u>equivalent</u> iff they have the same set of unifiers.
- To find the mgu of two terms s and t, find a set of equations in solved form that is equivalent to {s = t}.
 If there is no equivalent solved form, there is no mgu.

イロト イヨト イヨト

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

 $\{f(X,g(Y)) \stackrel{\cdot}{=} f(g(Z),Z)\} \Rightarrow$

-		•
Uro gro n	100.100	anguages
1 1091411	IIIIIIP	

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

 $\{f(X,g(Y)) \doteq f(g(Z),Z)\} \Rightarrow \{X \doteq g(Z),g(Y) \doteq Z\}$
Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

$$\{f(X,g(Y)) \doteq f(g(Z),Z)\} \Rightarrow \{X \doteq g(Z),g(Y) = Z\}$$
$$\Rightarrow \{X = g(Z),Z = g(Y)\}$$

イロト イ団ト イヨト イヨト

Introduction Systems Prolog Data Structures Unification

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

$$\{f(X,g(Y)) \doteq f(g(Z),Z)\} \Rightarrow \{X \doteq g(Z),g(Y) \doteq Z\}$$
$$\Rightarrow \{X = g(Z),Z \doteq g(Y)\}$$
$$\Rightarrow \{X = g(g(Y)),Z = g(Y)\}$$

イロト イ団ト イヨト イヨト

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

$$\{f(X, g(Y)) \doteq f(g(Z), Z)\} \Rightarrow \{X \doteq g(Z), g(Y) \doteq Z\}$$
$$\Rightarrow \{X \doteq g(Z), Z \doteq g(Y)\}$$
$$\Rightarrow \{X \doteq g(g(Y)), Z \doteq g(Y)\}$$

• Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$
$$\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} \Rightarrow$$

(日) (周) (三) (三)

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

$$\{f(X,g(Y)) \doteq f(g(Z),Z)\} \Rightarrow \{X \doteq g(Z),g(Y) \doteq Z\}$$

$$\Rightarrow \{X \doteq g(Z), Z \doteq g(Y)\}$$

$$\Rightarrow \{X \doteq g(g(Y)), Z \doteq g(Y)\}$$

• Example 2: Find the mgu of $f(X,g(X),b)$ and $f(a,g(Z),Z)$

$$\{f(X,g(X),b) \doteq f(a,g(Z),Z)\} \Rightarrow \{X \doteq a,g(X) \doteq g(Z), b \doteq Z\}$$

(日) (同) (三) (三)

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

$$\{f(X,g(Y)) \doteq f(g(Z),Z)\} \Rightarrow \{X \doteq g(Z),g(Y) \doteq Z\} \\ \Rightarrow \{X \doteq g(Z), Z \doteq g(Y)\} \\ \Rightarrow \{X \doteq g(g(Y)), Z \doteq g(Y)\} \\$$
• Example 2: Find the mgu of $f(X,g(X),b)$ and $f(a,g(Z),Z) \\ \{f(X,g(X),b) \doteq f(a,g(Z),Z)\} \Rightarrow \{X \doteq a,g(X) \doteq g(Z), b \doteq Z\} \\ \Rightarrow \{X \doteq a,g(a) \doteq g(Z), b = Z\} \\$

(日) (同) (三) (三)

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

$$\{f(X,g(Y)) \doteq f(g(Z),Z)\} \Rightarrow \{X \doteq g(Z),g(Y) \doteq Z\} \\ \Rightarrow \{X \doteq g(Z), Z \doteq g(Y)\} \\ \Rightarrow \{X \doteq g(g(Y)), Z \doteq g(Y)\} \\ \Rightarrow \{X \doteq g(g(Y)), Z \doteq g(Y)\} \\$$
• Example 2: Find the mgu of $f(X,g(X),b)$ and $f(a,g(Z),Z) \\ \{f(X,g(X),b) \doteq f(a,g(Z),Z)\} \Rightarrow \{X \doteq a,g(X) \doteq g(Z), b \doteq Z\} \\ \Rightarrow \{X \doteq a,g(a) \doteq g(Z), b \doteq Z\} \\ \Rightarrow \{X \doteq a, a \doteq Z, b \doteq Z\} \\$

イロト イヨト イヨト イヨト

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

$$\{f(X,g(Y)) \doteq f(g(Z),Z)\} \Rightarrow \{X \doteq g(Z),g(Y) \doteq Z\}$$

$$\Rightarrow \{X \doteq g(Z), Z \doteq g(Y)\}$$

$$\Rightarrow \{X \doteq g(g(Y)), Z \doteq g(Y)\}$$

• Example 2: Find the mgu of $f(X,g(X),b)$ and $f(a,g(Z),Z)$

$$\{f(X,g(X),b) \doteq f(a,g(Z),Z)\} \Rightarrow \{X \doteq a,g(X) \doteq g(Z), b \doteq Z\}$$

$$\Rightarrow \{X \doteq a,g(a) \doteq g(Z), b \doteq Z\}$$

$$\Rightarrow \{X \doteq a,g(a) = g(Z), b = Z\}$$

$$\Rightarrow \{X \stackrel{\cdot}{=} a, Z \stackrel{\cdot}{=} a, b \stackrel{\cdot}{=} Z\}$$

(日) (同) (三) (三)

}

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

$$\{f(X,g(Y)) \doteq f(g(Z),Z)\} \Rightarrow \{X \doteq g(Z),g(Y) \doteq Z\}$$

$$\Rightarrow \{X \doteq g(Z), Z \doteq g(Y)\}$$

$$\Rightarrow \{X \doteq g(g(Y)), Z \doteq g(Y)\}$$

• Example 2: Find the mgu of $f(X,g(X),b)$ and $f(a,g(Z),Z)$

$$\{f(X,g(X),b) \doteq f(a,g(Z),Z)\} \Rightarrow \{X \doteq a,g(X) \doteq g(Z), b \in Z\}$$

$$\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} \Rightarrow \{X \doteq a, g(X) \doteq g(Z), b \doteq Z\}$$
$$\Rightarrow \{X \doteq a, g(a) \doteq g(Z), b \doteq Z\}$$
$$\Rightarrow \{X \doteq a, a \doteq Z, b \doteq Z\}$$
$$\Rightarrow \{X \doteq a, Z \doteq a, b \doteq Z\}$$
$$\Rightarrow \{X \doteq a, Z \doteq a, b \doteq Z\}$$

イロト イ団ト イヨト イヨト

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

$$\{f(X,g(Y)) \doteq f(g(Z),Z)\} \Rightarrow \{X \doteq g(Z),g(Y) \doteq Z\}$$

$$\Rightarrow \{X \doteq g(Z), Z \doteq g(Y)\}$$

$$\Rightarrow \{X \doteq g(g(Y)), Z \doteq g(Y)\}$$

mple 2: Find the mgu of $f(X,g(X),b)$ and $f(a,g(Z),Z)$

$$f(X,g(X),b) \doteq f(a,g(Z),Z)\} \Rightarrow \{X \doteq a,g(X) \doteq g(Z), b \in I\}$$

$$\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} \Rightarrow \{X \doteq a, g(X) \doteq g(Z), b \doteq Z\}$$
$$\Rightarrow \{X \doteq a, g(a) \doteq g(Z), b \doteq Z\}$$
$$\Rightarrow \{X \doteq a, a \doteq Z, b \doteq Z\}$$
$$\Rightarrow \{X \doteq a, Z \doteq a, b \doteq Z\}$$
$$\Rightarrow \{X \doteq a, Z \doteq a, b = Z\}$$
$$\Rightarrow \{X \doteq a, Z \doteq a, b = a\}$$
$$\Rightarrow fail$$

Exa

イロト イ団ト イヨト イヨト

A Simple Unification Algorithm

Given a set of equations \mathcal{E} :

repeat select $s \stackrel{\cdot}{=} t \in \mathcal{E}$: case $s \doteq t$ of **1.** $f(s_1, \ldots, s_n) \stackrel{\cdot}{=} f(t_1, \ldots, t_n)$: replace the equation by $s_i = t_i$ for all i2. $f(s_1,\ldots,s_n) \stackrel{\cdot}{=} g(t_1,\ldots,t_m), f \neq g \text{ or } n \neq m$: halt with failure 3. $X \stackrel{.}{=} X$: remove the equation 4. $t \doteq X$: where t is not a variable replace equation by $X \stackrel{\cdot}{=} t$ 5. X = t: where $X \neq t$ and X occurs more than once in \mathcal{E} : if X is a proper subterm of tthen halt with failure (5a) else replace all other X in \mathcal{E} by t (5b) until no action is possible for any equation in \mathcal{E} return \mathcal{E}

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z) $\{f(X, g(Y)) \doteq f(g(Z), Z)\} \Rightarrow$

(日) (周) (三) (三)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z) $\{f(X, g(Y)) \doteq f(g(Z), Z)\} \Rightarrow \{X \doteq g(Z), g(Y) \doteq Z\}$ case 1

イロト イポト イヨト イヨト

- Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z) $\{f(X,g(Y)) = f(g(Z),Z)\} \Rightarrow \{X = g(Z), g(Y) = Z\}$ case 1 $\Rightarrow \{X \stackrel{\cdot}{=} g(Z), Z \stackrel{\cdot}{=} g(Y)\}$

 - case 4

イロト イヨト イヨト

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z) $\{f(X,g(Y)) = f(g(Z),Z)\} \Rightarrow \{X = g(Z), g(Y) = Z\}$ case 1 $\Rightarrow \{X \stackrel{\cdot}{=} g(Z), Z \stackrel{\cdot}{=} g(Y)\}$ case 4 $\Rightarrow \{X\}$

$$= g(g(Y)), Z = g(Y)$$
 case 5b

イロト イポト イヨト イヨト

- Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z) $\{f(X, g(Y)) \doteq f(g(Z), Z)\} \Rightarrow \{X \doteq g(Z), g(Y) \doteq Z\}$ case 1 $\Rightarrow \{X \doteq g(Z), Z \doteq g(Y)\}$ case 4
 - $\Rightarrow \{X = g(g(Y)), Z = g(Y)\} \text{ case 5b}$ f(X, g(X)) and f(Z, Z)

イロト イポト イヨト イヨト

• Example 3: Find the mgu of f(X, g(X)) and f(Z, Z) $\{f(X, g(X)) \doteq f(Z, Z)\} \Rightarrow$

- Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z) $\{f(X, g(Y)) \stackrel{\cdot}{=} f(g(Z), Z)\} \Rightarrow \{X \stackrel{\cdot}{=} g(Z), g(Y) \stackrel{\cdot}{=} Z\}$ case 1 $\Rightarrow \{X \stackrel{\cdot}{=} g(Z), Z \stackrel{\cdot}{=} g(Y)\}$ case 4 $\Rightarrow \{X \stackrel{\cdot}{=} g(g(Y)), Z \stackrel{\cdot}{=} g(Y)\}$
 - case 5b
- Example 3: Find the mgu of f(X, g(X)) and f(Z, Z) $\{f(X,g(X)) = f(Z,Z)\} \Rightarrow \{X = Z,g(X) = Z\}$ case 1

イロト イポト イヨト イヨト

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z) $\{f(X, g(Y)) = f(g(Z), Z)\} \Rightarrow \{X = g(Z), g(Y) = Z\}$ case 1 $\Rightarrow \{X = g(Z), Z = g(Y)\}$ case 4 $\Rightarrow \{X = g(g(Y)), Z = g(Y)\}$ case 5b • Example 3: Find the mgu of f(X, g(X)) and f(Z, Z) $\{f(X, g(X)) = f(Z, Z)\} \Rightarrow \{X = Z, g(X) = Z\}$ case 1

$$\Rightarrow \{X = Z, g(Z) = Z\} \text{ case 5b}$$

イロト イポト イヨト イヨト

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z) $\{f(X, g(Y)) = f(g(Z), Z)\} \Rightarrow \{X = g(Z), g(Y) = Z\}$ case 1 $\Rightarrow \{X = g(Z), Z = g(Y)\}$ case 4 $\Rightarrow \{X = g(g(Y)), Z = g(Y)\}$ case 5b • Example 3: Find the mgu of f(X, g(X)) and f(Z, Z) $\{f(X, g(X)) = f(Z, Z)\} \Rightarrow \{X = Z, g(X) = Z\}$ case 1 $\Rightarrow \{X = Z, g(Z) = Z\}$ case 5b $\Rightarrow \{X = Z, Z = g(Z)\}$ case 4

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z) $\{f(X, g(Y)) = f(g(Z), Z)\} \Rightarrow \{X = g(Z), g(Y) = Z\}$ case 1 $\Rightarrow \{X = g(Z), Z = g(Y)\}$ case 4 $\Rightarrow \{X = g(g(Y)), Z = g(Y)\}$ case 5b • Example 3: Find the mgu of f(X, g(X)) and f(Z, Z) $\{f(X, g(X)) = f(Z, Z)\} \Rightarrow \{X = Z, g(X) = Z\}$ case 1 $\Rightarrow \{X = Z, g(Z) = Z\}$ case 5b $\Rightarrow \{X = Z, Z = g(Z)\}$ case 4 \Rightarrow fail case 5a

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Complexity of the unification algorithm

Consider

$$\mathcal{E} = \{g(X_1, \ldots, X_n) \stackrel{\cdot}{=} g(f(X_0, X_0), f(X_1, X_1), \ldots, f(X_{n-1}, X_{n-1})\}.$$

ullet By applying case $oldsymbol{1}$ of the algorithm, we get

$$\{X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), \dots, X_n = f(X_{n-1}, X_{n-1})\}$$

- If terms are kept as *trees*, the final value for X_n is a tree of size $O(2^n)$.
- Recall that for **case 5** we need to first check if a variable appears in a term, and this could now take $O(2^n)$ time.
- There are *linear-time* unification algorithms that share structures (terms as DAGs).
- X = t is the most common case for unification in Prolog. The fastest algorithms are linear in t.
- Prolog cuts corners by omitting *case 5a* (the occur check), thereby doing *X* = *t* in *constant time*.

- Note that mgu stands for **a** most general unifier.
- There may be more than one mgu. E.g. $f(X) \stackrel{\cdot}{=} f(Y)$ has two mgus:

•
$$\{X \mapsto Y\}$$

• $\{Y \mapsto X\}$

- If θ is an mgu of s and t, and ω is a renaming, then θω is an mgu of s and t.
- If θ and σ are mgus of s and t, then there is a renaming ω such that $\theta = \sigma \omega$.

(4) (2) (4) (4) (4)