Prolog

Principles of Programming Languages

CSE 526

- Introduction
- 2 Systems
- Prolog
- Data Structures
- Unification

Compiled at 08:56 on 2019/02/18

Programming Languages

Logic Programming

CSE 526 1 / 48

Introduction

Logic and Programs

• "All men are mortal; Socrates is a man; Hence Socrates is mortal"

$$\forall X. \ man(X) \Rightarrow mortal(X)$$

$$man(socrates)$$

- Predicate logic
 - Predicates (e.g. man, mortal) which define sets.
 - Atoms (e.g. socrates) which are data values
 - Variables (e.g. X) which range over data values
 - Rules (e.g. $\forall X. man(X) \Rightarrow mortal(X)$) which define relationships between predicates.

Logic Programs and Queries

```
\forall X. \ man(X) \Rightarrow mortal(X)
man(\texttt{socrates})
```

```
Logic "Program":
  man(socrates).
  mortal(X) :- man(X).

Queries:
  ?- mortal(socrates).
  yes
  ?- mortal(X).
  X=socrates;
  no
```

Programming Languages

Logic Programming

CSE 526 3 / 48

Systems

Prolog

Programming in **Log**ic

- Early development: Kowalski & van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)
- First efficient implementation: WAM of David H.D. Warren (Edinburgh) (mid '70s).
- Later developments:
 - Constraint Logic Programming: for applications in AI, planning, scheduling, etc. Jaffar & Lassez (IBM Watson)
 - Memoization: Tamaki & Sato (Tokyo); Warren et al (Stony Brook)

Prolog Systems

- SWI Prolog (www.swi-prolog.org)
 - Can be obtained for free and installed on Windows, Linux, Mac.
 - Has a good development environment (command completion, help, graphical debugger, etc.)
 - On compute* (Unix) servers: ~cram/bin/swipl
- XSB Prolog (xsb.sourceforge.net)
 - Can be obtained for free and installed on Windows, Linux, Mac.
 - Supports a powerful extension (memoization) to Prolog
 - Command-line interface (e.g. no graphical debugger)
 - On compute* (Unix) servers: ~cram/bin/xsb

Programming Languages

Logic Programming

CSE 526

5 / 48

Systems

Using Prolog Systems

- Prolog programs are in files with ".pl" extension (".P" for XSB)
- Prolog systems typically support an interactive mode.
- "[filename]." to compile and load a program in filename.pl (filename.P in XSB).
- "halt." to exit the system.

Logic Programs

- Programs are a set of *rules* (also called *clauses*).
- Predicates in a logic program are analogous to procedures in imperative programs.
- One or more rules are used to define a predicate.
- Example:

```
inc(X,Y) := Y is X+1.
```

- X and Y are variables.
- inc is a predicate.
- The predicate is defined using a single rule.

Programming Languages

Logic Programming

CSE 526 7 / 48

Prolog

Logic Programs

(contd.)

inc(X,Y) := Y is X+1.

- ":-" separates the body of the rule from its head.
- "X" and "Y" are also "parameters" of the predicate. In this case, X is the input parameter, and Y is the return parameter (where the return values are stored).
- "Y is X+1" defines Y in terms of X.
- The period (".") marks the end of a rule.
- The predicate is *called* by giving values to its parameters. e.g. inc(6, B) returns with B=7. inc(11, B) returns with B=12.

Syntax of Prolog

- Variables are identifiers that begin with an upper case letter or underscore.
 - An underscore, by itself, represents an anonymous variable.
- *Predicate* names (and later, data structure symbols) are identifiers that begin with a lower case letter.
- All variables are *local* to the clause in which they occur.
- Different occurrences of the same variable in a clause denote the same data.
- Variables need not be declared, and have no type.

Programming Languages

Logic Programming

CSE 526

9 / 48

Prolog

How Prolog Works (An Example)

```
big(bear).
big(elephant).

brown(bear).

black(cat).

small(cat).

gray(elephant).

dark(Z) :- black(Z).
dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).
```

Programming Languages Logic Programming CSE 526 10 / 48

Derivations

```
big(bear).
                        brown(bear).
                                              dark(Z) := black(Z).
big(elephant).
                        black(cat).
                                              dark(Z) := brown(Z).
small(cat).
                        gray(elephant).
dangerous(X) :- dark(X), big(X).
                                dangerous(Q)
               dangerous(X) := dark(X), big(X)
                              dark(Q), big(Q)
                   black(Q), big(Q) brown(Q), big(Q)
               black(cat)
                       big(cat)
                                            big(bear)
                         failure
                                              success
```

Programming Languages Logic Programming CSE 526 11 / 48

Prolog

How Prolog Works (the procedure)

- A query is, in general, a conjunction of goals
- To prove G_1, G_2, \ldots, G_n :
 - Find a clause $H: -B_1, B_2, \ldots, B_k$ such that G_1 and H match.
 - Under that substitution for variables, prove $B_1, B_2, \ldots, B_k, G_2, \ldots, G_n$.
 - If nothing is left to prove then the proof is complete. If there are no more clauses to match, the proof attempt fails.

How Prolog Works (an example)

To prove dangerous (Q):

- Select dangerous(X): dark(X), big(X) and prove dark(Q), big(Q).
- To prove dark(Q) select the first clause of dark, i.e. dark(Z) :black(Z), and prove black(Q), big(Q).
- Now select the fact black(cat) and prove big(cat). This proof attempt fails!
- Go back to step 2, and select the second clause of dark, i.e. dark(Z) :brown(Z), and prove brown(Q), big(Q).
- Now select brown(bear) and prove big(bear).
- Select the fact big(bear).

There is nothing left to prove, so the proof is complete

Programming Languages

Logic Programming

CSE 526 13 / 48

Data Structures

Data Representation in Prolog

- Prolog has no notion of data types
- All data is represented as terms, which can be:
 - Variables
 - Non-variable Terms
 - Atomic data (Integers, floating point numbers, constants, . . .)
 - Compound Terms (Structures)

Atomic Data

- Numeric constants: Integers, floating point numbers (e.g. 1024, -42, 3.1415, 6.023e23...)
- Atoms:
 - Strings of characters enclosed in single quotes (e.g. 'cram', 'Stony Brook')
 - Identifiers: sequence of letters, digits, underscore, beginning with a letter (e.g. cram, r2d2, x_24).

Programming Languages

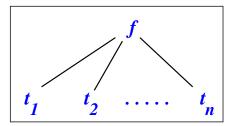
Logic Programming

CSE 526 15 / 48

Data Structures

Data Structures

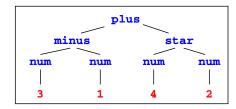
• If f is an identifier and $t_1, t_2, \ldots t_n$ are terms, then $f(t_1, t_2, \ldots t_n)$ is a term.



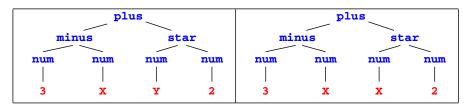
- In the above, f is called a function symbol (or functor) and t_i is an argument.
- Structures are used to group related data items together (in some ways similar to struct in C and objects in Java).
- Structures are used to construct trees (and, as a special case, lists).

Trees

• Example: expression trees:
plus(minus(num(3), num(1)), star(num(4), num(2)))



• Data structures may have variables. And the same variable may occur multiple times in a data structure.



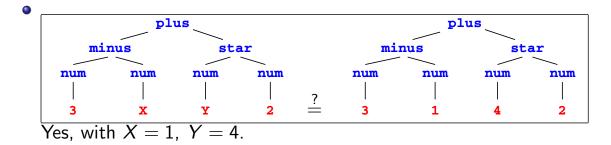
Programming Languages Logic Programming CSE 526 17 / 48

Data Structures

Matching

(We'll extend this to unification later)

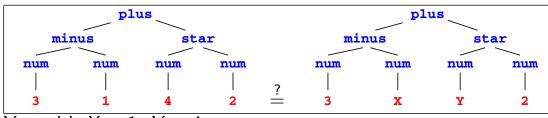
• $t_1 = t_2$: find substitions for variables in t_1 and t_2 that make the two terms identical.



Programming Languages Logic Programming CSE 526 18 / 48

Matching

(contd.)



Yes, with X = 1, Y = 4.

Programming Languages

Logic Programming

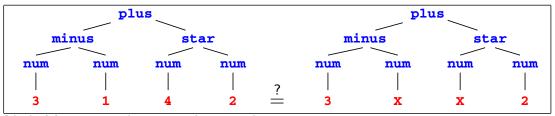
CSE 526

19 / 48

Data Structures

Matching

(contd.)



No! X cannot be 1 and 4 at the same time

Accessing arguments of a structure

- Matching is the common way to access a structure's arguments.
- Let date('Sep', 1, 2005) be a structure used to represent dates, with the month, day and year as the three arguments (in that order).
- Then date(M, D, Y) = date('Sep', 1, 2005) makes M = 'Sep', D = 1, Y = 2005.
- If we want to get only the day, we can write $date(_, D,_) = date('Sep', 1, 2005)$. Then we get D = 1.

Programming Languages

Logic Programming

CSE 526 21 / 48

Data Structures

Lists

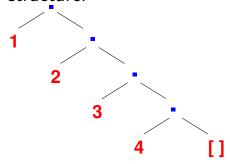
Prolog uses a special syntax to represent and manipulate lists.

- [1,2,3,4]: represents a list with 1, 2, 3 and 4, respectively.
- This can also be written as [1 | [2,3,4]]: a list with 1 as the head (its first element) and [2,3,4] as its tail (the list of remaining elements).
- If X = 1 and Y = [2,3,4] then [X|Y] is same as [1,2,3,4].
- The empty list is represented by [].
- The symbol "|" (called *cons*) and is used to separate the beginning elements of a list from its tail.

For example: $[1,2,3,4] = [1 \mid [2,3,4]]$ = $[1 \mid [2 \mid [3,4]]]$ = $[1,2 \mid [3,4]]$ Lists

(contd.)

• Lists are special cases of trees. For instance, the list [1,2,3,4] is represented by the following structure:



• The function symbol ./2 is the list constructor. [1,2,3,4] is same as .(1, .(2, .(3, .(4, []))))

Programming Languages

Logic Programming

CSE 526 23 / 48

Data Structures

Programming with Lists — I

First example: member/2, to find if a given element occurs in a list:

The program:

```
member(X, [X|_{-}]).
member(X, [_{-}|Ys]) :- member(X, Ys).
```

Example queries:

```
member(s, [l,i,s,t])
member(X, [l,i,s,t])
member(f(X), [f(1), g(2), f(3), h(4), f(5)])
```

Programming with Lists — II

append/3: concatenate two lists to form the third list.

The program:

```
append([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
```

Example queries:

```
append([f,i,r], [s,t], L)
append(X, Y, [s,e,c,o,n,d])
append(X, [t,h], [f,o,u,r,t,h])
```

Programming Languages

Logic Programming

CSE 526 25 / 48

Data Structures

Programming with Lists — III

Define a predicate, len/2 that finds the length of a list (first argument).

The program:

```
len([], 0).
len([_|Xs], N+1) :- len(Xs, N).
```

Example queries:

```
len([], X)
len([l,i,s,t], 4)
len([l,i,s,t], X)
```

Arithmetic

```
| ?- 1+2 = 3.
```

no

- In *Predicate logic*, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the built-in predicate "is":
 - X is 1 + 2 succeeds, binding X to 3.
 - 3 is 1 + 2 succeeds.
 - General form: R is E where E is an expression to be evaluated and R is matched with the expression's value.
 - Y is X + 1 will give an error if X does not (yet) have a value.

Programming Languages

Logic Programming

CSE 526 27 / 48

Data Structures

The list length example revisited

Define a predicate, length/2 that finds the length of a list (first argument).

The program:

```
length([], 0).
length([_|Xs], M) :- length(Xs, N), M is N+1.
```

Example queries:

```
length([], X)
length([1,i,s,t], 4)
length([1,i,s,t], X)
length(List, 4)
```

Programming Languages Logic Programming CSE 526 28 / 48

Conditional Evaluation

Consider the computation of n!, i.e. the factorial of n.

```
factorial(N, F) :- ...
```

- *N* is the input parameter; and *F* is the output parameter.
- The body of the rule specifies how the output is related to the input.
- For factorial, there are two cases: $N \le 0$ and N > 0.

```
• N \le 0: F = 1
• N > 0: F = N * (N - 1)!
```

Programming Languages

Logic Programming

CSE 526 29 / 48

Data Structures

More Prolog Syntax

- Assignments with arithmetic expressions is done using the keyword "is".
- If-then-else is written as (cond -> then-part ; else-part)
- If more than one action needs to be performed in a rule, they are written one after another, separated by a comma.
- Arithmetic expressions are not directly used as arguments when calling a predicate; they are first evaluated, and then passed to the called predicate.

Programming Languages Logic Programming CSE 526 30 / 48

Arithmetic Operators

- Integer/Floating Point operators: +, -, *, /
- Integer operators: mod, // (div)
- Int ↔ Float operators: floor, ceiling
- Comparison operators: <, >, =<, >=, =:=, =\=

Programming Languages

Logic Programming

CSE 526 31 / 48

Data Structures

Sequences, revisited

append/3: concatenate two lists to form the third list (sometimes called conc/3).

The program:

```
append([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
```

Example queries:

- append([f,i,r], [s,t], L)
- append(X, Y, [s,e,c,o,n,d])
- append(X, [t,h], [f,o,u,r,t,h])

CSE 526 32 / 48 Programming Languages Logic Programming

Mystery Program

```
m(X, X).

m(X1, X5) := a(X1, X2), m(X2, X3), b(X3, X4), m(X4, X5).

a([0|Y], Y).

b([1|Y], Y).
```

```
?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1]

L=[0,0,1,1]

L=[]

?- m([0,0,1,1,1,0], L).

L=[0,1,0,0,1,1]

L=[1,0]
```

Programming Languages

Logic Programming

CSE 526 33 / 48

Data Structures

Definite Clause Grammars

```
m --> [].

m --> a, m, b, m.

a --> [0].

b --> [1].
```

```
?- m([0,1,0,0,1,1], L).

L=[0,1,0,0,1,1], ...

?- phrase(m, [0,1,0,0,1,1]) \equiv m([0,1,0,0,1,1], [])

yes

?- phrase(m, L).

L=[]

L=[0,1]

L=[0,1,0,1]

\vdots
```

Definite Clause Grammars (Magic?)

```
r([]) --> [].
r([X|Xs]) --> r(Xs), [X].
```

?- phrase(r([1,2,3,4]), L).

$$L=[4,3,2,1]$$

?- phrase(r(Q), [1,2,3,4]).

Q=[4,3,2,1]

Programming Languages

Logic Programming

CSE 526

35 / 48

Data Structures

Definite Clause Grammars (Trick exposed!)

Translated to:

$$r([], X, X).$$

 $r([X|Xs], Z1, Z3) := r(Xs, Z1, Z2), Z2 = [X|Z3].$

Equivalent to:

- ?- phrase(r([1,2,3,4]), L). \equiv r([1,2,3,4], L, []) L=[4,3,2,1]
- A way to reverse a list in polynomial time!

Unification

- Operation done to "match" the goal atom with the head of a clause in the program.
- Forms the basis for the *matching* operation we used for Prolog evaluation.
 - f(a,Y) and f(X,b) unify when X=a and Y=b.
 - f(a,X) and f(X,b) do not unify.
 - X and f(X) do not unify (but they "match" in Prolog!)

Programming Languages

Logic Programming

CSE 526 37 / 48

Unification

Substitutions

A substitution is a mapping between variables and values (terms).

- Denoted by $\{X_1\mapsto t_1,X_2\mapsto t_2,\ldots,X_n\mapsto t_n\}$ such that
 - $X_i \neq t_i$, and
 - X_i and X_j are distinct variables when $i \neq j$.
- Empty substitution is denoted by ϵ .
- A substition is said to be a **renaming** if it is of the form $\{X_1 \mapsto Y_1, \dots, X_n \mapsto Y_n\}$ and Y_1, \dots, Y_n is a permutation of X_1, \dots, X_n .
- Example: $\{X \mapsto Y, Y \mapsto X\}$ is a renaming substitution.

Substitutions and Terms

- Application of a substitution:
 - $X\theta = t$ if $X \mapsto t \in \theta$.
 - $X\theta = X$ if $X \mapsto t \notin \theta$ for any term t.
- Application of a substitution $\{X_1 \mapsto t_1, \dots, X_n \mapsto t_n\}$ to a *term s*:
 - is a term obtained by <u>simultaneously</u> replacing *every* occurrence of X_i in s by t_i .
 - Denoted by $s\theta$ and $s\theta$ is said to be an *instance* of $s\theta$
- Example:

$$p(f(X,Z), f(Y,a)) \{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$$

$$= p(f(g(Y), a), f(Z, a))$$

Programming Languages

Logic Programming

CSE 526

39 / 48

Unification

Composition of Substitutions

- Composition of substitutions $\theta = \{X_1 \mapsto s_1, \dots, X_m \mapsto s_m\}$ and $\sigma = \{Y_1 \mapsto t_1, \dots, Y_n \mapsto t_n\}$:
 - First form the set $\{X_1 \mapsto s_1 \sigma, \dots, X_m \mapsto s_m \sigma, Y_1 \mapsto t_1, \dots, Y_n \mapsto t_n\}$
 - Remove from the set $X_i \mapsto s_i \sigma$ if $s_i \sigma = X_i$
 - Remove from the set $Y_i \mapsto t_i$ if Y_i is identical to some variable X_i
- Example: Let $\theta = \sigma = \{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$. Then $\theta \sigma =$

$$\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$$

$$= \{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$$

- More examples: Let $\theta = \{X \mapsto f(Y)\}$ and $\sigma = \{Y \mapsto a\}$
 - $\theta \sigma = \{X \mapsto f(a), Y \mapsto a\}$
 - $\theta \sigma = \{X \mapsto f(Y), Y \mapsto a\}$
- Composition is not *commutative* but is <u>associative</u>: $\theta(\sigma\gamma) = (\theta\sigma)\gamma$
- Also, $E(\theta\sigma) = (E\theta)\sigma$

Idempotence

- A substitution θ is **idempotent** iff $\theta\theta = \theta$.
- Examples:
 - $\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$ is not idempotent since

$$\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\} \{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$$

$$= \{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$$

• $\{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$ is not idempotent either since

$$\{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\} \{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$$

$$= \{X \mapsto g(a), Y \mapsto a, Z \mapsto a\}$$

- $\{X \mapsto g(a), Y \mapsto a, Z \mapsto a\}$ is idempotent
- For a substitution $\theta = \{X_1 \mapsto t_1, \dots, X_n \mapsto t_n\}$,
 - $Dom(\theta) = \{X_1, X_2, \dots X_n\}$
 - $Range(\theta) = set of all variables in <math>t_1, \ldots t_n$
- A substitution θ is idempotent iff $Dom(\theta) \cap Range(\theta) = \emptyset$

Programming Languages

Logic Programming

CSE 526

41 / 48

Unification

Unifiers

- A substitution θ is a <u>unifier</u> of two terms s and t if $s\theta$ is identical to $t\theta$.
- θ is a unifier of a set of equations $\{s_1 \stackrel{.}{=} t_1, \ldots, s_n \stackrel{.}{=} t_n\}$, if for all i, $s_i \theta = t_i \theta$.
- A substitution θ is more general than σ (written as $\theta \succeq \sigma$) if there is a substitution ω such that $\sigma = \theta \omega$
- A substitution θ is a <u>most general unifier</u> (mgu) of two terms (or a set of equations) if for every unifer σ of the two terms (or equations) $\theta \succeq \sigma$
- Example: Consider two terms f(g(X), Y, a, b) and f(Z, W, X, b).
 - $\theta_1 = \{X \mapsto a, Y \mapsto b, Z \mapsto g(a), W \mapsto b\}$ is a unifier
 - $\theta_2 = \{X \mapsto a, Y \mapsto W, Z \mapsto g(a)\}$ is also a unifier
 - $oldsymbol{ heta}_2$ is a most general unifier

Equations and Unifiers

- A set of equations \mathcal{E} is in <u>solved form</u> if it is of the form $\{X_1 \stackrel{.}{=} t_1, \dots, X_n \stackrel{.}{=} t_n\}$ iff
 - all Xi's are distinct, and
 - no X_i appears in any t_i .
- Given a set of equations in solved form $\mathcal{E} = \{X_1 \stackrel{.}{=} t_1, \dots, X_n \stackrel{.}{=} t_n\}$ the substitution $\{X_1/t_1, \dots X_n/t_n\}$ is an idempotent mgu of \mathcal{E} .
- Two sets of equations \mathcal{E}_1 and \mathcal{E}_2 are said to be <u>equivalent</u> iff they have the same set of unifiers.
- To find the mgu of two terms s and t, find a set of equations in solved form that is equivalent to $\{s = t\}$. If there is no equivalent solved form, there is no mgu.

Programming Languages

Logic Programming

CSE 526

43 / 48

Unification

A Simple Unification Algorithm (via Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z)

$$\{f(X, g(Y)) \stackrel{.}{=} f(g(Z), Z)\} \Rightarrow \{X \stackrel{.}{=} g(Z), g(Y) \stackrel{.}{=} Z\}$$

$$\Rightarrow \{X \stackrel{.}{=} g(Z), Z \stackrel{.}{=} g(Y)\}$$

$$\Rightarrow \{X \stackrel{.}{=} g(g(Y)), Z \stackrel{.}{=} g(Y)\}$$

• Example 2: Find the mgu of f(X, g(X), b) and f(a, g(Z), Z)

$$\{f(X,g(X),b) \stackrel{.}{=} f(a,g(Z),Z)\} \Rightarrow \{X \stackrel{.}{=} a,g(X) \stackrel{.}{=} g(Z), b \stackrel{.}{=} Z\}$$

$$\Rightarrow \{X \stackrel{.}{=} a,g(a) \stackrel{.}{=} g(Z), b \stackrel{.}{=} Z\}$$

$$\Rightarrow \{X \stackrel{.}{=} a,a \stackrel{.}{=} Z, b \stackrel{.}{=} Z\}$$

$$\Rightarrow \{X \stackrel{.}{=} a,Z \stackrel{.}{=} a,b \stackrel{.}{=} Z\}$$

$$\Rightarrow \{X \stackrel{.}{=} a,Z \stackrel{.}{=} a,b \stackrel{.}{=} a\}$$

$$\Rightarrow \text{fail}$$

A Simple Unification Algorithm

Given a set of equations \mathcal{E} :

```
repeat
  select s = t \in \mathcal{E};
   case s = t of
     1. f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n):
        replace the equation by s_i = t_i for all i
     2. f(s_1,\ldots,s_n) \stackrel{\cdot}{=} g(t_1,\ldots,t_m), f \neq g \text{ or } n \neq m:
        halt with failure
     3. X = X: remove the equation
     4. t = X: where t is not a variable
        replace equation by X = t
     5. X = t: where X \neq t and X occurs more than once in \mathcal{E}:
        if X is a proper subterm of t
           then halt with failure (5a)
           else replace all other X in \mathcal{E} by t (5b)
until no action is possible for any equation in {\cal E}
return \mathcal{E}
```

Programming Languages

Logic Programming

CSE 526 45 / 48

Unification

A Simple Unification Algorithm (More Examples)

• Example 1: Find the mgu of f(X, g(Y)) and f(g(Z), Z) $\{f(X, g(Y)) = f(g(Z), Z)\}$ \Rightarrow $\{X = g(Z), g(Y) = Z\}$ case 1 \Rightarrow $\{X = g(Z), Z = g(Y)\}$ case 4 \Rightarrow $\{X = g(g(Y)), Z = g(Y)\}$ case 5b

• Example 3: Find the mgu of f(X, g(X)) and f(Z, Z)

$$\{f(X,g(X)) = f(Z,Z)\} \Rightarrow \{X = Z, g(X) = Z\} \text{ case 1}$$

$$\Rightarrow \{X = Z, g(Z) = Z\} \text{ case 5b}$$

$$\Rightarrow \{X = Z, Z = g(Z)\} \text{ case 4}$$

$$\Rightarrow \text{ fail} \text{ case 5a}$$

Programming Languages Logic Programming CSE 526 46 / 48

Complexity of the unification algorithm

Consider

$$\mathcal{E} = \{ g(X_1, \dots, X_n) \stackrel{\cdot}{=} g(f(X_0, X_0), f(X_1, X_1), \dots, f(X_{n-1}, X_{n-1}) \}.$$

• By applying case 1 of the algorithm, we get

$$\{X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), \dots, X_n = f(X_{n-1}, X_{n-1})\}$$

- If terms are kept as *trees*, the final value for X_n is a tree of size $O(2^n)$.
- Recall that for **case 5** we need to first check if a variable appears in a term, and this could now take $O(2^n)$ time.
- There are linear-time unification algorithms that share structures (terms as DAGs).
- X = t is the most common case for unification in Prolog. The fastest algorithms are linear in t.
- Prolog cuts corners by omitting case 5a (the occur check), thereby doing X = t in constant time.

Programming Languages

Logic Programming

CSE 526 47 / 48

Unification

Most General Unifiers

- Note that mgu stands for a most general unifier.
- There may be more than one mgu. E.g. $f(X) \stackrel{.}{=} f(Y)$ has two mgus:

•
$$\{X \mapsto Y\}$$

• $\{Y \mapsto X\}$

- If θ is an mgu of s and t, and ω is a *renaming*, then $\theta\omega$ is an mgu of s and t.
- If θ and σ are mgus of s and t, then there is a renaming ω such that $\theta = \sigma \omega$.