
CSE 526, Spring 2020: HW4 Supplementary Material

Last Updated: 05/05/2020 at 1:49pm

In this homework you are expected to write an interpreter for the lambda-calculus-based lan-
guage with all the simple extensions we have gone through in class (Chaps. 3, 9, and 11 of the
text book). This document relates the material in the text book with the Prolog-based front-end
supplied to you for HW4.

1 Syntax and Representation

The following relates the syntactic forms for different language aspects/features as described in the
text book, with the abstract syntax representation as Prolog terms, as well as the concrete syntax
accepted by the Prolog-based front end (parser) supplied as a part of HW4 material.

1.1 Booleans

This is from language B in Chapter 3.

Book notation Informal meaning Abstract syntax Concrete Syntax

t Terms E E

true constant true true true

false constant false false false

if t then t else t conditional if(E1, E2, E3) if(E1,E2,E3)

We use E to denote expressions. For abstract syntax, E denotes Prolog terms representing the
abstract syntax of the expressions. For concrete syntax, E represents the textual notation used to
write the expressions.

1.2 Natural Numbers

This is from language NB in Chapter 3.

in addition to Sec. 1.1

Book notation Informal meaning Abstract syntax Concrete Syntax

0 constant zero zero 0

succ t successor succ(E1) succ E1

pred t predecessor pred(E1) pred E1

iszero t zero test iszero(E1) iszero E1

In addition to 0, the front end successfully parses natural numbers (sequence of digits) and
converts them to the successor notation. For instance, the front end treats 2 in a manner equivalent
to succ succ 0.

1

1.3 Lambda

This is from language λ→ in Chapter 9.

We use T to represent type expressions. For abstract syntax, T denotes Prolog terms repre-
senting the abstract syntax of the type expressions. For concrete syntax, T represents the textual
notation used to write the type expressions.

The notation also includes the following: a in abstract syntax denotes a Prolog atom. v in
concrete syntax denotes an identifier, which is a sequence of alphanumeric or underscore character
beginning with an alphabet.

in addition to those up to Sec. 1.2

Book notation Informal meaning Abstract syntax Concrete Syntax

Expressions

x variable var(a) v
λx:T. t abstraction lambda(a, T, E) \ v : T . E
t t application app(E1, E2) E1 E2

Types

nat natural numbers nat nat

bool Booleans bool bool

T → T type of functions arrow(T1, T2) T1 -> T2

In addition to the constructs from simply typed lambda calculus, λ→, we will allow an implicitly-
typed abstraction with the same syntax as OCAML. More precisely, we will permit an implicitly
typed abstraction, written in concrete syntax as fun v -> E, and represented in abstract syntax
as lambda(a, E).

1.4 Unit and Sequence

This is from Chapters 11.2 and 11.3.

in addition to those up to Sec. 1.3

Book notation Informal meaning Abstract syntax Concrete Syntax

Expressions

unit constant unit unitconst ()

t1; t2 sequence seq(E1, E2) E1 ; E2

Types

Unit unit type unittype unit

2

1.5 Let Bindings

This is from Chapter 11.5.

in addition to those up to Sec. 1.4

Book notation Informal meaning Abstract syntax Concrete Syntax

Expressions

let x = t in t let binding let(a, E1, E2) let v = E1 in E2 end

In contrast to OCAML and the book’s notation, note that the concrete syntax for this homework
has “end” to mark the end of a let-binding.

In addition to the above notation for let, the front end allows a more expressive form for
defining functions. The front end can successfully parse text of the form

let f x1 x2 · · · xn = e1 in e2 end

and generate an abstract syntax term equivalent to

let f = fun x1 -> (fun x2-> · · · (fun xn-> e1) · · ·) in e2 end

This syntactic sugar makes function definitions easier to write and read. Note, however, that this
derived form uses an implicit type (OCAML-style) for the defined function.

1.6 Pairs

This is from Chapter 11.6.

in addition to those up to Sec. 1.5

Book notation Informal meaning Abstract syntax Concrete Syntax

Expressions

{t, t} pair pair(E1, E2) (E1 , E2)

t.1 first projection fst(E) E . 1

t.2 second projection snd(E) E . 2

Types

T1 × T2 product type product(T1, T2) T1 * T2

Note the change in notation for projection when going from the concrete syntax to abstract
syntax. The components of a pair are accessed using the “dot” notation in concrete syntax, but
this is represented in abstract syntax using two different symbols for projecting the first and the
second components (fst and snd, respectively).

3

1.7 Records

This is from Chapter 11.8.

in addition to those up to Sec. 1.6

Book notation Informal meaning Abstract syntax Concrete Syntax

Expressions

{li = ti=1..n
i } record record(L) where L is

a list whose i-th el-
ement is of the form
(ai, Ei)

{ v1=E1 , v2=E2 , ...
vn=En }

t.l projection project(E, a) E . v

Types

{li : T i=1..n
i } type of records recordtype(L) where

L is a list whose i-th
element is of the form
(ai : Ti)

{ v1:T1 , v2:T2 , ...
vn:Tn }

1.8 Variants

This is from Chapter 11.10.

in addition to those up to Sec. 1.7

Book notation Informal meaning Abstract syntax Concrete Syntax

Expressions

case t of
〈li = xi〉 ⇒ ti=1..n

i
case case(E, L) where L

is a list whose i-th el-
ement is of the form
(ai, a

′
i, Ei)

case E of

<v1=v
′
1>=>E1 |

<v2=v
′
2>=>E2 | . . .

<vn=v
′
n>=>En

〈l = t〉 as T tagging tag(a, E, T) < v = E > as T

Types

〈li : T i=1..n
i 〉 type of variants varianttype(L)

where L is a list whose
i-th element is of the
form (ai : Ti)

< v1:T1 , v2:T2 , ...
vn:Tn >

4

1.9 Recursion

This is from Chapter 11.11.

in addition to those up to Sec. 1.8

Book notation Informal meaning Abstract syntax Concrete Syntax

Expressions

fix t fixed point of t fix(E) fix E
letrec x:T = t in t recursive let binding letrec(a, T, E1, E2) letrec a : T = E1 in

E2 end

letrec x = t in t recursive let binding
(implicitly typed)

letrec(a, E1, E2) letrec a = E1 in E2

end

Similar to the treatment of let, the front end allows a more expressive form for defining recursive
functions. The front end can successfully parse text of the form

letrec f x1 x2 · · · xn = e1 in e2 end

and generate an abstract syntax term equivalent to

letrec f = fun x1-> (fun x2 -> · · · (fun xn -> e1) · · ·) in e2 end

This syntactic sugar makes function definitions easier to write and read.

5

2 Syntactic Conventions

2.1 Comments

A concrete program may contain comments, which extend from (* and end at the next *). All
text between these sentinels are ignored when generating the abstract syntax tree. A comment may
occur wherever a whitespace is permitted.

2.2 Precedence and Associativity

The front end treats application, assignment and sequencing to be the three main binary operators.
All of them associate to the right. Note that for application, this associativity is unnatural. Among
these operators, application has the highest precedence and sequence has the lowest precedence.

Record/pair selection using the “dot” operator is considered as a unary operation, since there
is only one expression involved in that operation. Among unary operations, “dot” has the lowest
precedence. Other operators such as succ, ref etc. have equal (high) precedence.

Parantheses “(” and “)” can be used to group operations.

For types, the two binary type constructors “->” and “*” have the same precedence and are both
right associative. As in the case of expressions, parantheses can be used to group type expressions
as well.

6

3 Organization

The material for this HW is split into different files:

1. lexer.pl: Converts a string to a sequence of tokens.

2. parser.pl: Converts a string to an abstract syntax tree; uses tokenize defined in lexer.pl.

You may want to experiment with the parser to get a clear understanding of the mapping
from concrete syntax to abstract syntax.

3. util.pl: Offers subst(E1, X, E2, E3), a predicate that given an expression E1, a variable
X and another expression E2 substitutes all free occurrences of X in E2 with E1. The result of
the substitution is returned in E3. This predicate performs alpha renaming as needed.

4. toplevel.pl: Implements wrappers to parse contents of a file and to (1) evaluate an expres-
sion given as a string or in a file by repeated single-step evaluations; and (2) evaluates the
type of a given expression.

Predicate singlestep(E1, E2) is used in toplevel.pl to represent single-step evaluation:
expression E1 evaluates to expression E2 in one step. This predicate needs to be implemented
(in interp.pl); a template of the definitions for this predicate is given in interp.template.
The template encodes the single step call-by-value semantics for the simply-typed lambda
calculus and Booleans.

Predicate typeof(G, E, T) is used in toplevel.pl to represent type judgement: expres-
sion E has type T in a given type environment G. This predicate needs to be implemented (in
typeinfer.pl); a template of the definitions for this predicate is given in typeinfer.template.
The template encodes the type checking rules for the simply-typed lambda calculus and
Booleans.

Note that all the given material is geared for use with SWI Prolog as well as XSB Prolog.

7

