CSE 526, Spring 2020: HW2

Part a due: Tue., March 3.
Part b due: Tue Mar 10.

Instructions:

- Part (a) should contain:
- Complete formal proof of Q1.
- Detailed sketch of all other parts, containing sufficient information about the main proof steps for us to give useful feedback.
- Part(b) should contain formal answers to all questions.
- For each part, submit PDF files with your solution. Latex or otherwise typeset proofs and proof-sketches are preferred. You may also submit scans of handwritten solutions, as long as they are legible.

Q1. Let S be a set, and R be a binary relation over S (i.e., $\subseteq S \times S$). Consider the following three definitions, all attempting to define the reflexive transitive closure of R :
R_{I}^{*} : The inductive transitive closure of R, denoted by R_{I}^{*} is the smallest set such that:

1. if $s_{1} \in S$ and then $\left(s_{1}, s_{1}\right) \in R_{I}^{*}$.
2. if $\left(s_{1}, s_{2}\right) \in R$ and $\left(s_{2}, s_{3}\right) \in R_{I}^{*}$, then $\left(s_{1}, s_{3}\right) \in R_{I}^{*}$.
R_{C}^{*} : The constructive transitive closure of R, denoted by R_{C}^{*} is the union of all $T_{i}, i \geq 0$ (i.e. $R_{C}^{*}=\bigcup_{i \geq 0} T_{i}$), where:

$$
\begin{aligned}
T_{0} & =\emptyset \\
T_{i+1} & =\left\{\begin{array}{l}
\{(s, s) \mid s \in S\} \\
\cup\left\{\left(s_{1}, s_{3}\right) \mid \exists\left(s_{1}, s_{2}\right) \in R,\left(s_{2}, s_{3}\right) \in T_{i}\right\}
\end{array}\right.
\end{aligned}
$$

Q1. Show that $R_{I}^{*}=R_{C}^{*}$.

Q2. Consider the language $\mathbf{B}_{\mathbf{N}}$ of Boolean expressions from the text whose syntax and single-step operational semantics are given below.

Terms and Values:

Evaluation Rules:

$$
\begin{aligned}
& \text { nor }\left(\text { true }, t_{2}\right) \rightarrow \text { false } \quad \text { E-NorTrue } \\
& \text { nor(false, false) } \rightarrow \text { true E-NorFALSEFALSE } \\
& \text { nor(false, true) } \rightarrow \text { false E-NORFALSETRUE } \\
& \frac{t_{2} \rightarrow t_{2}^{\prime}}{\text { nor }\left(\text { false }, t_{2}\right) \rightarrow \operatorname{nor}\left(\text { false, } t_{2}^{\prime}\right)} \quad \text { E-NorFALSE } \\
& \frac{t_{1} \rightarrow t_{1}^{\prime}}{\operatorname{nor}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{nor}\left(t_{1}^{\prime}, t_{2}\right)} \quad \text { E-NOR }
\end{aligned}
$$

Q2. (a) Does determinacy hold for $\mathbf{B}_{\mathbf{N}}$? That is, for all $t, t^{\prime}, t^{\prime \prime}$, if $t \rightarrow t^{\prime}$ and $t \rightarrow t^{\prime \prime}$ then $t^{\prime}=t^{\prime \prime}$? Justify.
(b) Does uniqueness of normal forms hold in $\mathbf{B}_{\mathbf{N}}$? That is, for all t, v, v^{\prime}, if $t \rightarrow^{*} v$ and $t \rightarrow^{*} v^{\prime}$ then $v=v^{\prime}$? Justify.
(c) Does termination hold in $\mathbf{B}_{\mathbf{N}}$? Justify.

For all three parts above, your justification should be as follows. If the property holds, give a formal proof. If the property does not hold give a completely-specified counter example, and explain how it is a counter example.

Errata:

- Feb 29, 9pm: Word "and" in the first item in the definition of R_{I}^{*} in Q1 was in error. This has been changed to "then".

