CSE 526, Spring 2020: HW2

Part a due: Tue., March 3.

Instructions:

- Part (a) should contain:
 - Complete formal proof of Q1.
 - Detailed sketch of all other parts, containing sufficient information about the main proof steps for us to give useful feedback.
- Part(b) should contain formal answers to all questions.
- For each part, submit PDF files with your solution. Latex or otherwise typeset proofs and proof-sketches are preferred. You may also submit scans of handwritten solutions, as long as they are legible.
- **Q1.** Let S be a set, and R be a binary relation over S (i.e., $\subseteq S \times S$). Consider the following three definitions, all attempting to define the *reflexive transitive closure* of R:
 - R_I^* : The *inductive* transitive closure of R, denoted by R_I^* is the *smallest* set such that:
 - 1. if $s_1 \in S$ and then $(s_1, s_1) \in R_I^*$.
 - 2. if $(s_1, s_2) \in R$ and $(s_2, s_3) \in R_I^*$, then $(s_1, s_3) \in R_I^*$.
 - R_C^* : The constructive transitive closure of R, denoted by R_C^* is the union of all T_i , $i \ge 0$ (i.e. $R_C^* = \bigcup_{i\ge 0} T_i$), where:

$$\begin{array}{rcl} T_0 &=& \emptyset \\ T_{i+1} &=& \begin{cases} & \{(s,s) \mid s \in S\} \\ & \cup & \{(s_1,s_3) \mid \exists (s_1,s_2) \in R, (s_2,s_3) \in T_i\} \end{cases} \end{array}$$

Q1. Show that $R_I^* = R_C^*$.

Q2. Consider the language $\mathbf{B}_{\mathbf{N}}$ of Boolean expressions from the text whose syntax and single-step operational semantics are given below.

Terms and Values:	Evaluation Rules:
t ::= Terms:	$\texttt{nor}(\texttt{true}, t_2) o \texttt{false} ext{E-NorTrue}$
true false	$\texttt{nor}(\texttt{false},\texttt{false}) \rightarrow \texttt{true}$ E-NorFalseFalse
\mid nor (t,t)	nor(false,true) ightarrow false E-NorFalseTrue
v ::= Values: true false	$rac{t_2 ightarrow t_2'}{ t nor(t false, t_2) ightarrow nor(t false, t_2')}$ E-NorFalse
	$\frac{t_1 \to t_1'}{\operatorname{nor}(t_1, t_2) \to \operatorname{nor}(t_1', t_2)} \text{E-Nor}$

- Q2. (a) Does determinacy hold for $\mathbf{B}_{\mathbf{N}}$? That is, for all t, t', t'', if $t \to t'$ and $t \to t''$ then t' = t''? Justify.
 - (b) Does uniqueness of normal forms hold in $\mathbf{B}_{\mathbf{N}}$? That is, for all t, v, v', if $t \to^* v$ and $t \to^* v'$ then v = v'? Justify.
 - (c) Does termination hold in $\mathbf{B_N}$? Justify.

For all three parts above, your justification should be as follows. If the property holds, give a formal proof. If the property does not hold give a completely-specified counter example, and explain how it is a counter example.

Errata:

• Feb 29, 9pm: Word "and" in the first item in the definition of R_I^* in Q1 was in error. This has been changed to "then".