CSE-526 Principles of Programming Languages

Spring '12
Mid-term Exam
March 13, 2012.
Duration: 1 hour, 20 minutes.

Name:

\qquad USB ID Number: \qquad

Read the following carefully before answering any question.

- Make sure you have filled in your name and USB ID number in the space above.
- Write your answers in the space provided; Keep your answers brief and precise.
- The exam consists of 5 questions, in 9 pages (including this page) for a total of 40 points.

Question 1 has two pages.
Question 2 has two pages.
Question 3 is on a single page.
Question 4 is on a single page.
Question 5 has two pages.
GOOD LUCK!

Question	Max.	Score
1.	9	
2.	8	
3.	5	
4.	6	
5.	12	
Total:	40	

1. [9 points] Recall the language \mathbf{B} of Boolean expressions from the text (Figure 3-1, page 34). Consider adding to \mathbf{B}, terms and evaluation rules described below, to give a new language $\mathbf{B F} 1$:

There are three parts to this question, below. In each part, you are asked to say whether or not a stated property holds in BF1 and justify your claim. Your justification should be as follows. If the property holds, and the proof in the book still applies, state "book proof applies". If the property holds and the book proof is no longer valid, give a brief sketch of your proof. If the property does not hold give a counter example.
(a) [3 points] Is the Determinacy Theorem valid for BF1? That is, for all $t, t^{\prime}, t^{\prime \prime}$, if $t \rightarrow t^{\prime}$ and $t \rightarrow t^{\prime \prime}$ then $t^{\prime}=t^{\prime \prime}$? Justify.
(b) [2 points] Is the Uniqueness of Normal Forms Theorem valid in BF1? That is, for all t, v, v^{\prime}, if $t \rightarrow^{*} v$ and $t \rightarrow^{*} v^{\prime}$ then $v=v^{\prime}$? Justify.
(c) [3 points] Does the Termination Theorem hold in BF1? That is, for all t there exists t^{\prime} in normal form such that $t \rightarrow^{*} t^{\prime}$? Justify.
2. [8 points] Consider implementing the semantics of \mathbf{B} (Figure 3-1, page 34) in OCAML, as follows. Represent terms using the datatype:

```
type term = True
    | False
    | If of term * term * term
```

Consider the function

```
let isvalue = function
            True -> true
    | False -> true
    | _ -> false
```

Note that isvalue returns true if, and only if, the given term is a value according to B's semantics.
(a) [3 points] Write an OCAML function singlestep: term \rightarrow term such that singlestep $\left(t_{1}\right)$ returns t_{2} if, and only if, $t_{1} \rightarrow t_{2}$ in B's single step semantics.
(b) [1 point $]$ State the key property of \mathbf{B} that enables us to write the OCAML function singlestep to faithfully implement B's semantics.
(c) [3 points] Write an OCAML function reducesto: term \rightarrow term such that if reducesto $\left(t_{1}\right)$ returns t_{2}, then:

- isvalue $\left(t_{2}\right)$ is true, and
- $t_{1} \rightarrow^{*} t_{2}$ according to B's semantics.
(d) [1 point] State the key property of \mathbf{B} that enables us to write the OCAML function reducesto to faithfully implement B's semantics.

3. [5 points] Consider changing the language \mathbf{B} such that, in a term of the form $\operatorname{if}\left(t_{1}, t_{2}, t_{3}\right), t_{3}$ is always evaluated to a normal form first, then t_{2} is evaluated to a normal form, then t_{1} is evaluated to a normal form, and finally, the if term is evaluated. Write single-step evaluation rules that encode the above evaluation scheme.
4. [6 points] Consider the $\underline{\text { addition }}$ of the following evaluation rule to NB:

$$
\operatorname{succ}(\operatorname{pred}(t)) \rightarrow t \quad \text { E-SuCcPred }
$$

(a) [3 points] Is the Determinacy Theorem valid in the modified language? That is, for all $t, t^{\prime}, t^{\prime \prime}$, if $t \rightarrow t^{\prime}$ and $t \rightarrow t^{\prime \prime}$ then $t^{\prime}=t^{\prime \prime}$? Justify.
(b) [3 points] Is the Uniqueness of Normal Forms Theorem valid in the modified language? That is, for all t, v, v^{\prime}, if $t \rightarrow^{*} v$ and $t \rightarrow^{*} v^{\prime}$ then $v=v^{\prime}$? Justify.

For both parts above, your justification should be as follows. If the property holds, and the proof in the book still applies, state "book proof applies". If the property holds and the book proof is no longer valid, give a brief sketch of your proof. If the property does not hold give a counter example.
5. [12 points] This question pertains to the language of untyped lambda calculus (Chapter 5) and call-by-value semantics (Figure 5-3, page 72).
(a) [1 point] Give an example of a lambda term whose free variable and bound variable sets are disjoint.
(b) [1 point] Give an example of a lambda term whose free variable and bound variable sets are identical.
(c) [2 points] Let t_{1} and t_{2} be two alpha-equivalent lambda terms. Then state the relationship that is always true between their free variable and bound variable sets. (e.g. relationships of the form $b v\left(t_{1}\right)=b v\left(t_{2}\right), f v\left(t_{1}\right)=f v\left(t_{2}\right)$, etc. $)$.
(d) [2 points] Give lambda expressions t_{1} and t_{2} such that

- $t_{1} \rightarrow t_{2}$ under call-by-value semantics, and
- $f v\left(t_{2}\right) \neq f v\left(t_{1}\right)$.
(e) [3 points] What does $\left(\begin{array}{lll}\left.\left(\begin{array}{ll}(\lambda x . \lambda y . y x) & (\lambda u . \lambda v . u)\end{array}\right)(\lambda z . z z)\right)\end{array}\right)$ evaluate to, in one step, under call-by-value semantics? Show the derivation.
(f) [3 points] What is the normal form of $\left(\begin{array}{llll}(\lambda x . \lambda y . y x) & (\lambda u . \lambda v . u))\end{array}(\lambda z . z z)\right)$? Show the evaluation sequence under call-by-value semantics.

