
CSE 526: Principles of Programming Languages

March 25, 2010 Mid-Term Exam Max: 100 points

Spring 2010 Duration: 1h 20m

1. For this question, consider untyped lambda calculus with call by value (CBV) reduction strategy. The
syntax and evaluation rules are recalled below.
Terms and Values:

t ::= x | (t t) | λx. t Terms
v ::= λx. t Values

Evaluation Rules:

t1 → t′1

t1 t2 → t′1 t2
E-App1

t2 → t′2

v1 t2 → v1 t
′
2

E-Abs2

(λx. t1) v2 → [x 7→ v2]t1 E-AppAbs

(a) [15 points] Show that CBV evaluation preserves “closedness” of lambda terms. That is, if t is a
closed lambda term and t→ t′ then t′ is a closed lambda term.

(b) [7 points] Show that CBV evaluation does not necessarily preserve “openness” of lambda terms.
That is, give two lambda terms t and t′ such that t is not closed, t′ is closed, and t→ t′.

(c) [15 points] Show the progress property for closed lambda terms under CBV. That is, if t is a
closed lambda term then either t is a value, or there is a t′ such that t→ t′.

2. [3 points each] Determine the type of each of the following terms in typed lambda calculus with simple
extensions. For each term, write its type, or state that it is not well-typed.

(a) λx : A. λy : B. x

(b) λx : A. λy : A→ B. λz : B → C. z (y x)

(c) λx : A. let y = λz : A. z in (y x)

(d) λx : {p : A, q : A→ B}. λy : B → A. y (x.q x.p)

(e) fix λx : A→ A. λy : A. y

[Question 3 is on the next page]
1

3. Consider the language BN whose syntax and single-step operational semantics is given below.
Terms and Values:

t ::= Terms:

0 constant zero
| 1 constant one
| seq(t, t) sequence
| nil empty sequence
| next t successor
| iszero t zero test

v ::= Values:

b bit
| nv numeric value

b ::= 0
| 1

nv ::= nil
| seq(b, nv)

Evaluation Rules:

t1 → t′1

seq(t1, t2) → seq(t′1, t2)
E-Seq1

t1 → t′1

next t1 → next t′1
E-Next

next t1 → t′1

next seq(1, t1) → seq(0, t′1)
E-NextSeqOne

next seq(0, t1) → seq(1, t1) E-NextSeqZero

next nil → seq(1, nil) E-NextNil

t2 → t′2

seq(t1, t2) → seq(t1, t′2)
E-Seq2

t1 → t′1

iszero t1 → iszero t′1
E-IsZero

iszero t1 → t′1

iszero seq(0, t1) → t′1
E-IsZeroSeqZero

iszero seq(1, t1) → 0 E-IsZeroSeqOne

iszero nil→ 1 E-IsZeroNil

(a) [6 points] Define an OCAML type bnterm to represent terms in BN as OCAML data structures.
For full credit every instance of type bnterm must represent a term in BN, and every term in
BN must be represented by an instance of type bnterm.

(b) [6 points] Give the derivation for the evaluation statement

next seq(1, seq(1, nil)) → seq(0, seq(0, seq(1, nil)))

(c) [6 points] Recall the theorem on the determinacy of one-step evaluation: If t → t′ and t → t′′

then t′ = t′′. Show that this theorem does not hold for the single step semantics given above.

(d) [6 points] Give a sequence of single step evaluations that take the term

iszero next seq(iszero seq(0, nil), nil)

to its normal form 0.

(e) [8 points] Show that not all normal forms are values in this language. That is, give an example
of a term t in BN that is in normal form such that t is not a value. For full credit you should
justify clearly that t is a term in normal form, and that it is not a value.

(f) [10 points] Using two types Bit and Num, define a typing relation for BN such that for every
well-typed term t, the normal form of t is a value.

(g) [6 points] Give a term t in BN that is not well typed according to your typing relation defined
in part (3f) above but is such that the normal form of t is a value.

END OF EXAM
2

