CSE 526: Principles of Programming Languages

March 25, 2010 Spring 2010 Mid-Term Exam

Max: 100 points Duration: 1h 20m

1. For this question, consider untyped lambda calculus with call by value (CBV) reduction strategy. The syntax and evaluation rules are recalled below.

Terms and Values:							
	$\begin{array}{cccc} t & ::= & x \mid (t \ t) \mid \lambda x. \ t & \hline \text{Terms} \\ v & ::= & \lambda x. \ t & \hline \text{Values} \end{array}$						
Evaluation Rules:							
	$\frac{t_1 \to t_1'}{t_1 \ t_2 \to t_1' \ t_2} \text{E-App1}$						
	$\frac{t_2 \to t_2'}{v_1 \ t_2 \to v_1 \ t_2'} \text{E-ABS2}$						
$(\lambda x. t_1) v_2 \to [x \mapsto v_2]t_1$ E-APPABS							

- (a) [15 points] Show that CBV evaluation preserves "closedness" of lambda terms. That is, if t is a closed lambda term and $t \to t'$ then t' is a closed lambda term.
- (b) [7 points] Show that CBV evaluation does not necessarily preserve "openness" of lambda terms. That is, give two lambda terms t and t' such that t is not closed, t' is closed, and $t \to t'$.
- (c) [15 points] Show the progress property for closed lambda terms under CBV. That is, if t is a closed lambda term then either t is a value, or there is a t' such that $t \to t'$.
- 2. [3 points each] Determine the type of each of the following terms in typed lambda calculus with simple extensions. For each term, write its type, or state that it is not well-typed.
 - (a) $\lambda x : A. \lambda y : B. x$
 - (b) $\lambda x : A. \ \lambda y : A \to B. \ \lambda z : B \to C. \ z \ (y \ x)$
 - (c) $\lambda x : A$. let $y = \lambda z : A$. z in (y x)
 - (d) $\lambda x : \{p : A, q : A \to B\}$. $\lambda y : B \to A$. $y (x.q \ x.p)$
 - (e) fix $\lambda x : A \to A$. $\lambda y : A$. y

Terms and	Values:					
t ::=		Terms:		v ::=		Values:
	0	constant zero			<i>b</i> (bit
	1	constant one		1	nv	numeric value
	$\mathtt{seq}(t,t)$	sequence			l	
	nil	empty sequence	ce	b ::=		
	next t	successor			1	
	iszero t	zero test				
1 102010 0				nv ::=		
					$\mathtt{seq}(b,nv)$	
Evaluation 2	Rules:					
$\frac{t_1 \to t_1'}{\operatorname{seq}(t_1, t_2) \to \operatorname{seq}(t_1', t_2)} \text{E-SEQ1}$			xq1	$\frac{t_2 \to t'_2}{\operatorname{seq}(t_1, t_2) \to \operatorname{seq}(t_1, t'_2)} \text{E-SEQ2}$		
ne	$\frac{t_1 \to t_1'}{\text{ext } t_1 \to \text{nex}}$	$\frac{1}{\operatorname{ct} t_1'}$ E-NEXT		iszer	$t_1 o t_1'$ ro $t_1 o$ iszer	$\overline{t_0 t_1'}$ E-IsZero
$\frac{\texttt{nex}}{\texttt{next seq}(1}$	$\begin{array}{ccc} \texttt{t} \ t_1 \ \to t_1' \\ \hline , t_1) \ \to \texttt{seq} \end{array}$	$\overline{(0,t_1')}$ E-Nex	TSEQONE	iszero iszero se	$ \begin{array}{l} \mathbf{o} \ t_1 \to t_1' \\ \overline{\mathbf{eq}}(0, t_1) \to t_1' \end{array} $	E-IsZeroSeqZero
next seq(0,	$t_1) \rightarrow \texttt{seq}($	$1, t_1$) E-NEX	ΓSeqZero	iszero s	$eq(1,t_1) \to 0$	E-IsZeroSeqOne
next n	$\texttt{il} \rightarrow \texttt{seq}(1)$,nil) E-NEX	TNIL	isze	ero nil $\rightarrow 1$	E-IsZeroNil

3. Consider the language **BN** whose syntax and single-step operational semantics is given below.

- (a) [6 points] Define an OCAML type bnterm to represent terms in BN as OCAML data structures.
 For full credit every instance of type bnterm must represent a term in BN, and every term in BN must be represented by an instance of type bnterm.
- (b) [6 points] Give the derivation for the evaluation statement

$$\texttt{next} \texttt{seq}(1,\texttt{seq}(1,\texttt{nil})) \rightarrow \texttt{seq}(0,\texttt{seq}(0,\texttt{seq}(1,\texttt{nil})))$$

- (c) [6 points] Recall the theorem on the determinacy of one-step evaluation: If $t \to t'$ and $t \to t''$ then t' = t''. Show that this theorem *does not hold* for the single step semantics given above.
- (d) [6 points] Give a sequence of single step evaluations that take the term

```
iszero next seq(iszero seq(0,nil), nil)
```

to its normal form 0.

- (e) [8 points] Show that not all normal forms are values in this language. That is, give an example of a term t in **BN** that is in normal form such that t is not a value. For full credit you should justify clearly that t is a term in normal form, and that it is not a value.
- (f) [10 points] Using two types Bit and Num, define a typing relation for BN such that for every well-typed term t, the normal form of t is a value.
- (g) [6 points] Give a term t in **BN** that is not well typed according to your typing relation defined in part (3f) above but is such that the normal form of t is a value.