
CSE 526: Principles of Programming Languages

Spring 2012 Final Exam Max: 40 points

May 10, 2012 Duration: 2h 30m

Name:

USB ID Number:

INSTRUCTIONS
Read the following carefully before answering any question.

• Make sure you have filled in your name and USB ID number in the space above.

• Write your answers in the space provided; Keep your answers brief and precise.

• The exam consists of 6 questions, in 13 pages (including this page) for a total of 40 points.

GOOD LUCK!

Question Max. Score

1. 8

2. 5

3. 6

4. 10

5. 5

6. 6

Total: 40

1



1. [8 points] Recall the definition of the language of natural numbers and booleans, NB. The syntax and
the inference rules for single-step semantics of NB is shown below.

Terms and Values:

t ::= Terms:
0

| succ(t)
| pred(t)
| iszero(t)
| true

| false

| if(t, t, t)

v ::= Values:
true

false

| nv
nv ::= 0

| succ(nv)

Evaluation Rules:

t1 → t′1
succ t1 → succ t′1

E-Succ

t1 → t′1
pred t1 → pred t′1

E-Pred

pred 0→ 0 E-PredZero

pred succ nv1 → nv1 E-PredSucc

iszero 0→ true E-IsZeroZero

t1 → t′1
iszero t1 → iszero t′1

E-IsZero

iszero succ nv1 → false E-IsZeroSucc

t1 → t′1
if(t1, t2, t3)→ if(t′1, t2, t3)

E-If

if(true, t2, t3)→ t2 E-IfTrue

if(false, t2, t3)→ t3 E-IfFalse

Extend NB to a language, called ZB, that can represent and compute with integer values (i.e. positive
numbers, zero, as well as negative numbers) instead of just natural numbers. ZB should be such that
every term in NB is in ZB as well.

(a) Define the language (set of terms) of ZB. If you want, you may state it as an extension to NB by
stating only the newly introduced terms.

[Contd. on next page]

2



(b) Define the set of values of ZB. If you want, you may state it as an extension to NB by stating only
the newly introduced values.

(c) Define the set of evaluation rules for ZB. If you want, you may fully state only the newly intro-
duced/modified rules, and simply name all the rules that are carried over from NB unchanged.

[Contd. on next page]

3



(d) Using your evaluation rules, find the normal form of succ(succ(pred(pred(0)))). Show the eval-
uation sequence.

4



2. [5 points] The let construct in the extended lambda calculus is of the form let x = t1 in t2. The
“x = t1” part is called a “let binding”. In the let construct defined in the textbook, each let expression
has exactly one let binding.

Consider a further extension that allows a sequence of let bindings to be used within a let. More formally,
the extended let construct is of the form

let x1 = t1; x2 = t2; · · · ; xn = tn in t

The single step semantics for the extended construct is given by the following rules:

[x1 7→ v1, . . . xk 7→ vk]tk+1 −→ t′k+1

let x1 = v1 ; . . . ; xk = vk ; xk+1 = tk+1 ; . . . xn = tn in t −→
let x1 = v1 ; . . . ; xk = vk ; xk+1 = t′k+1 ; . . . xn = tn in t

T-Letk

let x1 = v1 ; . . . ; xn = vn ; in t −→ [x1 7→ v1, . . . xn 7→ vn]t T-Let

(An aside: this form of let is SML, but not in OCAML.)

Can the extended let construct be obtained as a derived form of the simpler let construct introduced in
the text? If so, give the definition of the derived form. If not, justify why a derived form is not possible.

5



3. [6 points] Consider the extensions to lambda calculus with NB, datatypes and recursion (i.e. contents of
Chapter 11). The letrec construct was introduced to enable easier specification of recursive functions.
In particular, letrec was described as a derived form, in terms of fix as follows:

letrec x : T1 = t1 in t2
def
= let x = fix (λ x : T1. t1) in t2

Using letrec, one can define directly recursive functions such as plus:

letrec plus : Nat → Nat → Nat =
λm:Nat. λn:Nat. if(iszero(m), n, succ(plus (pred(m)) n)) in . . .

OCAML and SML have a more expressive construct that permits definition of mutually recursive functions
using the “and” connective. Along the same lines, consider extending the language with a letmrec

construct that permits definition of pairs of mutually exclusive functions. The syntax of letmrec construct
is:

letmrec x1 : T1 = t1 and x2 : T2 = t2 in t3

For example the following is a definition of mutually recursive even and odd functions using the letmrec

construct:

letmrec even: Nat → Bool = (λm. if(iszero(m), true, odd(pred(m))
and odd: Nat → Bool = (λm. if(iszero(m), false, even(pred(m)) in . . .

Define the semantics and typing rules of terms with letmrec. If possible, define letmrec as a derived
form based on existing constructs such as letrec. Alternatively, you may define additional evaluation
and typing rules.

[You may continue the answer, if necessary, on next page]

6



7



4. [10 points] Consider the extensions to lambda calculus with NB and records. (i.e. part of the contents of
Chapter 11). The typing rules for typed lambda calculus with NB and records is summarized below. The
evaluation rules for call-by-value lambda calculus and records are also summarized below (the evaluation
rules for NB are given in Question 1).

Terms, Values and Types:

t ::= . . . Terms from NB
| x Variables
| t t Application
| λx : T.t Abstraction

| {li = ti
i∈1...n} Record

| t.l Projection

v ::= . . . Values from NB
| λx : T.t

| {li = vi
i∈1...n} record values

T ::= Nat

| Bool

| T → T

| {li : Ti
i∈1...n} type of records

Evaluation Rules (in addition to those of NB):

t1 → t′1
t1 t2 → t′1 t2

E-App1

t2 → t′2
v1 t2 → v1 t

′
2

E-Abs2

(λx : T. t1) v2 → [x 7→ v2]t1 E-AppAbs

{li = vi
i∈1...n}.lj → vj E-ProjRcd

t1 → t′1
t1.l→ t′1.l

E-Proj

tj → t′j
{li = vi

i∈1..(j−1), lj = tj , lk = tk
k∈(j+1)...n} →

{li = vi
i∈1..(j−1), lj = t′j , lk = tk

k∈(j+1)...n}
E-Rcd

Typing Rules:

Γ ` true : Bool T-True

Γ ` false : Bool T-False

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if(t1, t2, t3) : T
T-If

Γ ` 0 : Nat T-Zero

Γ ` t1 : Nat

Γ ` succ t1 : Nat
T-Succ

Γ ` t1 : Nat

Γ ` pred t1 : Nat
T-Pred

Γ ` t1 : Nat

Γ ` iszero t1 : Bool
T-IsZero

x : T ∈ Γ

Γ ` x : T
T-Var

Γ, x : T1 ` t2 : T2

Γ ` λx : T1.t2 : T1 → T2
T-Abs

Γ ` s : T1 → T2 Γ ` t : T1

Γ ` (s t) : T2
T-App

for each i Γ ` ti : Ti

Γ ` {li = ti
i∈1...n} : {li : Ti

i∈1...n}
T-Rcd

Γ ` t : {li : Ti
i∈1...n}

Γ ` t.lj : Tj
T-Proj

Consider further extending this language with terms of the form isequal(t1, t2) where t1 and t2 are terms.

At a high level, the intent of isequal is to determine whether or not the two terms have the same normal
form or not. A term of the form isequal(t1, t2) is evaluated by first evaluating t1 to a value v1, then t2
to a value v2, and then evaluating to true if v1 and v2 are identical, and to false otherwise.

Note that once we have isequal, we can treat iszero(t) as a derived form, defined as isequal(t, 0).

[Contd. on next page]

8



(a) Give the evaluation rules that need to be added when isequal(t, t) is added to the language.

[Contd. on next page]

9



(b) Give the typing rules that need to be added when isequal(t, t) is added to the language (i.e. the
set of terms).

(c) The progress property states that if t is well-typed, then either t is a value or there is a term t′

such that t→ t′. Does the progress property hold when your typing and evaluation rules are added
to treat the addition of isequal? For this part, if the property holds, you need to give a detailed
justification but not give a formal proof. If the property does not hold, you need to give a counter
example.

10



5. [5 points] Consider the addition of references to extended lambda calculus (Chapter 13). The typing rules
for the calculus with references is summarized below. (See Question 4 for the typing rules for the calculus
with NB and records.)

Terms, Values and Types:

t ::= . . . Terms from Q.4
| ref t Reference Creation
| ! t Dereference
| t := t Assignment
| unit Unit constant
| t ; t Sequence

v ::= . . . Values from Q.4
| unit Unit value
| l Locations

T ::= . . . Types from Q.4
| Unit Unit type
| Ref T Reference types

Additional Typing Rules:

Γ ` unit : Unit T-Unit

Γ ` t1 : Unit Γ ` t2 : T

Γ ` t1 ; t2 : T
T-Seq

Γ ` t1 : T2

Γ ` ref t1 : Ref T2
T-Ref

Γ ` t1 : Ref T2

Γ ` ! t1 : T2
T-Deref

Γ ` t1 : Ref T Γ ` t2 : T

Γ ` t1 := t2 : Unit
T-Assign

(a) For each of the following terms, state its type if it is well typed; if it is not well-typed, give a brief
justification.

i. λx : Nat. ref x

ii. λx : Ref Nat. ref ! x

iii. λx : Ref Ref Nat. x := ref !x

iv. λx : Ref Ref Nat. (x := !x) ; ! x

[Contd. on next page]

11



(b) For each of the following terms, determine if there exist types T1, T2, . . . such that the term is well-
typed. If so, state the most general type of the term (i.e. its principal type). If not, give a brief
justification.

i. λx : T1. x := 0

ii. λx : T1. λy : T2. (! x) := succ(! y)

iii. λx : T1. (! (! x)) := ! x

12



6. [6 points] Consider the following Prolog program:

p(A, S, []) :- f(A, S).

p(A, S, [X|Xs]) :- t(A, S, X, T), p(A, T, Xs).

t(1, 1, a, 1).

t(1, 1, b, 2).

t(2, 1, a, 2).

t(2, 1, b, 1).

t(2, 2, b, 2).

t(3, 1, a, 1).

t(3, 1, b, 2).

t(3, 2, a, 1).

t(3, 2, b, 2).

f(1, 2).

f(2, 2).

f(3, 2).

(a) What are the answers to query p(1, Q, [a,a,b])?

(b) What are the answers to query p(L, 1, [a,a,b])?

(c) What are the answers to query p(1, 1, X), p(2, 1, X)?

(d) What are the answers to query p(1, 1, X), p(3, 1, X)?

END OF EXAM

13


