CSE 526: Principles of Programming Languages

Spring 2012
Final Exam
Max: 40 points
May 10, 2012
Duration: $2 \mathrm{~h} \mathrm{30m}$

Name:

\qquad
USB ID Number: \qquad

INSTRUCTIONS
Read the following carefully before answering any question.

- Make sure you have filled in your name and USB ID number in the space above.
- Write your answers in the space provided; Keep your answers brief and precise.
- The exam consists of $\mathbf{6}$ questions, in $\mathbf{1 3}$ pages (including this page) for a total of $\mathbf{4 0}$ points.

GOOD LUCK!

Question	Max.	Score
1.	8	
2.	5	
3.	6	
4.	10	
5.	5	
6.	6	
Total:	40	

1. [8 points] Recall the definition of the language of natural numbers and booleans, NB. The syntax and the inference rules for single-step semantics of NB is shown below.

Terms and Values:

Evaluation Rules:

$$
\begin{array}{cccc}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{\operatorname{succ} t_{1} \rightarrow \text { succ } t_{1}^{\prime}} & \text { E-SUCC } & \frac{t_{1} \rightarrow t_{1}^{\prime}}{\text { iszero } t_{1} \rightarrow \text { iszero } t_{1}^{\prime}} & \text { E-IsZERO } \\
\frac{t_{1} \rightarrow t_{1}^{\prime}}{\text { pred } t_{1} \rightarrow \text { pred } t_{1}^{\prime}} & \text { E-PRED } & \text { iszero succ } n v_{1} \rightarrow \text { false } & \text { E-IsZEROSUCC } \\
\text { pred } 0 \rightarrow 0 & \text { E-PREDZERO } & \frac{t_{1} \rightarrow t_{1}^{\prime}}{\text { if }\left(t_{1}, t_{2}, t_{3}\right) \rightarrow \text { if }\left(t_{1}^{\prime}, t_{2}, t_{3}\right)} & \text { E-IF } \\
\text { pred succ } n v_{1} \rightarrow n v_{1} & \text { E-PREDSUCC } & \text { if }\left(\text { true, } t_{2}, t_{3}\right) \rightarrow t_{2} & \text { E-IFTRUE } \\
\text { iszero } 0 \rightarrow \text { true } & \text { E-ISZEROZERO } & \text { if }\left(\text { false, } t_{2}, t_{3}\right) \rightarrow t_{3} & \text { E-IFFALSE }
\end{array}
$$

Extend NB to a language, called ZB, that can represent and compute with integer values (i.e. positive numbers, zero, as well as negative numbers) instead of just natural numbers. ZB should be such that every term in NB is in $\mathbf{Z B}$ as well.
(a) Define the language (set of terms) of ZB. If you want, you may state it as an extension to NB by stating only the newly introduced terms.
(b) Define the set of values of ZB. If you want, you may state it as an extension to NB by stating only the newly introduced values.
(c) Define the set of evaluation rules for ZB. If you want, you may fully state only the newly introduced/modified rules, and simply name all the rules that are carried over from NB unchanged.
(d) Using your evaluation rules, find the normal form of succ (succ $(\operatorname{pred}(\operatorname{pred}(0))))$. Show the evaluation sequence.
2. [5 points] The let construct in the extended lambda calculus is of the form let $x=t_{1}$ in t_{2}. The " $x=t_{1}$ " part is called a "let binding". In the let construct defined in the textbook, each let expression has exactly one let binding.
Consider a further extension that allows a sequence of let bindings to be used within a let. More formally, the extended let construct is of the form

$$
\text { let } x_{1}=t_{1} ; x_{2}=t_{2} ; \cdots ; x_{n}=t_{n} \text { in } t
$$

The single step semantics for the extended construct is given by the following rules:

$$
\begin{aligned}
& {\left[x_{1} \mapsto v_{1}, \ldots x_{k} \mapsto v_{k}\right] t_{k+1} \longrightarrow t_{k+1}^{\prime}} \\
& \text { let } x_{1}=v_{1} ; \ldots ; x_{k}=v_{k} ; x_{k+1}=t_{k+1} ; \ldots x_{n}=t_{n} \text { in } t \longrightarrow \\
& \text { let } x_{1}=v_{1} ; \ldots ; x_{k}=v_{k} ; x_{k+1}=t_{k+1}^{\prime} ; \ldots x_{n}=t_{n} \text { in } t \\
& \text { Let-LETK } \\
& \text { let } x_{1}=v_{1} ; \ldots ; x_{n}=v_{n} ; \text { in } t \longrightarrow\left[x_{1} \mapsto v_{1}, \ldots x_{n} \mapsto v_{n}\right] t \quad \text { T-LET }
\end{aligned}
$$

(An aside: this form of let is SML, but not in OCAML.)

Can the extended let construct be obtained as a derived form of the simpler let construct introduced in the text? If so, give the definition of the derived form. If not, justify why a derived form is not possible.
3. [6 points] Consider the extensions to lambda calculus with NB, datatypes and recursion (i.e. contents of Chapter 11). The letrec construct was introduced to enable easier specification of recursive functions. In particular, letrec was described as a derived form, in terms of fix as follows:

$$
\begin{aligned}
& \text { letrec } x: T_{1}=t_{1} \text { in } t_{2} \\
& \stackrel{\text { def }}{=} \text { let } x=\mathrm{fix}\left(\lambda x: T_{1} \cdot t_{1}\right) \text { in } t_{2}
\end{aligned}
$$

Using letrec, one can define directly recursive functions such as plus:

```
letrec plus: Nat }->\mathrm{ Nat }->\mathrm{ Nat =
    \lambdam:Nat. \lambdan:Nat. if(iszero (m), n, succ(plus (pred}(m))n)) in ...
```

OCAML and SML have a more expressive construct that permits definition of mutually recursive functions using the "and" connective. Along the same lines, consider extending the language with a letmrec construct that permits definition of pairs of mutually exclusive functions. The syntax of letmrec construct is:

$$
\text { letmrec } x_{1}: T_{1}=t_{1} \text { and } x_{2}: T_{2}=t_{2} \text { in } t_{3}
$$

For example the following is a definition of mutually recursive even and odd functions using the letmrec construct:

$$
\begin{aligned}
\text { letmrec even: Nat } \rightarrow \text { Bool } & =(\lambda m . \operatorname{if}(\text { iszero }(m), \text { true, odd }(\operatorname{pred}(m)) \\
\text { and odd: Nat } \rightarrow \text { Bool } & =(\lambda m . \text { if }(\text { iszero }(m), \text { false, even }(\operatorname{pred}(m)) \text { in } \ldots .
\end{aligned}
$$

Define the semantics and typing rules of terms with letmrec. If possible, define letmrec as a derived form based on existing constructs such as letrec. Alternatively, you may define additional evaluation and typing rules.
4. [10 points] Consider the extensions to lambda calculus with NB and records. (i.e. part of the contents of Chapter 11). The typing rules for typed lambda calculus with NB and records is summarized below. The evaluation rules for call-by-value lambda calculus and records are also summarized below (the evaluation rules for NB are given in Question 1).

Terms, Values and Types:

Evaluation Rules (in addition to those of NB):

$$
\begin{aligned}
& \frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}} \quad \text { E-APP1 } \quad\left\{l_{i}=v_{i}^{i \in 1 \ldots n}\right\} . l_{j} \rightarrow v_{j} \quad \text { E-ProjRCD } \\
& \frac{t_{2} \rightarrow t_{2}^{\prime}}{v_{1} t_{2} \rightarrow v_{1} t_{2}^{\prime}} \quad \mathrm{E}-\mathrm{ABS} 2 \\
& \frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} \cdot l \rightarrow t_{1}^{\prime} \cdot l} \quad \text { E-PROJ } \\
& \left(\lambda x: T . t_{1}\right) v_{2} \rightarrow\left[x \mapsto v_{2}\right] t_{1} \quad \text { E-AppABS } \\
& \left.\frac{t_{j} \rightarrow t_{j}^{\prime}}{\left\{l_{i}=v_{i}\right.}{ }^{i \in 1 . .(j-1)}, l_{j}=t_{j}, l_{k}=t_{k}{ }^{k \in(j+1) \ldots n}\right\} \rightarrow \quad \text { E-RCD } \\
& \left\{l_{i}=v_{i}^{i \in 1 \ldots(j-1)}, l_{j}=t_{j}^{\prime}, l_{k}=t_{k}^{k \in(j+1) \ldots n}\right\}
\end{aligned}
$$

Typing Rules:

$$
\begin{aligned}
& \Gamma \vdash \text { true : Bool T-TRUE } \quad \frac{x: T \in \Gamma}{\Gamma \vdash x: T} \quad \text { T-VAR } \\
& \Gamma \vdash \text { false: Bool T-FALSE } \\
& \frac{\Gamma, x: T_{1} \vdash t_{2}: T_{2}}{\Gamma \vdash \lambda x: T_{1} \cdot t_{2}: T_{1} \rightarrow T_{2}} \quad \text { T-ABS } \\
& \frac{\Gamma \vdash t_{1}: \text { Bool } \Gamma \vdash t_{2}: T \quad \Gamma \vdash t_{3}: T}{\Gamma \vdash \operatorname{if}\left(t_{1}, t_{2}, t_{3}\right): T} \quad \text { T-IF } \\
& \frac{\Gamma \vdash s: T_{1} \rightarrow T_{2} \quad \Gamma \vdash t: T_{1}}{\Gamma \vdash(s t): T_{2}} \quad \text { T-APP } \\
& \frac{\Gamma \vdash t_{1}: \text { Nat }}{\Gamma \vdash \operatorname{succ} t_{1}: \text { Nat }} \quad \text { T-SUCC } \quad \frac{\text { for each } i \quad \Gamma \vdash t_{i}: T_{i}}{\Gamma \vdash\left\{l_{i}=t_{i}{ }^{i \in 1 \ldots n}\right\}:\left\{l_{i}: T_{i}{ }^{i \in 1 \ldots n}\right\}} \quad \text { T-RCD } \\
& \frac{\Gamma \vdash t_{1}: \text { Nat }}{\Gamma \vdash \operatorname{pred} t_{1}: \text { Nat }} \quad \text { T-PRED } \\
& \frac{\Gamma \vdash t:\left\{l_{i}: T_{i}^{i \in 1 \ldots n}\right\}}{\Gamma \vdash t . l_{j}: T_{j}} \quad \text { T-PRoJ } \\
& \frac{\Gamma \vdash t_{1}: \text { Nat }}{\Gamma \vdash \text { iszero } t_{1}: \text { Bool }} \quad \text { T-IsZERO }
\end{aligned}
$$

Consider further extending this language with terms of the form isequal $\left(t_{1}, t_{2}\right)$ where t_{1} and t_{2} are terms. At a high level, the intent of isequal is to determine whether or not the two terms have the same normal form or not. A term of the form isequal $\left(t_{1}, t_{2}\right)$ is evaluated by first evaluating t_{1} to a value v_{1}, then t_{2} to a value v_{2}, and then evaluating to true if v_{1} and v_{2} are identical, and to false otherwise.
Note that once we have isequal, we can treat iszero (t) as a derived form, defined as isequal $(t, 0)$.
[Contd. on next page]
(a) Give the evaluation rules that need to be added when isequal (t, t) is added to the language.
(b) Give the typing rules that need to be added when isequal (t, t) is added to the language (i.e. the set of terms).
(c) The progress property states that if t is well-typed, then either t is a value or there is a term t^{\prime} such that $t \rightarrow t^{\prime}$. Does the progress property hold when your typing and evaluation rules are added to treat the addition of isequal? For this part, if the property holds, you need to give a detailed justification but not give a formal proof. If the property does not hold, you need to give a counter example.
5. [5 points] Consider the addition of references to extended lambda calculus (Chapter 13). The typing rules for the calculus with references is summarized below. (See Question 4 for the typing rules for the calculus with NB and records.)

Terms, Values and Types:

$t::=$| \ldots Terms from Q. 4 | |
| :--- | :--- |
| ref t | Reference Creation |
| $\vdots t$ | Dereference |
| $t:=t$ | Assignment |
| unit | Unit constant |
| $t ; t$ | Sequence |

Additional Typing Rules:

$$
\begin{array}{cc}
\Gamma \vdash \text { unit : Unit T-UniT } & \frac{\Gamma \vdash t_{1}: T_{2}}{\Gamma \vdash \operatorname{ref} t_{1}: \operatorname{Ref} T_{2}}
\end{array} \quad \text { T-REF }
$$

(a) For each of the following terms, state its type if it is well typed; if it is not well-typed, give a brief justification.
i. λx : Nat. ref x
ii. $\lambda x:$ Ref Nat. ref $!x$
iii. $\lambda x: \operatorname{Ref}$ Ref Nat. $x:=$ ref $!x$
iv. $\lambda x: \operatorname{Ref} \operatorname{Ref}$ Nat. $(x:=!x) ;!x$
(b) For each of the following terms, determine if there exist types T_{1}, T_{2}, \ldots such that the term is welltyped. If so, state the most general type of the term (i.e. its principal type). If not, give a brief justification.
i. $\lambda x: \mathrm{T}_{1}, x:=0$
ii. $\lambda x: \mathrm{T}_{1}, \lambda y: \mathrm{T}_{2} .(!x):=\operatorname{succ}(!y)$
iii. $\lambda x: \mathrm{T}_{1} \cdot(!(!x)):=!x$
6. [6 points] Consider the following Prolog program:

```
p(A, S, []) :- f(A, S).
p(A, S, [X|Xs]) :- t(A, S, X, T), p(A, T, Xs).
t(1, 1, a, 1).
t(1, 1, b, 2).
t(2, 1, a, 2).
t(2, 1, b, 1).
t(2, 2, b, 2).
t(3, 1, a, 1).
t(3, 1, b, 2).
t(3, 2, a, 1).
t(3, 2, b, 2).
f(1, 2).
f(2, 2).
f(3, 2).
```

(a) What are the answers to query $\mathrm{p}(1, \mathrm{Q},[\mathrm{a}, \mathrm{a}, \mathrm{b}])$?
(b) What are the answers to query $\mathrm{p}(\mathrm{L}, 1,[\mathrm{a}, \mathrm{a}, \mathrm{b}])$?
(c) What are the answers to query $\mathrm{p}(1,1, \mathrm{X}), \mathrm{p}(2,1, \mathrm{X})$?
(d) What are the answers to query $\mathrm{p}(1,1, \mathrm{x}), \mathrm{p}(3,1, \mathrm{X})$?

