
CSE 526: Principles of Programming Languages

Spring 2011 Final Exam Max: 100 points

May 19, 2011 Duration: 2h 30m

1. [10 points] Recall that the small-step semantics we used for pure untyped lambda calculus encoded the
Call-By-Value evaluation strategy (CBV). The Lazy evaluation strategy is encoded by an alternative
semantics for the calculus, defined by the following inference rules:

t1 → t′1

t1 t2 → t′1 t2
E-App’

(λx. t11) t2 → [x 7→ t2]t11 E-AppAbs’

Values in the lazy strategy are lambda abstractions, i.e. the same as those in the CBV strategy: terms
of the form λx.t.

Give the big-step semantics for pure untyped lambda calculus for the lazy evaluation strategy.

2. [26 points total] For this question, consider the extensions of simply-typed lambda calculus as discussed
in Chapter 11 of the book.

(a) [20 points] Give the types of the following expressions. If they are not well-typed, state that.

i. λx : Unit. {a = 0, b = succ 0, c = x}
ii. λx : Unit. ref x

iii. let x = {a = 0, b = succ 0} in x.b

iv. if(iszero 0, {a = 0, b = succ 0}, 0)

v. let y = (let x = 0 in succ x) in ref y

vi. λx : Nat. (ref x) := succ x

vii. λx : Nat. let y = ref x in y := iszero x

viii. letrec x = (λy : Nat. if(iszero y, true, (x (pred y)))) in x

(b) [6 points] Consider the following type defined in OCAML:

type Stuff = Blip of int

| Glob of bool

and consider the following OCAML expression that uses this type:

function x ->

match x with

Blip y -> (y=0)

| Glob z -> z

Write the above expression in the extended lambda calculus of Chapter 11.

3. [18 points total] A pure untyped lambda term t (Ch. 5) is said to be well-formed if (i) its free variable
and bound variable sets are disjoint: i.e. names of all bound variables are different from that of any free
variable, and (ii) every subterm of t is also well-formed.

(a) [6 points] Formally define well-formed lambda terms using an inductive definition. More specifically,
give an inductive definition of a function WF whose domain is the set of all lambda terms and whose
range is Boolean, such that WF maps t to true iff t is well-formed. You may assume the definitions of
the set of free variables of t (denoted by FV (t)) and the set of all variables of t (denoted by Vars(t)).
If you need additional auxiliary definitions, make sure those are defined inductively too.

1



(b) [12 points] Show that single-step evaluation under CBV preserves well-formedness of terms. That is,
if t is well-formed and t→ t′, then t′ is well-formed.

4. [20 points] Write expressions in lambda calculus extended with let, tuples and references that, when
evaluated in an empty store result in the following stores.

(a) {l1 7→ 0}
(b) {l1 7→ 0, l2 7→ l1}
(c) {l1 7→ 0, l2 7→ {l1, true}}
(d) {l1 7→ 0, l2 7→ {l1, l1}}

(e) {l1 7→ 0, l2 7→ {l1, l2}}
(f) {l1 7→ {l2, l1}, l2 7→ {l1, l2}}
(g) {l1 7→ λx : Nat. x, l2 7→ λx : Nat. (!l1) x}
(h) {l1 7→ λx : Nat. (!l1) x}

5. [10 points] Let Square <: Rectangle <: Polygon be a subtype relation among base types Square,
Rectangle and Polygon. Let f , g and h be a terms in typed lambda calculus with type Rectangle →
Rectangle.

(a) [2 points] What is the type of h (f g)?

(b) [8 points] Let f ′ be a term in typed lambda calculus such that h (f ′ g) is well-typed. List the possible
types of f ′.

For this question, consider only the base types (e.g. Square) and function types (e.g. Square →
Rectangle, Square → Square → Polygon, etc.)

6. [16 points total]

(a) [6 points] Write a predicate find(L,K,V) that, given a list L of key-value pairs, and a key K, succeeds
with binding V to the value associated with the given key. For instance, find([(a,1), (b,2),

(c,3)], b, Q) should succeed with Q=b. If the given key does not appear in the list, find should
fail. For instance, find([(a,1), (c,3)], b) should fail.

(b) [10 points] Find the most general unifier for the following pairs of terms. If a pair of terms do not
have a unifier, state that.

In the following, we follow Prolog’s convention and use identifiers beginning with upper-case letters
to denote variables.

i. f(a) = f(Y)

ii. f(g(X), X) = f(Y,a)

iii. arrow(A,B) = arrow(B,A)

iv. arrow(A,B) = A

v. arrow(arrow(A,B),A) = arrow(X,B)

7. [10 points] OCAML has a “while-do” construct of the form “while e1 do e2 done” where e1, e2 are OCAML
expressions. The meaning of while expressions is similar to that in imperative languages: if e1 evaluates
to true then e2 is evaluated, followed by looping back to the evaluation of e1.

For this problem, consider further extending the lambda calculus with references (assume all extensions
of Chap. 11 as needed, as well as the extensions in Chap. 13) with a “while” term with the following
syntax:

t ::= . . . existing terms
| while(t, t)

Give the additional evaluation rules and typing rules for this extension.

You may also, alternatively, treat while as a derived form. Then give the definition of the derived form.

2


