CSE 526: Principles of Programming Languages

1. [10 points] Recall that the small-step semantics we used for pure untyped lambda calculus encoded the Call-By-Value evaluation strategy (CBV). The Lazy evaluation strategy is encoded by an alternative semantics for the calculus, defined by the following inference rules:

$$
\begin{gathered}
\frac{t_{1} \rightarrow t_{1}^{\prime}}{t_{1} t_{2}} \quad \text { E-AP1 } t_{1}^{\prime} \\
\left(\lambda x . t_{11}\right) t_{2} \rightarrow\left[x \mapsto t_{2}\right] t_{11} \quad \text { E-APPABS' }
\end{gathered}
$$

Values in the lazy strategy are lambda abstractions, i.e. the same as those in the CBV strategy: terms of the form λx.t.
Give the big-step semantics for pure untyped lambda calculus for the lazy evaluation strategy.
2. [26 points total] For this question, consider the extensions of simply-typed lambda calculus as discussed in Chapter 11 of the book.
(a) [20 points] Give the types of the following expressions. If they are not well-typed, state that.
i. λx : Unit. $\{a=0, b=\operatorname{succ} 0, c=x\}$
ii. λx : Unit. ref x
iii. let $x=\{a=0, b=\operatorname{succ} 0\}$ in $x . b$
iv. if(iszero $0,\{a=0, b=\operatorname{succ} 0\}, 0)$
v. let $y=($ let $x=0$ in succ $x)$ in ref y
vi. λx : Nat. $($ ref $x):=\operatorname{succ} x$
vii. λx : Nat. let $y=$ ref x in $y:=$ iszero x
viii. letrec $x=(\lambda y$: Nat. if(iszero y, true, $(x(\operatorname{pred} y)))$ in x
(b) [6 points] Consider the following type defined in OCAML:

```
type Stuff = Blip of int
    | Glob of bool
```

and consider the following OCAML expression that uses this type:

```
function x ->
    match x with
        Blip y -> (y=0)
        | Glob z -> z
```

Write the above expression in the extended lambda calculus of Chapter 11.
3. [18 points total] A pure untyped lambda term t (Ch. 5) is said to be well-formed if (i) its free variable and bound variable sets are disjoint: i.e. names of all bound variables are different from that of any free variable, and (ii) every subterm of t is also well-formed.
(a) [6 points] Formally define well-formed lambda terms using an inductive definition. More specifically, give an inductive definition of a function $W F$ whose domain is the set of all lambda terms and whose range is Boolean, such that $W F$ maps t to true iff t is well-formed. You may assume the definitions of the set of free variables of t (denoted by $F V(t)$) and the set of all variables of t (denoted by $\operatorname{Vars}(t)$). If you need additional auxiliary definitions, make sure those are defined inductively too.
(b) [12 points] Show that single-step evaluation under CBV preserves well-formedness of terms. That is, if t is well-formed and $t \rightarrow t^{\prime}$, then t^{\prime} is well-formed.
4. [20 points] Write expressions in lambda calculus extended with let, tuples and references that, when evaluated in an empty store result in the following stores.
(a) $\left\{l_{1} \mapsto 0\right\}$
(e) $\left\{l_{1} \mapsto 0, l_{2} \mapsto\left\{l_{1}, l_{2}\right\}\right\}$
(b) $\left\{l_{1} \mapsto 0, l_{2} \mapsto l_{1}\right\}$
(f) $\left\{l_{1} \mapsto\left\{l_{2}, l_{1}\right\}, l_{2} \mapsto\left\{l_{1}, l_{2}\right\}\right\}$
(c) $\left\{l_{1} \mapsto 0, l_{2} \mapsto\left\{l_{1}\right.\right.$, true $\left.\}\right\}$
(g) $\left\{l_{1} \mapsto \lambda x:\right.$ Nat. $x, l_{2} \mapsto \lambda x:$ Nat. $\left.\left(!l_{1}\right) x\right\}$
(d) $\left\{l_{1} \mapsto 0, l_{2} \mapsto\left\{l_{1}, l_{1}\right\}\right\}$
(h) $\left\{l_{1} \mapsto \lambda x:\right.$ Nat. $\left.\left(!l_{1}\right) x\right\}$
5. [10 points] Let Square <: Rectangle <: Polygon be a subtype relation among base types Square, Rectangle and Polygon. Let f, g and h be a terms in typed lambda calculus with type Rectangle \rightarrow Rectangle.
(a) [2 points] What is the type of $h(f g)$?
(b) [8 points] Let f^{\prime} be a term in typed lambda calculus such that $h\left(f^{\prime} g\right)$ is well-typed. List the possible types of f^{\prime}.
For this question, consider only the base types (e.g. Square) and function types (e.g. Square \rightarrow Rectangle, Square \rightarrow Square \rightarrow Polygon, etc.)
6. [16 points total]
(a) [6 points] Write a predicate find (L, K, V) that, given a list L of key-value pairs, and a key K , succeeds with binding V to the value associated with the given key. For instance, find([(a,1), (b,2), $(c, 3)], b, Q)$ should succeed with $Q=b$. If the given key does not appear in the list, find should fail. For instance, find $([(a, 1),(c, 3)], b)$ should fail.
(b) [10 points] Find the most general unifier for the following pairs of terms. If a pair of terms do not have a unifier, state that.
In the following, we follow Prolog's convention and use identifiers beginning with upper-case letters to denote variables.
i. $f(a)=f(Y)$
ii. $f(g(X), X)=f(Y, a)$
iii. $\operatorname{arrow}(A, B)=\operatorname{arrow}(B, A)$
iv. $\operatorname{arrow}(A, B)=A$
v. $\operatorname{arrow}(\operatorname{arrow}(A, B), A)=\operatorname{arrow}(X, B)$
7. [10 points] OCAML has a "while-do" construct of the form "while e_{1} do e_{2} done" where e_{1}, e_{2} are OCAML expressions. The meaning of while expressions is similar to that in imperative languages: if e_{1} evaluates to true then e_{2} is evaluated, followed by looping back to the evaluation of e_{1}.
For this problem, consider further extending the lambda calculus with references (assume all extensions of Chap. 11 as needed, as well as the extensions in Chap. 13) with a "while" term with the following syntax:

$$
\begin{gathered}
t::=\ldots \text { existing terms } \\
\mid \quad \text { while }(t, t)
\end{gathered}
$$

Give the additional evaluation rules and typing rules for this extension.
You may also, alternatively, treat while as a derived form. Then give the definition of the derived form.

