Logic and Programs

“All men are mortal; Socrates is a man; Hence Socrates is mortal”

\[\forall X. \text{man}(X) \Rightarrow \text{mortal}(X) \]

\[\text{man}(\text{socrates}) \]

Predicate logic
- Predicates (e.g. \textit{man}, \textit{mortal}) which define sets.
- Atoms (e.g. \textit{socrates}) which are data values
- Variables (e.g. \(X\)) which range over data values
- Rules (e.g. \(\forall X. \text{man}(X) \Rightarrow \text{mortal}(X)\)) which define relationships between predicates.
Inference Rules and Logic Programs

Logic "Program":
\[
\begin{align*}
\text{man}(\text{socrates}) & \quad \text{R-MAN} \\
\text{man}(x) & \quad \text{R-MORTAL} \\
\text{mortal}(x) &
\end{align*}
\]

Queries:
?- \text{mortal}(\text{socrates}).
\text{yes}

?- \text{mortal}(X).
\text{X=} \text{socrates};
\text{no}

Programming in Logic

- Early development: Kowalski & van Emden (Edinburgh); Colmerauer (Marseilles) (early '70s)
- First efficient implementation: WAM of David H.D. Warren (Edinburgh) (mid '70s).
- Later developments:
 - Constraint Logic Programming: for applications in AI, planning, scheduling, etc. Jaffar & Lassez (IBM Watson)
 - Memoization: Tamaki & Sato (Tokyo); Warren et al (Stony Brook)
Prolog Systems

- **SWI Prolog** (www.swi-prolog.org)
 - Can be obtained for free and installed on Windows, Linux, Mac.
 - Has a good development environment (command completion, help, graphical debugger, etc.)
 - On compute* (Unix) servers: `~cram/bin/swipl`

- **XSB Prolog** (xsb.sourceforge.net)
 - Can be obtained for free and installed on Windows, Linux, Mac.
 - Supports a powerful extension (memoization) to Prolog
 - Command-line interface (e.g. no graphical debugger)
 - On compute* (Unix) servers: `~cram/bin/xsb`

Using Prolog Systems

- Prolog programs are in files with “.pl” extension (“.P” for XSB)
- Prolog systems typically support an interactive mode.
- “[filename].” to compile and load a program in filename.pl (filename.P in XSB).
- “halt.” to exit the system.
Logic Programs

- Programs are a set of rules (also called clauses).
- Predicates in a logic program are analogous to procedures in imperative programs.
- One or more rules are used to define a predicate.
- Example:
 \[
 \text{inc}(X,Y) :- Y \text{ is } X+1.
 \]
 - \(X\) and \(Y\) are variables.
 - inc is a predicate.
 - The predicate is defined using a single rule.

\[
\text{inc}(X,Y) :- Y \text{ is } X+1.
\]

- “:-” separates the body of the rule from its head.
- “X” and “Y” are also “parameters” of the predicate.
 - In this case, \(X\) is the input parameter, and \(Y\) is the return parameter (where the return values are stored).
- “\(Y \text{ is } X+1\)” defines \(Y\) in terms of \(X\).
- The period (“.”) marks the end of a rule.
- The predicate is called by giving values to its parameters. e.g.
 - \text{inc}(6, B) returns with \(B=7\).
 - \text{inc}(11, B) returns with \(B=12\).
Syntax of Prolog

- **Variables** are identifiers that begin with an upper case letter or underscore.
 - An underscore, by itself, represents an *anonymous variable*.
- **Predicate** names (and later, data structure symbols) are identifiers that begin with a lower case letter.
- All variables are *local* to the clause in which they occur.
- Different occurrences of the same variable in a clause denote the same data.
- Variables need not be declared, and have no type.

How Prolog Works (An Example)

```
big(bear).
big(elephant).

brown(bear).

black(cat).

small(cat).

gray(elephant).

dark(Z) :- black(Z).
dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).
```
Derivations

```
big(bear). brown(bear). dark(Z) :- black(Z).
big(elephant). black(cat). dark(Z) :- brown(Z).
small(cat). gray(elephant).
dangerous(X) :- dark(X), big(X).
```
How Prolog Works (an example)

To prove `dangerous(Q)`:

1. Select `dangerous(X) :- dark(X), big(X)` and prove `dark(Q), big(Q)`.

2. To prove `dark(Q)` select the first clause of `dark`, i.e. `dark(Z) :- black(Z), and prove black(Q), big(Q)`.

3. Now select the fact `black(cat)` and prove `big(cat)`.
 This proof attempt fails!

4. Go back to step 2, and select the second clause of `dark`, i.e. `dark(Z) :- brown(Z)`, and prove `brown(Q), big(Q)`.

5. Now select `brown(bear)` and prove `big(bear)`.

6. Select the fact `big(bear)`.
 There is nothing left to prove, so the proof is complete

Data Representation in Prolog

- Prolog has no notion of data types
- All data is represented as *terms*, which can be:
 - Variables
 - Non-variable Terms
 - Atomic data (Integers, floating point numbers, constants, ...)
 - Compound Terms (Structures)
Atomic Data

- **Numeric constants:** Integers, floating point numbers (e.g. 1024, -42, 3.1415, 6.023e23 ...)
- **Atoms:**
 - Strings of characters enclosed in single quotes (e.g. ’cram’, ’Stony Brook’)
 - Identifiers: sequence of letters, digits, underscore, beginning with a letter (e.g. cram, r2d2, x_24).

Data Structures

- If f is an identifier and t_1, t_2, \ldots, t_n are terms, then $f(t_1, t_2, \ldots, t_n)$ is a term.

 ![Diagram of term structure](image)

- In the above, f is called a *function symbol* (or *functor*) and t_i is an *argument*.
- Structures are used to group related data items together (in some ways similar to `struct` in C and objects in Java).
- Structures are used to construct trees (and, as a special case, lists).
Trees

- Example: expression trees:

 \[\text{plus}(\text{minus}(\text{num}(3), \text{num}(1)), \text{star}(\text{num}(4), \text{num}(2))) \]

- **Data structures may have variables.** And the same variable may occur multiple times in a data structure.

Matching

(We'll extend this to *unification* later)

- \(t_1 = t_2 \): find substitutions for variables in \(t_1 \) and \(t_2 \) that make the two terms identical.

\[
\begin{array}{c}
\text{plus} \\
\text{minus} \\
\text{num} \\
3 \quad X \\
\end{array}
\qquad
\begin{array}{c}
\text{star} \\
\text{num} \\
Y \\
2 \\
\end{array}
\quad
\begin{array}{c}
\text{plus} \\
\text{minus} \\
\text{num} \\
3 \quad X \\
\end{array}
\qquad
\begin{array}{c}
\text{star} \\
\text{num} \\
X \\
2 \\
\end{array}
\]

Yes, with \(X = 1, \ Y = 4 \).
Matching (contd.)

Yes, with $X = 1, Y = 4$.

No! X cannot be 1 and 4 at the same time.
Accessing arguments of a structure

- Matching is the predominant means for accessing a structures arguments.
- Let \(\text{date('Sep', 1, 2005)} \) be a structure used to represent dates, with the month, day and year as the three arguments (in that order).
- Then \(\text{date(M, D, Y) = date('Sep', 1, 2005)} \) makes \(M = 'Sep', D = 1, Y = 2005. \)
- If we want to get only the day, we can write \(\text{date(_, D, _)} = \text{date('Sep', 1, 2005)} \). Then we get \(D = 1 \).

Lists

Prolog uses a special syntax to represent and manipulate lists.

- \([1,2,3,4]\): represents a list with 1, 2, 3 and 4, respectively.
- This can also be written as \([1 \mid [2,3,4]]\): a list with 1 as the head (its first element) and \([2,3,4]\) as its tail (the list of remaining elements).
- If \(X = 1 \) and \(Y = [2,3,4] \) then \([X|Y] \) is same as \([1,2,3,4]\).
- The empty list is represented by \([\]\).
- The symbol “\(\mid\)” (called \textit{cons}) and is used to separate the beginning elements of a list from its tail.
 For example: \([1,2,3,4] = [1 \mid [2,3,4]]\)
 = \([1 \mid [2 \mid [3,4]]]\)
 = \([1,2 \mid [3,4]]\)
Lists (contd.)

- Lists are special cases of trees.
 For instance, the list \([1, 2, 3, 4]\) is represented by the following structure:

```
     1
    /|
   / 2
  /   |
 3   4  [ ]
```

- The function symbol \(./2\) is the list constructor.
 \([1, 2, 3, 4]\) is same as \((1, (2, (3, (4, []))))\)

Programming with Lists — I

First example: \texttt{member/2}, to find if a given element occurs in a list:

\textbf{The program:}

\begin{verbatim}
member(X, [X|_]).
member(X, [_|Ys]) :- member(X, Ys).
\end{verbatim}

\textbf{Example queries:}

\begin{verbatim}
member(s, [l,i,s,t])
member(X, [l,i,s,t])
member(f(X), [f(1), g(2), f(3), h(4), f(5)])
\end{verbatim}
Programming with Lists — II

append/3: concatenate two lists to form the third list.

The program:
append([], L, L).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Example queries:
append([f,i,r], [s,t], L)
append(X, Y, [s,e,c,o,n,d])
append(X, [t,h], [f,o,u,r,t,h])

Programming with Lists — III

Define a predicate, len/2 that finds the length of a list (first argument).

The program:
len([], 0).
len([_|Xs], N+1) :- len(Xs, N).

Example queries:
len([], X)
len([l,i,s,t], 4)
len([l,i,s,t], X)
Arithmetic

?- 1+2 = 3.

no

- In *Predicate logic*, the basis for Prolog, the only symbols that have a meaning are the predicates themselves.
- In particular, function symbols are uninterpreted: have no special meaning and can only be used to construct data structures.
- Meaning for arithmetic expressions is given by the *built-in* predicate “is”:
 - X is 1 + 2 succeeds, binding X to 3.
 - 3 is 1 + 2 succeeds.
 - General form: R is E where E is an expression to be evaluated and R is matched with the expression’s value.
 - Y is X + 1 will give an error if X does not (yet) have a value.

The list length example revisited

Define a predicate, `length/2` that finds the length of a list (first argument).

The program:

```prolog
length([], 0).
length([_|Xs], M) :- length(Xs, N), M is N + 1.
```

Example queries:

```prolog
length([], X)
length([l,i,s,t], 4)
length([l,i,s,t], X)
length(List, 4)
```
Conditional Evaluation

Consider the computation of $n!$, i.e. the factorial of n.

factorial(N, F) :- ...

- N is the input parameter; and F is the output parameter.
- The body of the rule specifies how the output is related to the input.
- For factorial, there are two cases: $N \leq 0$ and $N > 0$.
 - $N \leq 0$: $F = 1$
 - $N > 0$: $F = N \times (N - 1)!$

factorial(N, F) :-
 (N > 0 ->
 N1 is N-1, factorial(N1, F1), F is N*F1
 ;
 F = 1
).

More Prolog Syntax

- Assignments with arithmetic expressions is done using the keyword "is".
- If-then-else is written as (cond -> then-part ; else-part)
- If more than one action needs to be performed in a rule, they are written one after another, separated by a comma.
- Arithmetic expressions are not directly used as arguments when calling a predicate; they are first evaluated, and then passed to the called predicate.
Arithmetic Operators

- Integer/Float operators: +, -, *, /
- Integer operators: mod, // (div)
- Int ↔ Float operators: floor, ceiling
- Comparison operators: <, >, =<, >=, =:=, =\=

Unification

- Operation done to “match” the goal atom with the head of a clause in the program.
- Forms the basis for the matching operation we used for Prolog evaluation.
 - f(a, Y) and f(X, b) unify when X=a and Y=b.
 - f(a, X) and f(X, b) do not unify.
 - X and f(X) do not unify (but they “match” in Prolog!)
Substitutions

A substitution is a mapping between variables and values (terms).

- Denoted by \(\{ X_1 \mapsto t_1, X_2 \mapsto t_2, \ldots, X_n \mapsto t_n \} \) such that
 - \(X_i \neq t_i \), and
 - \(X_i \) and \(X_j \) are distinct variables when \(i \neq j \).
- Empty substitution is denoted by \(\epsilon \).
- A substitution is said to be a **renaming** if it is of the form
 \(\{ X_1 \mapsto Y_1, \ldots, X_n \mapsto Y_n \} \) and \(Y_1, \ldots, Y_n \) is a permutation of \(X_1, \ldots, X_n \).
- Example: \(\{ X \mapsto Y, Y \mapsto X \} \) is a renaming substitution.

Substitutions and Terms

- Application of a substitution:
 - \(X\theta = t \) if \(X \mapsto t \in \theta \).
 - \(X\theta = X \) if \(X \mapsto t \notin \theta \) for any term \(t \).
- Application of a substitution \(\{ X_1 \mapsto t_1, \ldots, X_n \mapsto t_n \} \) to a term \(s \):
 - is a term obtained by **simultaneously** replacing every occurrence of \(X_i \)
 in \(s \) by \(t_i \).
 - Denoted by \(s\theta \)
 and \(s\theta \) is said to be an instance of \(s \)
- Example:
 \[
 p(f(X, Z), f(Y, a)) \{ X \mapsto g(Y), Y \mapsto Z, Z \mapsto a \} = p(f(g(Y), a), f(Z, a))
 \]
Composition of Substitutions

- Composition of substitutions $\theta = \{X_1 \mapsto s_1, \ldots, X_m \mapsto s_m\}$ and $\sigma = \{Y_1 \mapsto t_1, \ldots, Y_n \mapsto t_n\}$:
 - First form the set $\{X_1 \mapsto s_1\sigma, \ldots, X_m \mapsto s_m\sigma, Y_1 \mapsto t_1, \ldots, Y_n \mapsto t_n\}$
 - Remove from the set $X_i \mapsto s_i\sigma$ if $s_i\sigma = X_i$
 - Remove from the set $Y_j \mapsto t_j$ if Y_j is identical to some variable X_i
- Example: Let $\theta = \sigma = \{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$. Then $\theta\sigma = \{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$

More examples: Let $\theta = \{X \mapsto f(Y)\}$ and $\sigma = \{Y \mapsto a\}$
- $\theta\sigma = \{X \mapsto f(a), Y \mapsto a\}$
- $\theta\sigma = \{X \mapsto f(Y), Y \mapsto a\}$
- Composition is not commutative but is associative: $\theta(\sigma\gamma) = (\theta\sigma)\gamma$
- Also, $E(\theta\sigma) = (E\theta)\sigma$

Idempotence

- A substitution θ is idempotent iff $\theta\theta = \theta$.
- Examples:
 - $\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}$ is not idempotent since
 $\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\}\{X \mapsto g(Y), Y \mapsto Z, Z \mapsto a\} = \{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$
 - $\{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}$ is not idempotent either since
 $\{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\}\{X \mapsto g(Z), Y \mapsto a, Z \mapsto a\} = \{X \mapsto g(a), Y \mapsto a, Z \mapsto a\}$
 - $\{X \mapsto g(a), Y \mapsto a, Z \mapsto a\}$ is idempotent
 - For a substitution $\theta = \{X_1 \mapsto t_1, \ldots, X_n \mapsto t_n\}$,
 - $\text{Dom}(\theta) = \{X_1, X_2, \ldots X_n\}$
 - $\text{Range}(\theta) = \text{set of all variables in } t_1, \ldots t_n$
 - A substitution θ is idempotent iff $\text{Dom}(\theta) \cap \text{Range}(\theta) = \emptyset$
Unification

Unifiers

- A substitution θ is a **unifier** of two terms s and t if $s\theta$ is identical to $t\theta$.
- θ is a unifier of a set of equations $\{s_1 \doteq t_1, \ldots, s_n \doteq t_n\}$, if for all i, $s_i\theta = t_i\theta$.
- A substitution θ is more general than σ (written as $\theta \triangleright \sigma$) if there is a substitution ω such that $\sigma = \theta\omega$.
- A substitution θ is a **most general unifier** (mgu) of two terms (or a set of equations) if for every unifier σ of the two terms (or equations) $\theta \triangleright \sigma$.
- Example: Consider two terms $f(g(X), Y, a, b)$ and $f(Z, W, X, b)$.
 - $\theta_1 = \{X \mapsto a, Y \mapsto b, Z \mapsto g(a), W \mapsto b\}$ is a unifier
 - $\theta_2 = \{X \mapsto a, Y \mapsto W, Z \mapsto g(a)\}$ is also a unifier
 - θ_2 is a most general unifier

Equations and Unifiers

- A set of equations \mathcal{E} is in **solved form** if it is of the form $\{X_1 \doteq t_1, \ldots, X_n \doteq t_n\}$ iff
 - all X_i's are distinct, and
 - no X_i appears in any t_j.
- Given a set of equations in solved form $\mathcal{E} = \{X_1 \doteq t_1, \ldots, X_n \doteq t_n\}$ the substitution $\{X_1/t_1, \ldots, X_n/t_n\}$ is an idempotent mgu of \mathcal{E}.
- Two sets of equations \mathcal{E}_1 and \mathcal{E}_2 are said to be **equivalent** iff they have the same set of unifiers.
- To find the mgu of two terms s and t, find a set of equations in solved form that is equivalent to $\{s \doteq t\}$.
 - If there is no equivalent solved form, there is no mgu.
A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

\[
\{f(X, g(Y)) \triangleq f(g(Z), Z)\} \Rightarrow \{X \triangleq g(Z), g(Y) \triangleq Z\} \\
\Rightarrow \{X \triangleq g(Z), Z \triangleq g(Y)\} \\
\Rightarrow \{X \triangleq g(g(Y)), Z \triangleq g(Y)\}
\]

- Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

\[
\{f(X, g(X), b) \triangleq f(a, g(Z), Z)\} \Rightarrow \{X \triangleq a, g(X) \triangleq g(Z), b \triangleq Z\} \\
\Rightarrow \{X \triangleq a, a \triangleq Z, b \triangleq Z\} \\
\Rightarrow \{X \triangleq a, Z \triangleq a, b \triangleq Z\} \\
\Rightarrow \{X \triangleq a, Z \triangleq a, b \triangleq a\} \\
\Rightarrow \text{fail}
\]
A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of \(f(X, g(Y)) \) and \(f(g(Z), Z) \)
 \[
 \{ f(X, g(Y)) \doteq f(g(Z), Z) \} \Rightarrow \begin{cases}
 f(X) = g(Z), f(g(Y)) = Z & \text{case 1} \\
 f(X) = g(Z), Z = g(Y) & \text{case 4} \\
 f(g(Y)) = Z, Z = g(Y) & \text{case 5b}
 \end{cases}
 \]

- Example 3: Find the mgu of \(f(X, g(X)) \) and \(f(Z, Z) \)
 \[
 \{ f(X, g(X)) \doteq f(Z, Z) \} \Rightarrow \begin{cases}
 X = Z, f(X) = Z & \text{case 1} \\
 X = Z, g(Z) = Z & \text{case 5b} \\
 X = Z, Z = g(Z) & \text{case 4} \\
 \text{fail} & \text{case 5a}
 \end{cases}
 \]

Complexity of the unification algorithm

Consider
\[
\mathcal{E} = \{ g(X_1, \ldots, X_n) \doteq g(f(X_0, X_0), f(X_1, X_1), \ldots, f(X_{n-1}, X_{n-1})) \}.
\]

- By applying case 1 of the algorithm, we get
 \[
 \{ X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), \ldots, X_n = f(X_{n-1}, X_{n-1}) \}
 \]

- If terms are kept as trees, the final value for \(X_n \) is a tree of size \(O(2^n) \).
- Recall that for case 5 we need to first check if a variable appears in a term, and this could now take \(O(2^n) \) time.
- There are linear-time unification algorithms that share structures (terms as DAGs).
- \(X = t \) is the most common case for unification in Prolog. The fastest algorithms are linear in \(t \).
- Prolog cuts corners by omitting case 5a (the occur check), thereby doing \(X = t \) in constant time.
Most General Unifiers

- Note that mgu stands for a most general unifier.
- There may be more than one mgu. E.g. \(f(X) = f(Y) \) has two mgus:
 - \(\{ X \mapsto Y \} \)
 - \(\{ Y \mapsto X \} \)
- If \(\theta \) is an mgu of \(s \) and \(t \), and \(\omega \) is a renaming, then \(\theta \omega \) is an mgu of \(s \) and \(t \).
- If \(\theta \) and \(\sigma \) are mgus of \(s \) and \(t \), then there is a renaming \(\omega \) such that \(\theta = \sigma \omega \).