Refutation in Predicate Logic

\[
\begin{align*}
\text{parent}(pam, bob). & \quad \text{anc}(X,Y) : - \\
\text{parent}(tom, bob). & \quad \text{parent}(X,Y).
\end{align*}
\]

- For what values of \(Q \) is \(\text{anc}(\text{tom},Q) \) a logical consequence of the above program?
- Negate the goal \(F \): i.e. \(\forall Q. \neg \text{anc}(\text{tom},Q) \).
- Consider the clauses in \(P \cup \neg F \).
 - Note that a program clause written as \(p(A,B) : - q(A,C), r(B,C) \) can be rewritten as:
 \[
 \forall A, B, C. (p(A,B) \lor \neg q(A,C) \lor r(B,C))
 \]
 - I.e., l.h.s. literal is positive, while all r.h.s. literals are negative
 - Note also that all variables are universally quantified in a clause.

Refutation: An Example

\[
\begin{align*}
\text{parent}(pam, bob). & \quad \text{anc}(X,Y) : - \\
\text{parent}(tom, bob). & \quad \text{parent}(X,Y).
\end{align*}
\]

\[
\begin{align*}
\leftarrow \text{anc}(\text{tom},Q) & \quad \leftarrow \text{parent}(\text{tom},Q) \\
\text{anc}(X,Y) & \quad \leftarrow \text{parent}(X,Y) \\
\text{parent}(\text{tom}, \text{bob}) & \quad \Box \quad Q=\text{bob}
\end{align*}
\]
Refutation: An Example (contd.)

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

\[\text{anc}(X,Y) \leftarrow \text{parent}(X,Y). \]
\[\text{anc}(X,Y) \leftarrow \text{parent}(X,Z), \text{anc}(Z,Y). \]

\[\text{anc}(X,Y) \leftarrow \text{parent}(tom,Z’), \text{anc}(Z’,Q). \]

\[\text{anc}(X,Y) \leftarrow \text{parent}(bob,Q). \]

\[\text{anc}(X,Y) \leftarrow \text{parent}(bob,Q). \]
\[\text{anc}(X,Y) \leftarrow \text{parent}(bob,ann) \leftarrow \]
\[Q=\text{ann} \]

Unification

- Operation done to “match” the goal atom with the head of a clause in the program.
- Forms the basis for the matching operation we used for Prolog evaluation.
 - \(f(a,Y) \) and \(f(X,b) \) unify when \(X=a \) and \(Y=b \).
 - \(f(a,X) \) and \(f(X,b) \) do not unify.
 - \(X \) and \(f(X) \) do not unify (but they “match” in Prolog!)
Substitutions

A substitution is a mapping between variables and values (terms).

- Denoted by \(\{X_1/t_1, X_2/t_2, \ldots, X_n/t_n\} \) such that
 - \(X_i \neq t_i \), and
 - \(X_i \) and \(X_j \) are distinct variables when \(i \neq j \).
- Empty substitution is denoted by \(\epsilon \).
- A substitution is said to be a **renaming** if it is of the form
 \(\{X_1/Y_1, \ldots, X_n/Y_n\} \) and \(Y_1, \ldots, Y_n \) is a permutation of \(X_1, \ldots, X_n \).
- Example: \(\{X/Y, Y/X\} \) is a renaming substitution.

Substitutions and Terms

- Application of a substitution:
 - \(X\theta = t \) if \(X/t \in \theta \).
 - \(X\theta = X \) if \(X/t \notin \theta \) for any term \(t \).
- Application of a substitution \(\{X_1/t_1, \ldots, X_n/t_n\} \) to a term/formula \(F \):
 - is a term/formula obtained by simultaneously replacing every **free** occurrence of \(X_i \) in \(F \) by \(t_i \).
 - Denoted by \(F\theta \) [and \(F\theta \) is said to be an instance of \(F \)]
- Example:
 \[p(f(X, Z), f(Y, a))\{X/g(Y), Y/Z, Z/a\} = p(f(g(Y), a), f(Z, a)) \]
Composition of Substitutions

- Composition of substitutions $\theta = \{X_1/s_1, \ldots, X_m/s_m\}$ and $\sigma = \{Y_1/t_1, \ldots, Y_n/t_n\}$:
 - First form the set $\{X_1/s_1\sigma, \ldots, X_m/s_m\sigma, Y_1/t_1, \ldots, Y_n/t_n\}$
 - Remove from the set $X_i/s_i\sigma$ if $s_i\sigma = X_i$
 - Remove from the set Y_j/t_j if Y_j is identical to some variable X_i
- Example: Let $\theta = \sigma = \{X/g(Y), Y/Z, Z/a\}$. Then $\theta\sigma =$

 $$\{X/g(Y), Y/Z, Z/a\}\{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\}$$

- More examples: Let $\theta = \{X/f(Y)\}$ and $\sigma = \{Y/a\}$
 - $\theta\sigma = \{X/f(a), Y/a\}$
 - $\theta\sigma = \{X/f(Y), Y/a\}$
- Composition is not commutative but is associative: $\theta(\sigma\gamma) = (\theta\sigma)\gamma$
- Also, $E(\theta\sigma) = (E\theta)\sigma$

Idempotence

- A substitution θ is idempotent iff $\theta\theta = \theta$.
- Examples:
 - $\{X/g(Y), Y/Z, Z/a\}$ is not idempotent since

 $$\{X/g(Y), Y/Z, Z/a\}\{X/g(Y), Y/Z, Z/a\} = \{X/g(Z), Y/a, Z/a\}$$

 - $\{X/g(Z), Y/a, Z/a\}$ is not idempotent either since

 $$\{X/g(Z), Y/a, Z/a\}\{X/g(Z), Y/a, Z/a\} = \{X/g(a), Y/a, Z/a\}$$

 - $\{X/g(a), Y/a, Z/a\}$ is idempotent
- For a substitution $\theta = \{X_1/t_1, \ldots, X_n/t_n\}$,
 - $\text{Dom}(\theta) = \{X_1, X_2, \ldots X_n\}$
 - $\text{Range}(\theta) = \text{set of all variables in } t_1, \ldots t_n$
- A substitution θ is idempotent iff $\text{Dom}(\theta) \cap \text{Range}(\theta) = \emptyset$
Unification

A substitution \(\theta \) is a **unifier** of two terms \(s \) and \(t \) if \(s\theta \) is identical to \(t\theta \).

\(\theta \) is a unifier of a set of equations \(\{s_1 \doteq t_1, \ldots, s_n \doteq t_n\} \), if for all \(i \), \(s_i\theta = t_i\theta \).

A substitution \(\theta \) is more general than \(\sigma \) (written as \(\theta \succeq \sigma \)) if there is a substitution \(\omega \) such that \(\sigma = \theta\omega \).

A substitution \(\theta \) is a **most general unifier** (mgu) of two terms (or a set of equations) if for every unifier \(\sigma \) of the two terms (or equations) \(\theta \succeq \sigma \).

Example: Consider two terms \(f(g(X), Y, a) \) and \(f(Z, W, X) \).

- \(\theta_1 = \{X/a, Y/b, Z/g(a), W/b\} \) is a unifier
- \(\theta_2 = \{X/a, Y/W, Z/g(a)\} \) is also a unifier
- \(\theta_2 \) is a most general unifier

Equations and Unifiers

A set of equations \(\mathcal{E} \) is in **solved form** if it is of the form \(\{X_1 \doteq t_1, \ldots, X_n \doteq t_n\} \) iff no \(X_i \) appears in any \(t_j \).

Given a set of equations \(\mathcal{E} = \{X_1 \doteq t_1, \ldots, X_n \doteq t_n\} \) the substitution \(\{X_1/t_1, \ldots X_n/t_n\} \) is an idempotent mgu of \(\mathcal{E} \).

Two sets of equations \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) are said to be **equivalent** iff they have the same set of unifiers.

To find the mgu of two terms \(s \) and \(t \), try to find a set of equations in solved form that is equivalent to \(\{s \doteq t\} \).

If there is no equivalent solved form, there is no mgu.
A Simple Unification Algorithm (via Examples)

- Example 1: Find the mgu of $f(X, g(Y))$ and $f(g(Z), Z)$

\[
\{f(X, g(Y)) \doteq f(g(Z), Z)\} \Rightarrow \{X \doteq g(Z), g(Y) \doteq Z\} \\
\Rightarrow \{X \doteq g(Z), Z \doteq g(Y)\} \\
\Rightarrow \{X \doteq g(g(Y)), Z \doteq g(Y)\}
\]

- Example 2: Find the mgu of $f(X, g(X), b)$ and $f(a, g(Z), Z)$

\[
\{f(X, g(X), b) \doteq f(a, g(Z), Z)\} \Rightarrow \{X \doteq a, g(X) \doteq g(Z), b \doteq Z\} \\
\Rightarrow \{X \doteq a, a \doteq Z, b \doteq Z\} \\
\Rightarrow \{X \doteq a, Z \doteq a, b \doteq Z\} \\
\Rightarrow \{X \doteq a, Z \doteq a, b \doteq a\} \\
\Rightarrow \text{fail}
\]

A Simple Unification Algorithm

Given a set of equations E:

repeat

select $s \doteq t \in E$;

\textbf{case} $s \doteq t$ \textbf{of}

1. $f(s_1, \ldots, s_n) \doteq f(t_1, \ldots, t_n)$:
 replace the equation by $s_i \doteq t_i$ for all i

2. $f(s_1, \ldots, s_n) \doteq g(t_1, \ldots, t_m)$, $f \neq g$ or $n \neq m$:
 halt with \textbf{failure}

3. $X \doteq X$: remove the equation

4. $t \doteq X$: where t is not a variable
 replace equation by $X \doteq t$

5. $X \doteq t$: where $X \neq t$ and X occurs more than once in E:
 \textbf{if} X is a proper subterm of t
 \textbf{then} halt with \textbf{failure} \hspace{1cm} (5a)
 \textbf{else} replace all other X in E by t \hspace{1cm} (5b)

until no action is possible for any equation in E

return E
A Simple Unification Algorithm (More Examples)

- Example 1: Find the mgu of \(f(X, g(Y)) \) and \(f(g(Z), Z) \)
 \[
 \{f(X, g(Y)) \equiv f(g(Z), Z)\} \Rightarrow \{X \equiv g(Z), g(Y) \equiv Z\} \quad \text{case 1}
 \]
 \[
 \Rightarrow \{X \equiv g(Z), Z \equiv g(Y)\} \quad \text{case 4}
 \]
 \[
 \Rightarrow \{X \equiv g(g(Y)), Z \equiv g(Y)\} \quad \text{case 5b}
 \]

- Example 3: Find the mgu of \(f(X, g(X)) \) and \(f(Z, Z) \)
 \[
 \{f(X, g(X)) \equiv f(Z, Z)\} \Rightarrow \{X \equiv Z, g(X) \equiv Z\} \quad \text{case 1}
 \]
 \[
 \Rightarrow \{X \equiv Z, g(Z) \equiv Z\} \quad \text{case 5b}
 \]
 \[
 \Rightarrow \{X \equiv Z, Z \equiv g(Z)\} \quad \text{case 4}
 \]
 \[
 \Rightarrow \text{fail} \quad \text{case 5a}
 \]

Complexity of the unification algorithm

Consider \(\mathcal{E} = \{g(X_1, \ldots, X_n) \equiv g(f(X_0, X_0), f(X_1, X_1), \ldots, f(X_{n-1}, X_{n-1}))\} \).

- By applying case 1 of the algorithm, we get
 \[
 \{X_1 = f(X_0, X_0), X_2 = f(X_1, X_1), \ldots, X_n = f(X_{n-1}, X_{n-1})\}
 \]

- If terms are kept as trees, the final value for \(X_n \) is a tree of size \(O(2^n) \).
- Recall that for case 5 we need to first check if a variable appears in a term, and this could now take \(O(2^n) \) time.
- There are linear-time unification algorithms that share structures (terms as DAGs).
- \(X = t \) is the most common case for unification in Prolog. The fastest algorithms are linear in \(t \).
- Prolog cuts corners by omitting case 5a (the occur check), thereby doing \(X = t \) in constant time.
Most General Unifiers

- Note that mgu stands for a most general unifier.
- There may be more than one mgu. E.g. $f(X) = f(Y)$ has two mgus:
 - $\{X/Y\}$
 - $\{Y/X\}$
- If θ is an mgu of s and t, and ω is a renaming, then $\theta\omega$ is an mgu of s and t.
- If θ and σ are mgus of s and t, then there is a renaming ω such that $\theta = \sigma\omega$.
 - mgu is unique up to renaming.

SLD Resolution

\[
\leftarrow A_1, \ldots, A_{i-1}, \underline{A_i}, A_{i+1}, \ldots, A_m \quad B_0 \leftarrow B_1, \ldots, B_n \\
\leftarrow (A_1, \ldots, A_{i-1}, B_1, \ldots, B_n, A_{i+1}, \ldots, A_m)\theta
\]

where:
- A_js are atomic formulas
- $B_0 \leftarrow B_1, \ldots, B_n$ is a (renamed) definite clause in the program
- $\theta = \text{mgu}(A_i, B_0)$
- A_i is called the selected atom.
- Given a goal $\leftarrow A_1, \ldots, A_n$ a function called the selection function or computation rule selects A_i.
SLD Resolution

SLD resolution (contd.)

- When the resolution rule is applied, from a goal \(G \) and a clause \(C \), we get a new goal \(G' \).
 We then say that \(G' \) is derived directly from \(G \) and \(C \):

\[
G \xrightarrow{C} G'
\]

- An **SLD Derivation** is a sequence

\[
G_0 \xrightarrow{C_0} G_1 \cdots G_i \xrightarrow{C_i} G_{i+1} \cdots
\]

Refutation & SLD Derivation

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

\[
\text{proj}(X, Y) :- \\
\quad \text{parent}(X, Y).
\]

\[
\text{anc}(X, Y) :- \\
\quad \text{parent}(X, Z), \\
\quad \text{anc}(Z, Y).
\]

\[
\begin{align*}
\text{anc}(X, Y) & \leftarrow \text{parent}(X, Y) \\
\text{anc}(tom, Q) & \leftarrow \text{parent}(tom, Q) \\
\text{anc}(tom, Q) & \leftarrow □
\end{align*}
\]

\[
\begin{align*}
\text{parent}(tom, Q) & \leftarrow □
\end{align*}
\]
SLD Derivation (contd.)

\[\text{parent}(pam, \text{bob}). \quad \text{parent}(\text{tom}, \text{bob}). \quad \text{parent}(\text{tom}, \text{liz}). \quad \text{parent}(\text{bob}, \text{ann}). \quad \text{parent}(\text{bob}, \text{pat}). \quad \text{parent}(\text{pat}, \text{jim}). \]

\[\leftarrow \text{anc}(\text{tom}, Q) \]

\[\text{anc}(X, Y) \leftarrow \text{parent}(X, Z), \text{anc}(Z, Y) \]

\[\leftarrow \text{parent}(\text{tom}, Z'), \text{anc}(Z', Q) \]

\[\quad \text{parent}(\text{tom}, \text{bob}) \leftarrow \]

\[\leftarrow \text{anc}(\text{bob}, Q) \]

\[\text{anc}(X, Y) \leftarrow \text{parent}(X, Y) \]

\[\leftarrow \text{parent}(\text{bob}, Q) \]

\[\quad \text{parent}(\text{bob}, \text{ann}) \leftarrow \]

\[\square \]

\[Q = \text{ann} \]

Computed Answer Substitution

- Let \(\theta_0, \theta_1, \ldots, \theta_{n-1} \) be the sequence of mgu used in derivation

\[G_0 \overset{C_0}{\rightsquigarrow} G_1 \cdots G_{n-1} \overset{C_{n-1}}{\rightsquigarrow} G_n \]

Then \(\theta = \theta_0 \theta_1 \cdots \theta_{n-1} \) is the computed substitution of the derivation.

- Example:

<table>
<thead>
<tr>
<th>Goal</th>
<th>Clause Used</th>
<th>mgu</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{anc}(\text{tom}, Q))</td>
<td>(\text{anc}(X', Y') :)</td>
<td>(\theta_0 = {X'/\text{tom}, Y'/Q})</td>
</tr>
<tr>
<td>(\text{parent}(\text{tom}, Z'), \text{anc}(Z', Q))</td>
<td>(\text{parent}(\text{tom}, \text{bob}). \quad \text{anc}(X'', Y'') :)</td>
<td>(\theta_1 = {Z'/\text{bob}})</td>
</tr>
<tr>
<td>(\text{parent}(\text{bob}, Q))</td>
<td>(\text{parent}(\text{bob}, \text{ann}).)</td>
<td>(\theta_2 = {X''/\text{bob}, Y''/Q})</td>
</tr>
<tr>
<td>(\square)</td>
<td></td>
<td>(\theta_3 = {Q/\text{ann}})</td>
</tr>
</tbody>
</table>

- Computed substitution for the above derivation is \(\theta_0 \theta_1 \theta_2 \theta_3 = \{X'/\text{tom}, Y'/\text{ann}, Z'/\text{bob}, X''/\text{bob}, Y''/\text{ann}, Q/\text{ann}\} \)
Computed Answer Substitution (contd.)

- A finite derivation of the form

 \[G_0 \overset{C_0}{\leadsto} G_1 \cdots G_{n-1} \overset{C_{n-1}}{\leadsto} G_n \]

 where \(G_n = \square \) (i.e., an empty goal) is an **SLD refutation** of \(G_0 \).

- The computed substitution of an SLD refutation of \(G \), restricted to variables of \(G \), is a **computed answer substitution** for \(G \).

- Example (contd.): The computed answer substitution for the above SLD refutation is

 \[\{ X'/\text{tom}, Y'/\text{ann}, Z'/\text{bob}, X''/\text{bob}, Y''/\text{ann}, Q/\text{ann} \} \]

 restricted to \(Q \):

 \[\{ Q/\text{ann} \} \]

Failed SLD Derivation

- A derivation of a goal clause \(G_0 \) whose last element is not empty, and cannot be resolved with any clause of the program.

- Example: consider the following program:

 \[
 \begin{align*}
 \text{grandfather}(X,Z) & : - \text{father}(X,Y), \text{parent}(Y,Z). \\
 \text{parent}(X,Y) & : - \text{father}(X,Y). \\
 \text{parent}(X,Y) & : - \text{mother}(X,Y). \\
 \text{father}(a,b). \\
 \text{mother}(b,c).
 \end{align*}
 \]

 A derivation of \(\text{grandfather}(a,Q) \) is:

 \[
 \begin{align*}
 \leadsto & \text{father}(a,Y'), \text{parent}(Y',Q) \\
 \leadsto & \text{parent}(b,Q) \\
 \leadsto & \text{father}(b,Q)
 \end{align*}
 \]
SLD Tree

A tree where every path is an SLD derivation

\[
\text{grandfather}(X,Z) :- \\
\quad \text{father}(X,Y), \text{parent}(Y,Z).
\]

\[
\text{parent}(X,Y) :- \text{father}(X,Y).
\]

\[
\text{parent}(X,Y) :- \text{mother}(X,Y).
\]

\[
\text{father}(a,b).
\]

\[
\text{mother}(b,c).
\]

\[
\text{← grandfather}(a, Q)
\]

\[
\quad \text{← father}(a, Z'), \text{parent}(Z', Q)
\]

\[
\quad \text{← parent}(b, Q)
\]

\[
\quad \text{← father}(b, Q)
\]

\[
\quad \text{← mother}(b, Q)
\]

Soundness of SLD resolution

- Let P be a definite program, \mathcal{R} be a computation rule, and θ be a computed answer substitution for a goal G. Then $\forall G \theta$ is a logical consequence of P.
- Proof is by induction on the number of resolution steps used in the refutation of G.
- Base case uses the following lemma:
 - Let F be a formula and F' be an instance of F, i.e. $F' = F\theta$ for some substitution θ.
 Then $(\forall F) \models (\forall F')$.