Semantics of Definite Logic Programs

C. R. Ramakrishnan

CSE 505
Logical Consequences of Formulae

- Recall: F is a logical consequence of P (i.e. $P \models F$) iff every model of P is also a model of F.
- Since there are (in general) infinitely many possible interpretations, how can we check if F is a logical consequence of P?
- Solution: choose one “canonical” model \mathcal{I} such that

$$\mathcal{I} \models P \quad \text{and} \quad \mathcal{I} \models F \Rightarrow P \models F$$
Definite Clauses

A formula of the form $p(t_1, t_2, \ldots, t_n)$, where p/n is an n-ary predicate symbol and t_i are all terms is said to be **atomic**.
Definite Clauses

- A formula of the form \(p(t_1, t_2, \ldots, t_n) \), where \(p/n \) is an \(n \)-ary predicate symbol and \(t_i \) are all terms is said to be atomic.

- If \(A \) is an atomic formula then
 - \(A \) is said to be a positive literal
 - \(\neg A \) is said to be a negative literal
Definite Clauses

- A formula of the form $p(t_1, t_2, \ldots, t_n)$, where p/n is an n-ary predicate symbol and t_i are all terms is said to be atomic.

- If A is an atomic formula then
 - A is said to be a positive literal
 - $\neg A$ is said to be a negative literal

- A formula of the form $\forall(L_1 \lor L_2 \lor \cdots \lor L_n)$ where each L_i is a literal (negative or positive) is called a clause.
Definite Clauses

- A formula of the form \(p(t_1, t_2, \ldots, t_n) \), where \(p/n \) is an \(n \)-ary predicate symbol and \(t_i \) are all terms is said to be **atomic**.
- If \(A \) is an atomic formula then
 - \(A \) is said to be a **positive literal**
 - \(\neg A \) is said to be a **negative literal**
- A formula of the form \(\forall (L_1 \lor L_2 \lor \cdots \lor L_n) \) where each \(L_i \) is a literal (negative or positive) is called a **clause**.
- A clause \(\forall (L_1 \lor L_2 \lor \cdots \lor L_n) \) where *exactly one* literal is positive is called a **definite clause**.
Definite Clauses

- A formula of the form $p(t_1, t_2, \ldots, t_n)$, where p/n is an n-ary predicate symbol and t_i are all terms is said to be atomic.

- If A is an atomic formula then
 - A is said to be a positive literal
 - $\neg A$ is said to be a negative literal

- A formula of the form $\forall(L_1 \lor L_2 \lor \cdots \lor L_n)$ where each L_i is a literal (negative or positive) is called a clause.

- A clause $\forall(L_1 \lor L_2 \lor \cdots \lor L_n)$ where exactly one literal is positive is called a definite clause.
 A definite clause is usually written as:
 - $\forall(A_0 \lor \neg A_1 \lor \cdots \lor \neg A_n)$
 - \ldots or equivalently as $A_0 \leftarrow A_1, A_2, \ldots A_n$.
Definite Clauses

- A formula of the form \(p(t_1, t_2, \ldots, t_n) \), where \(p/n \) is an \(n \)-ary predicate symbol and \(t_i \) are all terms is said to be \textit{atomic}.

- If \(A \) is an atomic formula then
 - \(A \) is said to be a \textit{positive literal}
 - \(\neg A \) is said to be a \textit{negative literal}

- A formula of the form \(\forall (L_1 \lor L_2 \lor \cdots \lor L_n) \) where each \(L_i \) is a literal (negative or positive) is called a \textit{clause}.

- A clause \(\forall (L_1 \lor L_2 \lor \cdots \lor L_n) \) where \textit{exactly one} literal is positive is called a \textit{definite clause}.
 A definite clause is usually written as:
 - \(\forall (A_0 \lor \neg A_1 \lor \cdots \lor \neg A_n) \)
 - \(\ldots \) or equivalently as \(A_0 \leftarrow A_1, A_2, \ldots A_n \).

- A \textbf{definite program} is a set of definite clauses.
Given an alphabet \mathcal{A}, the set of all ground terms constructed from the constant and function symbols of \mathcal{A} is called the **Herbrand Universe** of \mathcal{A} (denoted by $U_{\mathcal{A}}$).

Consider the program:

\[
\begin{align*}
p(\text{zero}). \\
p(s(s(X))) & \leftarrow p(X).
\end{align*}
\]

The Herbrand Universe of the program’s alphabet is
Herbrand Universe

- Given an alphabet \(\mathcal{A} \), the set of all \textit{ground terms} constructed from the constant and function symbols of \(\mathcal{A} \) is called the \textbf{Herbrand Universe} of \(\mathcal{A} \) (denoted by \(U_\mathcal{A} \)).

- Consider the program:

 \[
 p(\text{zero}). \\
 p(s(s(X))) \leftarrow p(X).
 \]

 The Herbrand Universe of the program’s alphabet is \(\{\text{zero}, s(\text{zero}), s(s(\text{zero})), \ldots\} \).
Consider the “relations” program:

parent(pam, bob). parent(bob, ann).
parent(tom, bob). parent(bob, pat).
parent(tom, liz). parent(pat, jim).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

The Herbrand Universe of the program’s alphabet is
Consider the “relations” program:

\[
\begin{align*}
\text{parent}(\text{pam}, \text{bob}). & \quad \text{parent}(\text{bob}, \text{ann}). \\
\text{parent}(\text{tom}, \text{bob}). & \quad \text{parent}(\text{bob}, \text{pat}). \\
\text{parent}(\text{tom}, \text{liz}). & \quad \text{parent}(\text{pat}, \text{jim}). \\
\text{grandparent}(X, Y) & \quad \text{:- parent}(X, Z), \text{parent}(Z, Y).
\end{align*}
\]

The Herbrand Universe of the program’s alphabet is \{ pam, bob, tom, liz, ann, pat, jim \}.
Herbrand Base

- Given an alphabet \(\mathcal{A} \),
 the set of all \textit{ground atomic formulas} over \(\mathcal{A} \) is called the \textbf{Herbrand Base} of \(\mathcal{A} \) (denoted by \(B_{\mathcal{A}} \)).

- Consider the program:

 \[
 p(\text{zero}). \\
 p(s(s(X))) \leftarrow p(X).
 \]

 The Herbrand Base of the program’s alphabet is
Herbrand Base

- Given an alphabet \mathcal{A}, the set of all ground atomic formulas over \mathcal{A} is called the **Herbrand Base** of \mathcal{A} (denoted by $B_{\mathcal{A}}$).

- Consider the program:

 \[
 p(\text{zero}).
 \]

 \[
 p(s(s(X))) \leftarrow p(X).
 \]

 The Herbrand Base of the program’s alphabet is
 \[
 \{p(\text{zero}), p(s(\text{zero})), p(s(s(\text{zero}))), \ldots\}.
 \]
Consider the “relations” program:

parent(pam, bob). parent(bob, ann).
parent(tom, bob). parent(bob, pat).
parent(tom, liz). parent(pat, jim).
grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

The Herbrand Base of the program’s alphabet is
Consider the “relations” program:

```
parent(pam, bob).       parent(bob, ann).
parent(tom, bob).       parent(bob, pat).
parent(tom, liz).       parent(pat, jim).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).
```

The Herbrand Base of the program’s alphabet is \{ parent(pam, pam), parent(pam, bob), parent(pam, tom), ..., parent(bob, pam), ..., grandparent(pam, pam), ..., grandparent(bob, pam), ... \}
A *Herbrand Interpretation* of a program P is \mathcal{I} such that

- $|\mathcal{I}| = \mathbb{U}_P$
- For every constant c: $c_{\mathcal{I}} = c$
- For every function symbol f/n: $f_{\mathcal{I}}(x_1, \ldots x_n) = f(x_1, \ldots , x_n)$
- For every predicate symbol p/n: $p_{\mathcal{I}} \subseteq (\mathbb{U}_P)^n$
 (i.e. some subset of n-tuples of ground terms)

A *Herbrand Model* of a program P is a Herbrand interpretation that is a model of P.
Herbrand Models

- All Herbrand interpretations of a program give the same “meaning” to the constant and function symbols.
- Different Herbrand interpretations differ only in the “meaning” they give to the *predicate* symbols.
- We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model.

Examples:
- Consider our first example program.
 \[\{ p(\text{zero}), p(s^2(\text{zero})), p(s^4(\text{zero})), \ldots \} \] represents the Herbrand model that treats \(p_{\exists} = \text{zero}, s^2(\text{zero}), s^4(\text{zero}), \ldots \) as the meaning of \(p \).
Properties of Herbrand Models

If M is a family of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.
Properties of Herbrand Models

1. If M is a family of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

2. For every definite program P there is a unique least model M_P such that

M_P = the set of all atomic ground logical consequences of P.
1. If M is a family of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

2. For every definite program P there is a unique least model M_P such that
 - M_P is a Herbrand Model of P and,
Properties of Herbrand Models

1. If M is a family of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

2. For every definite program P there is a unique least model M_P such that
 - M_P is a Herbrand Model of P and,
 - for every Herbrand Model M, $M_P \subseteq M$.
Properties of Herbrand Models

1. If M is a family of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

2. For every definite program P there is a unique least model M_P such that
 - M_P is a Herbrand Model of P and,
 - for every Herbrand Model M, $M_P \subseteq M$.

3. For any definite program, if every Herbrand Model of P is also a Herbrand Model of F, then $P \models F$.
Properties of Herbrand Models

1. If M is a family of Herbrand Models of a definite program P, then $\bigcap M$ is also a Herbrand Model of P.

2. For every definite program P there is a unique least model M_P such that
 - M_P is a Herbrand Model of P and,
 - for every Herbrand Model M, $M_P \subseteq M$.

3. For any definite program, if every Herbrand Model of P is also a Herbrand Model of F, then $P \models F$.

4. $M_P = \text{the set of all atomic ground logical consequences of } P$.
Sufficiency of Herbrand Models

Let P be a definite program. Then if \mathcal{G}' is a model of P then $\mathcal{G} = \{ A \in B_P \mid \mathcal{G}' \models A \}$ is a Herbrand model of P.
Sufficiency of Herbrand Models

Let P be a definite program. Then if \mathcal{S}' is a model of P then $\mathcal{S} = \{A \in B_P \mid \mathcal{S}' \models A\}$ is a Herbrand model of P.

Proof (by contradiction):

- \mathcal{S} is a Herbrand interpretation.
Sufficiency of Herbrand Models

Let P be a definite program. Then if \mathcal{S}' is a model of P then
\[\mathcal{S} = \{ A \in B_P \mid \mathcal{S}' \models A \} \]

is a Herbrand model of P.

Proof (by contradiction):

- \mathcal{S} is a Herbrand interpretation.
- Assume that \mathcal{S}' is a model but \mathcal{S} is not a model.
Sufficiency of Herbrand Models

Let P be a definite program. Then if \mathcal{S}' is a model of P then
$\mathcal{S} = \{ A \in B_P \mid \mathcal{S}' \models A \}$ is a Herbrand model of P.

Proof (by contradiction):

- \mathcal{S} is a Herbrand interpretation.
- Assume that \mathcal{S}' is a model but \mathcal{S} is not a model.
- Then there is some ground instance of a clause in P: $A_0: A_1, \ldots, A_n$ which is not true in \mathcal{S}
Sufficiency of Herbrand Models

Let P be a definite program. Then if \mathcal{S}' is a model of P then
$\mathcal{S} = \{ A \in B_P \mid \mathcal{S}' \models A \}$ is a Herbrand model of P.

Proof (by contradiction):

- \mathcal{S} is a Herbrand interpretation.
- Assume that \mathcal{S}' is a model but \mathcal{S} is not a model.
- Then there is some ground instance of a clause in P: $A_0 : \neg A_1, \ldots, A_n$ which is not true in \mathcal{S}
- i.e., $\mathcal{S} \models A_1 \ldots \mathcal{S} \models A_n$ but $\mathcal{S} \not\models A_0$.
Sufficiency of Herbrand Models

Let P be a definite program. Then if \mathcal{S}' is a model of P then $\mathcal{S} = \{ A \in BP | \mathcal{S}' \models A \}$ is a Herbrand model of P.

Proof (by contradiction):

- \mathcal{S} is a Herbrand interpretation.
- Assume that \mathcal{S}' is a model but \mathcal{S} is not a model.
- Then there is some ground instance of a clause in P: $A_0 \leftarrow A_1, \ldots, A_n$ which is not true in \mathcal{S}
- i.e., $\mathcal{S} \models A_1 \ldots \mathcal{S} \models A_n$ but $\mathcal{S} \nvdash A_0$.
- By definition of \mathcal{S} then, $\mathcal{S}' \models A_1 \ldots \mathcal{S}' \models A_n$ but $\mathcal{S}' \nvdash A_0$
Sufficiency of Herbrand Models

Let P be a definite program. Then if \mathcal{S}' is a model of P then $\mathcal{S} = \{A \in B_P \mid \mathcal{S}' \models A\}$ is a Herbrand model of P.

Proof (by contradiction):

- \mathcal{S} is a Herbrand interpretation.
- Assume that \mathcal{S}' is a model but \mathcal{S} is not a model.
- Then there is some ground instance of a clause in P: $A_0 :\neg A_1, \ldots, A_n$ which is not true in \mathcal{S}
 - i.e., $\mathcal{S} \models A_1 \ldots \mathcal{S} \models A_n$ but $\mathcal{S} \not\models A_0$.
- By definition of \mathcal{S} then, $\mathcal{S}' \models A_1 \ldots \mathcal{S}' \models A_n$ but $\mathcal{S}' \not\models A_0$
- Thus \mathcal{S}' is not a model, which contradicts our earlier assumption.
Sufficiency of Herbrand Models (contd.)

Let P be a definite program. Then if \mathcal{S}' is a model of P then $\mathcal{S} = \{ A \in BP \mid \mathcal{S}' \models A \}$ is a Herbrand model of P.

- This holds only for definite programs.
Let P be a definite program. Then if \mathcal{S}' is a model of P then $\mathcal{S} = \{ A \in B_P \mid \mathcal{S}' \models A \}$ is a Herbrand model of P.

- This holds only for definite programs.
- Consider $P = \{ \neg p(a), \exists X. p(X) \}$.
Let P be a definite program. Then if \mathcal{S}' is a model of P then $\mathcal{S} = \{A \in B_P \mid \mathcal{S}' \models A\}$ is a Herbrand model of P.

- This holds only for definite programs.
- Consider $P = \{\neg p(a), \exists X.p(X)\}$.
 - There are two Herbrand interpretations: $\mathcal{S}_1 = \{p(a)\}$ and $\mathcal{S}_2 = \{\}$.
Sufficiency of Herbrand Models (contd.)

Let P be a definite program. Then if \mathcal{S}' is a model of P then $\mathcal{S} = \{ A \in B_P | \mathcal{S}' \models A \}$ is a Herbrand model of P.

- This holds only for definite programs.
- Consider $P = \{ \neg p(a), \exists X. p(X) \}$.
 - There are two Herbrand interpretations: $\mathcal{S}_1 = \{ p(a) \}$ and $\mathcal{S}_2 = \{ \}$.
 - The first is not a model of P since $\mathcal{S}_1 \not\models \neg p(a)$.
Sufficiency of Herbrand Models (contd.)

Let \(P \) be a definite program. Then if \(\mathcal{S}' \) is a model of \(P \) then
\[
\mathcal{S} = \{ A \in B_P | \mathcal{S}' \models A \}
\]
is a Herbrand model of \(P \).

- This holds only for definite programs.
- Consider \(P = \{ \neg p(a), \exists X.p(X) \} \).
 - There are two Herbrand interpretations: \(\mathcal{S}_1 = \{ p(a) \} \) and \(\mathcal{S}_2 = \{ \} \).
 - The first is not a model of \(P \) since \(\mathcal{S}_1 \not\models \neg p(a) \).
 - The second is not a model of \(P \) since \(\mathcal{S}_2 \not\models \exists X.p(X) \).
Sufficiency of Herbrand Models (contd.)

Let P be a definite program. Then if \mathcal{S}' is a model of P then $\mathcal{S} = \{ A \in B_P \mid \mathcal{S}' \models A \}$ is a Herbrand model of P.

- This holds only for definite programs.
- Consider $P = \{ \neg p(a), \exists X. p(X) \}$.
 - There are two Herbrand interpretations: $\mathcal{S}_1 = \{ p(a) \}$ and $\mathcal{S}_2 = \{ \}$.
 - The first is not a model of P since $\mathcal{S}_1 \not\models \neg p(a)$.
 - The second is not a model of P since $\mathcal{S}_2 \not\models \exists X. p(X)$.
 - But there is a non-Herbrand model \mathcal{S}:
Let P be a definite program. Then if \mathcal{S}' is a model of P then $\mathcal{S} = \{ A \in B_P \mid \mathcal{S}' \models A \}$ is a Herbrand model of P.

- This holds only for definite programs.
- Consider $P = \{ \neg p(a), \exists X. p(X) \}$.
 - There are two Herbrand interpretations: $\mathcal{S}_1 = \{ p(a) \}$ and $\mathcal{S}_2 = \{ \}$.
 - The first is not a model of P since $\mathcal{S}_1 \not\models \neg p(a)$.
 - The second is not a model of P since $\mathcal{S}_2 \not\models \exists X. p(X)$
 - But there is a non-Herbrand model \mathcal{S}:
 - $| \mathcal{S} | = N$, the set of natural numbers
Let P be a definite program. Then if \mathcal{I}' is a model of P then $\mathcal{I} = \{A \in BP \mid \mathcal{I}' \models A\}$ is a Herbrand model of P.

- This holds only for definite programs.
- Consider $P = \{\neg p(a), \exists X.p(X)\}$.
 - There are two Herbrand interpretations: $\mathcal{I}_1 = \{p(a)\}$ and $\mathcal{I}_2 = \{\}$.
 - The first is not a model of P since $\mathcal{I}_1 \not\models \neg p(a)$.
 - The second is not a model of P since $\mathcal{I}_2 \not\models \exists X.p(X)$
 - But there is a non-Herbrand model \mathcal{I}:
 - $|\mathcal{I}| = N$, the set of natural numbers
 - $a_{\mathcal{I}} = 0$
Sufficiency of Herbrand Models (contd.)

Let \(P \) be a definite program. Then if \(\mathcal{S}' \) is a model of \(P \) then \(\mathcal{S} = \{ A \in B_P \mid \mathcal{S}' \models A \} \) is a Herbrand model of \(P \).

- This holds only for definite programs.
- Consider \(P = \{ \neg p(a), \exists X. p(X) \} \).
 - There are two Herbrand interpretations: \(\mathcal{S}_1 = \{ p(a) \} \) and \(\mathcal{S}_2 = \{ \} \).
 - The first is not a model of \(P \) since \(\mathcal{S}_1 \not\models \neg p(a) \).
 - The second is not a model of \(P \) since \(\mathcal{S}_2 \not\models \exists X. p(X) \).
 - But there is a non-Herbrand model \(\mathcal{S} \):
 - \(| \mathcal{S} | = N \), the set of natural numbers
 - \(a_\mathcal{S} = 0 \)
 - \(p_\mathcal{S} = \text{“is odd”} \)
Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.
Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.
 - Assume M is not a model. Then there is some clause $A_0 : \neg A_1, \ldots, A_n$ such that $M \models A_1 \cdots M \models A_n$ but $M \not\models A_0$.
Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.
 - Assume M is not a model. Then there is some clause $A_0 \Leftarrow A_1, \ldots, A_n$ such that $M \models A_1 \ldots M \models A_n$ but $M \not\models A_0$.
 - Which means $A_0 \not\in M_1$ or $A_0 \not\in M_2$.
Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.

 - Assume M is not a model. Then there is some clause $A_0: \neg A_1, \ldots A_n$ such that $M \models A_1 \cdots M \models A_n$ but $M \not\models A_0$.

 - Which means $A_0 \not\in M_1$ or $A_0 \not\in M_2$.

 - But $A_1, \ldots A_n \in M_1$ as well as M_2.

Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.
 - Assume M is not a model. Then there is some clause $A_0: \neg A_1, \ldots, A_n$ such that $M \models A_1 \ldots M \models A_n$ but $M \not\models A_0$.
 - Which means $A_0 \not\in M_1$ or $A_0 \not\in M_2$.
 - But $A_1, \ldots, A_n \in M_1$ as well as M_2.
 - Hence one of M_1 or M_2 is not a model.
Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.
 - Assume M is not a model. Then there is some clause $A_0 : \neg A_1, \ldots, A_n$ such that $M \models A_1 \cdots M \models A_n$ but $M \not\models A_0$.
 - Which means $A_0 \not\in M_1$ or $A_0 \not\in M_2$.
 - But $A_1, \ldots, A_n \in M_1$ as well as M_2.
 - Hence one of M_1 or M_2 is not a model.

- There is a unique least Herbrand model.
Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.
 - Assume M is not a model. Then there is some clause $A_0 :\neg A_1, \ldots, A_n$ such that $M \models A_1 \ldots M \models A_n$ but $M \not\models A_0$.
 - Which means $A_0 \not\in M_1$ or $A_0 \not\in M_2$.
 - But $A_1, \ldots, A_n \in M_1$ as well as M_2.
 - Hence one of M_1 or M_2 is not a model.

- There is a unique least Herbrand model.
 - Let M_1 and M_2 are two incomparable minimal Herbrand models,
Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.

 Assume M is not a model. Then there is some clause $A_0: \neg A_1, \ldots, A_n$ such that $M \models A_1 \cdots M \models A_n$ but $M \not\models A_0$.

 Which means $A_0 \not\in M_1$ or $A_0 \not\in M_2$.

 But $A_1, \ldots, A_n \in M_1$ as well as M_2.

 Hence one of M_1 or M_2 is not a model.

- There is a unique least Herbrand model.

 Let M_1 and M_2 are two incomparable minimal Herbrand models, $M = M_1 \cap M_2$ is also a Herbrand model, and
Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.
 - Assume M is not a model. Then there is some clause $A_0 : \neg A_1, \ldots, A_n$ such that $M \models A_1 \cdots M \models A_n$ but $M \not\models A_0$.
 - Which means $A_0 \notin M_1$ or $A_0 \notin M_2$.
 - But $A_1, \ldots, A_n \in M_1$ as well as M_2.
 - Hence one of M_1 or M_2 is not a model.

- There is a unique least Herbrand model.
 - Let M_1 and M_2 are two incomparable minimal Herbrand models,
 - $M = M_1 \cap M_2$ is also a Herbrand model, and
 - $M \subseteq M_1$ and $M \subseteq M_2$.

Properties of Herbrand Models

- If M_1 and M_2 are Herbrand models of P, then $M = M_1 \cap M_2$ is a model of P.
 - Assume M is not a model. Then there is some clause $A_0:\neg A_1, \ldots A_n$ such that $M \models A_1 \cdots M \models A_n$ but $M \not\models A_0$.
 - Which means $A_0 \not\in M_1$ or $A_0 \not\in M_2$.
 - But $A_1, \ldots A_n \in M_1$ as well as M_2.
 - Hence one of M_1 or M_2 is not a model.

- There is a unique least Herbrand model.
 - Let M_1 and M_2 are two incomparable minimal Herbrand models,
 - $M = M_1 \cap M_2$ is also a Herbrand model, and
 - $M \subseteq M_1$ and $M \subseteq M_2$.
 - Thus M_1 and M_2 are not minimal.
Least Herbrand Model

The least Herbrand model M_P of a definite program P is the set of all ground logical consequences of the program.

- $M_P = \{ A \in B_P \mid P \models A \}$
The least Herbrand model M_P of a definite program P is the set of all ground logical consequences of the program.

- $M_P = \{ A \in B_P \mid P \models A \}$
- First, $M_P \supseteq \{ A \in B_P \mid P \models A \}$:
 - By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
 - Second, $M_P \subseteq \{ A \in B_P \mid P \models A \}$:
 - If $M_P \models A$ then A is in every Herbrand model of P.
 - But assume there is some model $\mathcal{I}' \models \neg A$.
 - By sufficiency of Herbrand models, there is some Herbrand model \mathcal{I} such that $\mathcal{I} \models \neg A$.
 - Hence A is not in some Herbrand model, and hence is not in M_P.

Motivation
Herbrand Models
Least Herbrand Model
The least Herbrand model M_P of a definite program P is the set of all ground logical consequences of the program.

- $M_P = \{ A \in B_P \mid P \models A \}$
- First, $M_P \supseteq \{ A \in B_P \mid P \models A \}$:
 - By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
The least Herbrand model M_P of a definite program P is the set of all ground logical consequences of the program.

- $M_P = \{ A \in B_P \mid P \models A \}$
- First, $M_P \supseteq \{ A \in B_P \mid P \models A \}$:
 - By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
- Second, $M_P \subseteq \{ A \in B_P \mid P \models A \}$:
The least Herbrand model M_P of a definite program P is the set of all ground logical consequences of the program.

- $M_P = \{ A \in B_P \mid P \models A \}$
- First, $M_P \supseteq \{ A \in B_P \mid P \models A \}$:
 - By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
- Second, $M_P \subseteq \{ A \in B_P \mid P \models A \}$:
 - If $M_P \models A$ then A is in every Herbrand model of P.

Motivation

Herbrand Models

Least Herbrand Model
Least Herbrand Model

The least Herbrand model M_P of a definite program P is the set of all ground logical consequences of the program.

- $M_P = \{ A \in B_P \mid P \models A \}$
- First, $M_P \supseteq \{ A \in B_P \mid P \models A \}$:
 - By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
- Second, $M_P \subseteq \{ A \in B_P \mid P \models A \}$:
 - If $M_P \models A$ then A is in every Herbrand model of P.
 - But assume there is some model $\mathcal{G}' \models \neg A$.
Least Herbrand Model

The least Herbrand model M_P of a definite program P is the set of all ground logical consequences of the program.

- $M_P = \{A \in B_P \mid P \models A\}$
- First, $M_P \supseteq \{A \in B_P \mid P \models A\}$:
 - By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
- Second, $M_P \subseteq \{A \in B_P \mid P \models A\}$:
 - If $M_P \models A$ then A is in every Herbrand model of P.
 - But assume there is some model $\mathcal{G}' \models \neg A$.
 - By sufficiency of Herbrand models, there is some Herbrand model \mathcal{G} such that $\mathcal{G} \models \neg A$.
The least Herbrand model M_P of a definite program P is the set of all ground logical consequences of the program.

- $M_P = \{ A \in B_P \mid P \models A \}$
- First, $M_P \supseteq \{ A \in B_P \mid P \models A \}$:
 - By definition of logical consequence, $P \models A$ means that A has to be in every model of P and hence also in the least Herbrand model.
- Second, $M_P \subseteq \{ A \in B_P \mid P \models A \}$:
 - If $M_P \models A$ then A is in every Herbrand model of P.
 - But assume there is some model $\mathcal{S}' \models \neg A$.
 - By sufficiency of Herbrand models, there is some Herbrand model \mathcal{S} such that $\mathcal{S} \models \neg A$.
 - Hence A is not in some Herbrand model, and hence is not in M_P.

Motivation

Herbrand Models

Least Herbrand Model
Finding the Least Herbrand Model

Immediate consequence operator:

- Given $I \subseteq B_P$, construct I' such that
 \[
 I' = \{ A_0 \in B_P \mid A_0 \leftarrow A_1, \ldots, A_n \text{ is a ground instance of a clause in } P \text{ and } A_1, \ldots, A_n \in I \}
 \]
- I' is said to be the immediate consequence of I.
- Written as $I' = T_P(I)$

 T_P is called the immediate consequence operator.

- Consider the sequence: $\emptyset, T_P(\emptyset), T_P^2(\emptyset), \ldots, T_P^i(\emptyset), \ldots$
- $M_P \supseteq T_P^i(\emptyset)$ for all i.
- Let $T_P \uparrow \omega = \bigcup_{i=0}^{\infty} T_P^i(\emptyset)$.

 Then $M_P \subseteq T_P \uparrow \omega$.
Computing Least Herbrand Models: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X, Y) :-
 parent(X, Y).
anc(X, Y) :-
 parent(X, Z),
 anc(Z, Y).
Computing Least Herbrand Models: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
 parent(X,Y).
anc(X,Y) :-
 parent(X,Z),
 anc(Z,Y).

\[M_1 \]
\[\emptyset \]
Computing Least Herbrand Models: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X, Y) :-
 parent(X, Y).
anc(X, Y) :-
 parent(X, Z),
 anc(Z, Y).

\[M_1 = \emptyset \]
\[M_2 = TP(M_1) = \]
\[M_3 = TP(M_2) = \]
\[M_4 = TP(M_3) = \]
\[M_5 = TP(M_4) = \]
\[M_6 = TP(M_5) = \]
Computing Least Herbrand Models: An Example

\[
\begin{align*}
M_1 & = \emptyset \\
M_2 = TP(M_1) & = \{\text{parent(pam, bob), parent(tom, bob), parent(tom, liz), parent(bob, ann), parent(bob, pat), parent(pat, jim)}\}
\end{align*}
\]
Computing Least Herbrand Models: An Example

\[
\begin{align*}
M_1 &= \emptyset \\
M_2 &= TP(M_1) = \{ \text{parent(pam, bob)}, \\
& \quad \text{parent(tom, bob)}, \\
& \quad \text{parent(tom, liz)}, \\
& \quad \text{parent(bob, ann)}, \\
& \quad \text{parent(bob, pat)}, \\
& \quad \text{parent(pat, jim)} \} \\
M_3 &= TP(M_2) = \\
M_4 &= TP(M_3) = \\
M_5 &= TP(M_4) = \\
M_6 &= TP(M_5) = \\
\end{align*}
\]

\text{parent(pam, bob).} \\
\text{parent(tom, bob).} \\
\text{parent(tom, liz).} \\
\text{parent(bob, ann).} \\
\text{parent(bob, pat).} \\
\text{parent(pat, jim).}

\text{anc(X,Y) :-} \\
\quad \text{parent(X,Y).} \\
\text{anc(X,Y) :-} \\
\quad \text{parent(X,Z),} \\
\quad \text{anc(Z,Y).}
Computing Least Herbrand Models: An Example

\[
\begin{align*}
M_1 & = \emptyset \\
M_2 = T_P(M_1) & = \{ \text{parent}(\text{pam, bob}), \text{parent}(\text{tom, bob}), \text{parent}(\text{tom, liz}), \text{parent}(\text{bob, ann}), \text{parent}(\text{bob, pat}), \text{parent}(\text{pat, jim}) \} \\
M_3 = T_P(M_2) & = \{ \text{anc}(\text{pam, bob}), \text{anc}(\text{tom, bob}), \text{anc}(\text{tom, liz}), \text{anc}(\text{bob, ann}), \text{anc}(\text{bob, pat}), \text{anc}(\text{pat, jim}) \} \\
& \cup M_2
\end{align*}
\]
Computing Least Herbrand Models: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X, Y) :-
 parent(X, Y).
anc(X, Y) :-
 parent(X, Z),
 anc(Z, Y).

\[M_1 = \emptyset \]
\[M_2 = T_P(M_1) = \{ \text{parent}(\text{pam}, \text{bob}), \text{parent}(\text{tom}, \text{bob}), \text{parent}(\text{tom}, \text{liz}), \text{parent}(\text{bob}, \text{ann}), \text{parent}(\text{bob}, \text{pat}), \text{parent}(\text{pat}, \text{jim}) \} \]
\[M_3 = T_P(M_2) = \{ \text{anc}(\text{pam}, \text{bob}), \text{anc}(\text{tom}, \text{bob}), \text{anc}(\text{tom}, \text{liz}), \text{anc}(\text{bob}, \text{ann}), \text{anc}(\text{bob}, \text{pat}), \text{anc}(\text{pat}, \text{jim}) \} \cup M_2 \]
\[M_4 = T_P(M_3) = \]
Computing Least Herbrand Models: An Example

<table>
<thead>
<tr>
<th>M_1</th>
<th>\emptyset</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_2 = T_P(M_1)$ =</td>
<td>${ \text{parent(pam,bob)},$</td>
</tr>
<tr>
<td></td>
<td>$\text{parent(tom,bob)},$</td>
</tr>
<tr>
<td></td>
<td>$\text{parent(tom,liz)},$</td>
</tr>
<tr>
<td></td>
<td>$\text{parent(bob,ann)},$</td>
</tr>
<tr>
<td></td>
<td>parent(bob,pat),</td>
</tr>
<tr>
<td></td>
<td>$\text{parent(pat,jim)} }$</td>
</tr>
<tr>
<td>$M_3 = T_P(M_2)$ =</td>
<td>${ \text{anc(pam,bob)},$</td>
</tr>
<tr>
<td></td>
<td>$\text{anc(tom,bob)},$</td>
</tr>
<tr>
<td></td>
<td>$\text{anc(tom,liz)},$</td>
</tr>
<tr>
<td></td>
<td>$\text{anc(bob,ann)},$</td>
</tr>
<tr>
<td></td>
<td>anc(bob,pat),</td>
</tr>
<tr>
<td></td>
<td>$\text{anc(pat,jim)} }$</td>
</tr>
<tr>
<td></td>
<td>$\cup M_2$</td>
</tr>
<tr>
<td>$M_4 = T_P(M_3)$ =</td>
<td>${ \text{anc(pam,ann)},$</td>
</tr>
<tr>
<td></td>
<td>$\text{anc(pam,pat)},$</td>
</tr>
<tr>
<td></td>
<td>$\text{anc(tom,ann)},$</td>
</tr>
<tr>
<td></td>
<td>anc(tom,pat),</td>
</tr>
<tr>
<td></td>
<td>$\text{anc(bob,jim)} }$</td>
</tr>
<tr>
<td></td>
<td>$\cup M_3$</td>
</tr>
</tbody>
</table>
Computing Least Herbrand Models: An Example

<table>
<thead>
<tr>
<th></th>
<th>M_1</th>
<th>\emptyset</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_2 = T_P(M_1)$</td>
<td>${\text{parent(pam,bob), parent(tom,bob), parent(tom,liz), parent(bob,ann), parent(bob,pat), parent(pat,jim)}}$</td>
<td></td>
</tr>
<tr>
<td>$M_3 = T_P(M_2)$</td>
<td>${\text{anc(pam,bob), anc(tom,bob), anc(tom,liz), anc(bob,ann), anc(bob,pat), anc(pat,jim)}}$ $\cup M_2$</td>
<td></td>
</tr>
<tr>
<td>$M_4 = T_P(M_3)$</td>
<td>${\text{anc(pam,ann), anc(pam,pat), anc(tom,ann), anc(tom,pat), anc(bob,jim)}}$ $\cup M_3$</td>
<td></td>
</tr>
<tr>
<td>$M_5 = T_P(M_4)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing Least Herbrand Models: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
 parent(X,Y).
anc(X,Y) :-
 parent(X,Z),
 anc(Z,Y).

\[M_1 = T_P(M_1) = \emptyset \]

\[M_2 = T_P(M_1) = \{\text{parent(pam,bob), parent(tom,bob), parent(tom,liz), parent(bob,ann), parent(bob,pat), parent(pat,jim)}\} \]

\[M_3 = T_P(M_2) = \{\text{anc(pam,bob), anc(tom,bob), anc(tom,liz), anc(bob,ann), anc(bob,pat), anc(pat,jim)}\} \cup M_2 \]

\[M_4 = T_P(M_3) = \{\text{anc(pam,ann), anc(pam,pat), anc(tom,ann), anc(tom,pat), anc(bob,jim)}\} \cup M_3 \]

\[M_5 = T_P(M_4) = \{\text{anc(pam,jim), \{anc(tom,jim)\}}\} \cup M_4 \]
Computing Least Herbrand Models: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
 parent(X,Y).
anc(X,Y) :-
 parent(X,Z),
 anc(Z,Y).

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(\emptyset)</th>
</tr>
</thead>
</table>
| \(M_2 = TP(M_1) = \) | \{parent(pam,bob),
 parent(tom,bob),
 parent(tom,liz),
 parent(bob,ann),
 parent(bob,pat),
 parent(pat,jim)\} |

| \(M_3 = TP(M_2) = \) | \{anc(pam,bob),
 anc(tom,bob),
 anc(tom,liz),
 anc(bob,ann),
 anc(bob,pat),
 anc(pat,jim)\} \cup M_2 |

| \(M_4 = TP(M_3) = \) | \{anc(pam,ann),
 anc(pam,pat),
 anc(tom,ann),
 anc(tom,pat),
 anc(bob,jim)\} \cup M_3 |

| \(M_5 = TP(M_4) = \) | \{anc(pam,jim), \{anc(tom,jim)\}\} \cup M_4 |

\(M_6 = TP(M_5) = \)
Computing Least Herbrand Models: An Example

```
parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

anc(X,Y) :-
    parent(X,Y).
anc(X,Y) :-
    parent(X,Z),
    anc(Z,Y).

M₁ = \emptyset

M₂ = \text{T}_{P}(M₁) = \{\text{parent}(pam, bob), \text{parent}(tom, bob), \text{parent}(tom, liz), \text{parent}(bob, ann), \text{parent}(bob, pat), \text{parent}(pat, jim)\}

M₃ = \text{T}_{P}(M₂) = \{\text{anc}(pam, bob), \text{anc}(tom, bob), \text{anc}(tom, liz), \text{anc}(bob, ann), \text{anc}(bob, pat), \text{anc}(pat, jim)\} \cup M₂

M₄ = \text{T}_{P}(M₃) = \{\text{anc}(pam, ann), \text{anc}(pam, pat), \text{anc}(tom, ann), \text{anc}(tom, pat), \text{anc}(bob, jim)\} \cup M₃

M₅ = \text{T}_{P}(M₄) = \{\text{anc}(pam, jim), \{\text{anc}(tom, jim)\}\} \cup M₄

M₆ = \text{T}_{P}(M₅) = M₅
```
Computing M_P: Practical Considerations

- Computing the least Herbrand model, M_P, as the *least fixed point of* T_P:
Computing M_P: Practical Considerations

- Computing the least Herbrand model, M_P, as the \textit{least fixed point} of T_P:
 - terminates for Datalog programs (programs w/o function symbols)
Computing \(M_P \): Practical Considerations

- Computing the least Herbrand model, \(M_P \), as the least fixed point of \(T_P \):
 - terminates for Datalog programs (programs w/o function symbols)
 - may not terminate in general
Computing M_P: Practical Considerations

- Computing the least Herbrand model, M_P, as the least fixed point of T_P:
 - terminates for Datalog programs (programs w/o function symbols)
 - may not terminate in general
- For programs with function symbols, computing logical consequence by first computing M_P is impractical.
Computing M_P: Practical Considerations

- Computing the least Herbrand model, M_P, as the least fixed point of T_P:
 - terminates for Datalog programs (programs w/o function symbols)
 - may not terminate in general
- For programs with function symbols, computing logical consequence by first computing M_P is impractical.
- Even for Datalog programs, computing least fixed point directly using the T_P operator is wasteful (known as Naive evaluation).
Computing M_P: Practical Considerations

- Computing the least Herbrand model, M_P, as the least fixed point of T_P:
 - terminates for Datalog programs (programs w/o function symbols)
 - may not terminate in general
- For programs with function symbols, computing logical consequence by first computing M_P is impractical.
- Even for Datalog programs, computing least fixed point directly using the T_P operator is wasteful (known as Naive evaluation).
- Note that $T_P^i(\emptyset) \subseteq T_P^{i+1}(\emptyset)$.

Note that $T_P^i(\emptyset) \subseteq T_P^{i+1}(\emptyset)$.

This strategy is known as semi-naive evaluation.
Computing M_P: Practical Considerations

- Computing the least Herbrand model, M_P, as the *least fixed point* of T_P:
 - terminates for Datalog programs (programs w/o function symbols)
 - may not terminate in general
- For programs with function symbols, computing logical consequence by first computing M_P is impractical.
- Even for Datalog programs, computing least fixed point directly using the T_P operator is wasteful (known as *Naive* evaluation).
- Note that $T_P^i(\emptyset) \subseteq T_P^{i+1}(\emptyset)$.
- We can calculate $\Delta T_P^{i+1}(\emptyset) = T_P^{i+1}(\emptyset) - T_P^i(\emptyset)$ [The difference between the sets computed in two successive iterations]
Computing M_P: Practical Considerations

- Computing the least Herbrand model, M_P, as the least fixed point of T_P:
 - terminates for Datalog programs (programs w/o function symbols)
 - may not terminate in general
- For programs with function symbols, computing logical consequence by first computing M_P is impractical.
- Even for Datalog programs, computing least fixed point directly using the T_P operator is wasteful (known as Naive evaluation).
- Note that $T_P^i(\emptyset) \subseteq T_P^{i+1}(\emptyset)$.
- We can calculate $\Delta T_P^{i+1}(\emptyset) = T_P^{i+1}(\emptyset) - T_P^i(\emptyset)$ [The difference between the sets computed in two successive iterations]
- This strategy is known as semi-naive evaluation.