Motivation

Logical Consequences of Formulae

- Recall: F is a logical consequence of P (i.e. $P \models F$) iff every model of P is also a model of F.
- Since there are (in general) infinitely many possible interpretations, how can we check if F is a logical consequence of P?
- Solution: choose one “canonical” model \mathfrak{I} such that

$$\mathfrak{I} \models P \text{ and } \mathfrak{I} \models F \Rightarrow P \models F$$
Definite Clauses

- A formula of the form \(p(t_1, t_2, \ldots, t_n) \), where \(p/n \) is an \(n \)-ary predicate symbol and \(t_i \) are all terms is said to be atomic.
- If \(A \) is an atomic formula then
 - \(A \) is said to be a positive literal
 - \(\neg A \) is said to be a negative literal
- A formula of the form \(\forall (L_1 \lor L_2 \lor \cdots \lor L_n) \) where each \(L_i \) is a literal (negative or positive) is called a clause.
- A clause \(\forall (L_1 \lor L_2 \lor \cdots \lor L_n) \) where exactly one literal is positive is called a definite clause.
 A definite clause is usually written as:
 - \(\forall (A_0 \lor \neg A_1 \lor \cdots \lor \neg A_n) \)
 - \(\ldots \) or equivalently as \(A_0 \leftarrow A_1, A_2, \ldots A_n \).
- A definite program is a set of definite clauses.

Herbrand Models

Herbrand Universe

- Given an alphabet \(\mathcal{A} \),
 the set of all ground terms constructed from the constant and function symbols of \(\mathcal{A} \) is called the Herbrand Universe of \(\mathcal{A} \) (denoted by \(U_\mathcal{A} \)).
- Consider the program:
 \[
 p(\text{zero}).
 p(s(s(\text{X}))) \leftarrow p(\text{X}).
 \]
 The Herbrand Universe of the program’s alphabet is \(\{ \text{zero}, s(\text{zero}), s(s(\text{zero})), \ldots \} \).
Consider the “relations” program:

```
parent(pam, bob).  parent(bob, ann).
parent(tom, bob).  parent(bob, pat).
parent(tom, liz).  parent(pat, jim).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).
```

The Herbrand Universe of the program’s alphabet is \{ pam, bob, tom, liz, ann, pat, jim \}.

Given an alphabet \(\mathcal{A} \), the set of all \emph{ground atomic formulas} over \(\mathcal{A} \) is called the \textbf{Herbrand Base} of \(\mathcal{A} \) (denoted by \(B_\mathcal{A} \)).

Consider the program:

```
p(zero).
p(s(s(X))) \leftarrow p(X).
```

The Herbrand Base of the program’s alphabet is \{ \(p(zero) \), \(p(s(zero)) \), \(p(s(s(zero))) \), \ldots \}.
Herbrand Models

Herbrand Base (contd.)

- Consider the “relations” program:

\[
\begin{align*}
\text{parent}(\text{pam}, \text{bob}). & \quad \text{parent}(\text{bob}, \text{ann}). \\
\text{parent}(\text{tom}, \text{bob}). & \quad \text{parent}(\text{bob}, \text{pat}). \\
\text{parent}(\text{tom}, \text{liz}). & \quad \text{parent}(\text{pat}, \text{jim}). \\
\text{grandparent}(X,Y) :- & \quad \text{parent}(X,Z), \text{parent}(Z,Y).
\end{align*}
\]

The Herbrand Base of the program's alphabet is \(\{\text{parent}(\text{pam}, \text{pam}), \text{parent}(\text{pam}, \text{bob}), \text{parent}(\text{pam}, \text{tom}), \ldots, \text{parent}(\text{bob}, \text{pam}), \ldots, \text{grandparent}(\text{pam}, \text{pam}), \ldots, \text{grandparent}(\text{bob}, \text{pam}), \ldots\}\)

Herbrand Models

Herbrand Interpretations and Models

- A **Herbrand Interpretation** of a program \(P\) is \(\mathfrak{I}\) such that
 - \(|\mathfrak{I}| = U_P\)
 - For every constant \(c\): \(c_{\mathfrak{I}} = c\)
 - For every function symbol \(f/n\): \(f_{\mathfrak{I}}(x_1, \ldots x_n) = f(x_1, \ldots x_n)\)
 - For every predicate symbol \(p/n\): \(p_{\mathfrak{I}} \subseteq (U_P)^n\)
 (i.e. some subset of \(n\)-tuples of ground terms)

- A **Herbrand Model** of a program \(P\) is a Herbrand interpretation that is a model of \(P\).
Herbrand Models

- All Herbrand interpretations of a program give the same “meaning” to the constant and function symbols.
- Different Herbrand interpretations differ only in the “meaning” they give to the predicate symbols.
- We often write a Herbrand model simply by listing the subset of the Herbrand base that is true in the model.
Examples:
 - Consider our first example program.
 \{p(\text{zero}), p(s^2(\text{zero})), p(s^4(\text{zero})), \ldots \} represents the Herbrand model that treats \(p_3 = \text{zero}, s^2(\text{zero}), s^4(\text{zero}), \ldots \) as the meaning of \(p \).

Properties of Herbrand Models

1. If \(M \) is a family of Herbrand Models of a definite program \(P \), then \(\cap M \) is also a Herbrand Model of \(P \).
2. For every definite program \(P \) there is a unique least model \(M_P \) such that
 - \(M_P \) is a Herbrand Model of \(P \) and,
 - for every Herbrand Model \(M \), \(M_P \subseteq M \).
3. For any definite program, if every Herbrand Model of \(P \) is also a Herbrand Model of \(F \), then \(P \models F \).
4. \(M_P \) = the set of all atomic ground logical consequences of \(P \).
Sufficiency of Herbrand Models

Let P be a definite program. Then if \mathcal{G}' is a model of P then $\mathcal{G} = \{ A \in B_P \mid \mathcal{G}' \models A \}$ is a Herbrand model of P.

Proof (by contradiction):

- \mathcal{G} is a Herbrand interpretation.
- Assume that \mathcal{G}' is a model but \mathcal{G} is not a model.
- Then there is some ground instance of a clause in P: $A_0 : \neg A_1 , \ldots , A_n$ which is not true in \mathcal{G}
- i.e., $\mathcal{G} \models A_1 \ldots \mathcal{G} \models A_n$ but $\mathcal{G} \nvDash A_0$.
- By definition of \mathcal{G} then, $\mathcal{G}' \models A_1 \ldots \mathcal{G}' \models A_n$ but $\mathcal{G}' \nvDash A_0$
- Thus \mathcal{G}' is not a model, which contradicts our earlier assumption.

This holds only for definite programs.

Consider $P = \{ \neg p(a), \exists X. p(X) \}$.

- There are two Herbrand interpretations: $\mathcal{G}_1 = \{ p(a) \}$ and $\mathcal{G}_2 = \{ \}$.
- The first is not a model of P since $\mathcal{G}_1 \nvDash \neg p(a)$.
- The second is not a model of P since $\mathcal{G}_2 \nvDash \exists X. p(X)$
- But there is a non-Herbrand model \mathcal{G}:
 - $\mathcal{G} \models N$, the set of natural numbers
 - $a_3 = 0$
 - $p_3 = "is odd"$
Properties of Herbrand Models

- If \(M_1 \) and \(M_2 \) are Herbrand models of \(P \), then \(M = M_1 \cap M_2 \) is a model of \(P \).
 - Assume \(M \) is not a model. Then there is some clause \(A_0 : \neg A_1, \ldots A_n \) such that \(M \models A_1 \ldots M \models A_n \) but \(M \not\models A_0 \).
 - Which means \(A_0 \not\in M_1 \) or \(A_0 \not\in M_2 \).
 - But \(A_1, \ldots A_n \in M_1 \) as well as \(M_2 \).
 - Hence one of \(M_1 \) or \(M_2 \) is not a model.

- There is a unique least Herbrand model.
 - Let \(M_1 \) and \(M_2 \) are two incomparable minimal Herbrand models,
 - \(M = M_1 \cap M_2 \) is also a Herbrand model, and
 - \(M \subseteq M_1 \) and \(M \subseteq M_2 \).
 - Thus \(M_1 \) and \(M_2 \) are not minimal.

Least Herbrand Model

The least Herbrand model \(M_P \) of a definite program \(P \) is the set of all ground logical consequences of the program.

- \(M_P = \{ A \in B_P \mid P \models A \} \)
- First, \(M_P \supseteq \{ A \in B_P \mid P \models A \} \):
 - By definition of logical consequence, \(P \models A \) means that \(A \) has to be in every model of \(P \) and hence also in the least Herbrand model.
- Second, \(M_P \subseteq \{ A \in B_P \mid P \models A \} \):
 - If \(M_P \models A \) then \(A \) is in every Herbrand model of \(P \).
 - But assume there is some model \(\emptyset' \models \neg A \).
 - By sufficiency of Herbrand models, there is some Herbrand model \(\emptyset \) such that \(\emptyset \models \neg A \).
 - Hence \(A \) is not in some Herbrand model, and hence is not in \(M_P \).
Finding the Least Herbrand Model

Immediate consequence operator:

- Given $I \subseteq B_P$, construct I' such that

 $I' = \{ A_0 \in B_P | A_0 \leftarrow A_1, \ldots A_n \text{ is a ground instance of a clause in } P \text{ and } A_1, \ldots, A_n \in I \}$

- I' is said to be the immediate consequence of I.

- Written as $I' = T_P(I)$

 T_P is called the immediate consequence operator.

- Consider the sequence: \emptyset, $T_P(\emptyset)$, $T_P^2(\emptyset)$, \ldots, $T_P^i(\emptyset)$, \ldots

- $M_P \supseteq T_P^i(\emptyset)$ for all i.

- Let $T_P \uparrow \omega = \bigcup_{i=0}^{\infty} T_P^i(\emptyset)$.
 Then $M_P \subseteq T_P \uparrow \omega$

Computing Least Herbrand Models: An Example

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).
anc(X, Y) :- parent(X, Y).
anc(X, Y) :- parent(X, Z), anc(Z, Y).

<table>
<thead>
<tr>
<th>M_1</th>
<th>\emptyset</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_2 = T_P(M_1) = { \text{parent(pam,bob), parent(tom,bob), parent(tom,liz), parent(bob,ann), parent(bob,pat), parent(pat,jim)} }$</td>
<td></td>
</tr>
<tr>
<td>$M_3 = T_P(M_2) = { \text{anc(pam,bob), anc(tom,bob), anc(tom,liz), anc(bob,ann), anc(bob,pat), anc(pat,jim)} } \cup M_2$</td>
<td></td>
</tr>
<tr>
<td>$M_4 = T_P(M_3) = { \text{anc(pam,ann), anc(pam,pat), anc(tom,ann), anc(tom,pat), anc(bob,jim)} } \cup M_3$</td>
<td></td>
</tr>
<tr>
<td>$M_5 = T_P(M_4) = { \text{anc(pam,jim)} } \cup M_4$</td>
<td></td>
</tr>
<tr>
<td>$M_6 = T_P(M_5) = M_5$</td>
<td></td>
</tr>
</tbody>
</table>
Computing M_P: Practical Considerations

- Computing the least Herbrand model, M_P, as the least fixed point of T_P:
 - terminates for Datalog programs (programs w/o function symbols)
 - may not terminate in general
- For programs with function symbols, computing logical consequence by first computing M_P is impractical.
- Even for Datalog programs, computing least fixed point directly using the T_P operator is wasteful (known as Naive evaluation).
- Note that $T_P^i(\emptyset) \subseteq T_P^{i+1}(\emptyset)$.
- We can calculate $\Delta T_P^{i+1}(\emptyset) = T_P^{i+1}(\emptyset) - T_P^i(\emptyset)$ [The difference between the sets computed in two successive iterations]
- This strategy is known as semi-naive evaluation.