Instructions:

• If you are submitting answers written on paper, please hand the exam to me personally on the due date, or put your exam in a clearly marked envelope and slide it under my office door. You may also submit electronically. Put your answers, including programs and program fragments, in a single file. I prefer to get answers in a plain, ascii, text file. If you want, however, you may submit answers in a PDF file. Please do not submit Word or other editor-specific files. Send the file to me by email (to cram@cs.sunysb.edu).

• Clearly mark the question number corresponding to each answer.

• For programs, you may use XSB's library predicates unless expressly prohibited. You may also use predicates from Bratko's book, but for each predicate, please remember to cite the page number in the text where the predicate is defined.

• For programs, please make sure you indent the programs to make them readable, to avoid grading problems.
1. [12 points] Write a Prolog predicate \texttt{incsub/2} such that, given a list of integers \(L_1 \), \texttt{incsub}(L1, L2) returns \(L_2 \) an increasing subsequence of \(L_1 \). (You may assume that \(L_1 \) contains distinct elements).

\(L_2 \) is a subsequence of \(L_1 \) if all elements of \(L_2 \) also occur in \(L_1 \), and if \(a \) occurs before \(b \) in \(L_2 \) then \(a \) occurs before \(b \) in \(L_1 \) also.

\(L \) is an increasing sequence if the elements are in ascending order: i.e. if \(a \) occurs before \(b \) in \(L \), then \(a < b \).

For instance, \texttt{incsub([2,4,1,7,3,8], L2)} should succeed with answers \(L2 = [] \), \(L2 = [2] \), \(L2 = [4] \), \(L2 = [2,4] \), \(L2 = [1] \); ... (upon backtracking; a total of 26 distinct answers).

2. [12 points total (6 points ea.])

(a) Write a predicate \texttt{indivisible/2} that, given a list of positive integers \(L \) and a positive integer \(I \) succeeds if and only if \(I \) is not divisible by any integer in \(L \).

For instance, \texttt{indivisible([2,3,5], 7)} succeeds while \texttt{indivisible([2,3,5], 9)} fails.

Note: both arguments will be bound in any query to \texttt{indivisible}.

Hint: Use the \texttt{mod} operation (e.g. \(X \text{ is } Y \text{ mod } 2 \)) to check for divisibility.

(b) Consider the following predicate \texttt{gen/2}:

\[
\text{gen}(N, N). \\
\text{gen}(N, M) :- \text{gen}(N, I), M \text{ is } I+1.
\]

\texttt{gen} \((n, X)\) generates all integers (upon backtracking) that are greater than or equal to \(n \).

Let \(L \) be a list of integers in descending order. Using \texttt{gen} and \texttt{indivisible}, write a predicate \texttt{next/2} such that \texttt{next(L, N)} succeeds with the \(N \) bound to the smallest number that is (a) larger than any number in \(L \) and (b) is not divisible by any number in \(L \).

For example \texttt{next([7,5,3,2], X)} will succeed with \(X=11 \).

For full credit, the predicate \texttt{next(L,X)} must terminate with exactly one answer as long as all integers in \(L \) are \(\geq 2 \).

Note: first argument of \texttt{next} will always be bound to a list of positive integers in descending order (no need to check for this).

3. [10 points] Consider the following definite logic program:

\[
p(X) \leftarrow q(Y, X), r(Y). \\
q(s(X), Y) \leftarrow q(X, Y). \\
r(0).
\]

Show that there is one computation rule such that the query \(\leftarrow p(0) \) has a finitely failed SLD tree and another computation rule such that \(\leftarrow p(0) \) has an infinite SLD-tree.

4. [20 points (5 points ea.)] Let \(P \) be a propositional general logic program, and \(A \) be an arbitrary literal. State whether each of the following statements are true or false. If a statement is true, argue why; if false, give a counter example.

(a) If \(A \) is in \textit{some} stable model of \(P \) then \(A \) is also in the well-founded model of \(P \).

(b) If \(A \) is in \textit{all} stable models of \(P \) then \(A \) is also in the well-founded model of \(P \).
(c) If \(A \) is in the well-founded model of \(P \) then \(A \) is also in some stable model of \(P \).

(d) If \(P \) is a stratified program then its well-founded model is 2-valued (i.e., for every proposition \(p \) in the program, either \(p \) or \(\neg p \) is in the well-founded model).

5. [12 points total] Consider the following program:

\[
\begin{align*}
 r(X,Y) & :- e(X,Y). \\
 r(X,Y) & :- e(X,Z), r(Z,Y).
\end{align*}
\]

where \(e/2 \) represents the edge relation of some graph.

(a) [6 points] Consider the complete graph of four vertices, with vertices labelled \(1, 2, 3, 4 \), and the tabled resolution of query \(r(1,A) \).

What will be the entries in the call table made when resolving the above query?

What will be the entries in the answer table for call \(r(1,A) \) when resolving the above query?

(b) [6 points] Consider an arbitrary graph with \(n \) vertices and \(m \) edges, and a top-level query of the form \(r(v,A) \) for some vertex \(v \) in the graph.

What will be the number of call table entries (in the worst case) in terms of \(n \) and \(m \)?

What will be the total number of answer table entries (over all call tables, in the worst case) in terms of \(n \) and \(m \)?

6. [12 points total] Let \(v/1 \), \(p/2 \) and \(q/1 \) be three predicates defined in a program \(P \).

(a) [4 points] Extend \(P \) to define a new predicate \(r/1 \) such that \(r(X) \) holds whenever

\[\exists Y. p(X,Y) \land q(Y) \]

The extended program must be a definite logic program.

For example, if the following is least Herbrand model of \(P \):

\[
\begin{align*}
 v(1). & \quad p(1,2). \quad q(2). \\
 v(2). & \quad p(1,3). \quad q(4). \\
 v(3). & \quad p(2,3) \\
 v(4). & \quad p(3,4).
\end{align*}
\]

then \(r(1) \) and \(r(3) \) are logical consequences of the extended program.

(b) [8 points] Extend \(P \) to define a new predicate \(s/1 \) such that \(s(X) \) holds whenever

\[v(X) \land (\forall Y. p(X,Y) \Rightarrow q(Y)) \]

The extended program may be a general logic program.

For example, if the following is the least Herbrand model of \(P \):

\[
\begin{align*}
 v(1). & \quad p(1,2). \quad q(2). \\
 v(2). & \quad p(1,3). \quad q(4). \\
 v(3). & \quad p(2,3) \\
 v(4). & \quad p(3,4).
\end{align*}
\]

then \(s(3) \) and \(s(4) \) are logical consequences of the extended program (and \(s(1) \) and \(s(2) \) are not logical consequences).

\textit{Do not use any Prolog built-ins!}
7. [10 points total] Consider the following set of statements:

- Penguins are birds
- Ducks are birds
- Canaries are birds
- Generally, all birds other than penguins can fly
- Donald Duck is a duck
- Donald Duck cannot fly
- Tweety is a canary
- Willy is a penguin

(a) [8 points] Represent the above knowledge using F-logic. For full credit, represent the above knowledge using only facts i.e. without using rules of the form \(a : \neg b \ldots \).

(b) [4 points] Write an F-logic query to find who can fly.

8. [10 points total]

(a) [6 points] What term is constructed in the heap when the following sequence of WAM instructions is executed:

```
put_structure a/0 X4
put_structure f/2, X2
set_value X4
set_variable X5
put_structure g/1, X3
set_value X5
put_structure h/2, X1
set_value X2
set_value X3
```

(b) [4 points] Give the sequence of WAM instructions to unify a query term (in register X1) with the program term \(p(f(X), g(a, X)) \).

END OF EXAM