Machine-Independent Optimizations

Compiler Design

CSE 504

Example

A Fragment of Quicksort

// a is an array
// a's indices range from m to n
i = m-1; j = n; v = a[n];
while(1) {
 do i = i + 1; while (a[i]<v);
 do j = j - 1; while (a[j]>v);
 if (i >= j) break;
 x = a[i]; a[i] = a[j]; a[j] = x;
}
x = a[i]; a[i] = a[n]; a[n] = x;

Rearranges a such that elements in a[m..j] are all less than any element in a[i+1..n].
Example

Three-Address Code for the Fragment

(1) \(i = m-1 \)
(2) \(j = n \)
(3) \(t_1 = 4*n \)
(4) \(v = a[t_1] \)
(5) \(i = i+1 \)
(6) \(t_2 = 4*i \)
(7) \(t_3 = a[t_2] \)
(8) if \(t_3<v \) goto (5)
(9) \(j = j-1 \)
(10) \(t_4 = 4*j \)
(11) \(t_5 = a[t_4] \)
(12) if \(t_5>v \) goto (9)
(13) if (i>=j) goto (23)
(14) \(t_6 = 4*i \)
(15) \(x = a[t_6] \)
(16) \(t_7 = 4*i \)
(17) \(t_8 = 4*j \)
(18) \(t_9 = a[t_8] \)
(19) \(a[t_7] = t_9 \)
(20) \(t_{10} = 4*j \)
(21) \(a[t_{10}] = x \)
(22) goto (5)
(23) \(t_{11} = 4*i \)
(24) \(x = a[t_{11}] \)
(25) \(t_{12} = 4*i \)
(26) \(t_{13} = 4*n \)
(27) \(t_{14} = a[t_{13}] \)
(28) \(a[t_{12}] = t_{14} \)
(29) \(t_{15} = 4*n \)
(30) \(a[t_{15}] = x \)

Example

Common Subexpression Elimination — 1

\[B_3: \]

(9) \(j = j-1 \)
(10) \(t_4 = 4*j \)
(11) \(t_5 = a[t_4] \)
(12) if \(t_5>v \) goto (9)

\[B_4: \]

(13) if (i>=j) goto (23)

\[B_5: \]

(14) \(t_6 = 4*i \)
(15) \(x = a[t_6] \)
(16) \(t_7 = 4*i \)
(17) \(t_8 = 4*j \)
(18) \(t_9 = a[t_8] \)
(19) \(a[t_7] = t_9 \ a[t_6] = t_9 \)
(20) \(t_{10} = 4*j \)
(21) \(a[t_{10}] = x \ a[t_8] = x \)
(22) goto (5)
Common Subexpression Elimination — 2

\[B_3: \]

(9) \(j = j - 1 \)

(10) \(t4 = 4*j \)

(11) \(t5 = a[t4] \)

(12) if \(t5 > v \) goto (9)

\[B_4: \]

(13) if \(i \geq j \) goto (23)

\[B_5: \]

(14) \(t6 = 4*i \)

(15) \(x = a[t6] \)

(17) \(t8 = 4*j \)

(18) \(t9 = a[t8] \)

(19') \(a[t6] = t9 \)

(21') \(a[t4] = x \)

(22) goto (5)

Common Subexpression Elimination — 3

\[B_2: \]

(5) \(i = i + 1 \)

(6) \(t2 = 4*i \)

(7) \(t3 = a[t2] \)

(8) if \(t3 < v \) goto (5)

\[B_3: \]

(9) \(j = j - 1 \)

(10) \(t4 = 4*j \)

(11) \(t5 = a[t4] \)

(12) if \(t5 > v \) goto (9)

\[B_4: \]

(13) if \(i \geq j \) goto (23)

\[B_5: \]

(14) \(t6 = 4*i \)

(15) \(x = a[t6] \)

(19') \(a[t6] = t5 \)

(21') \(a[t4] = x \)

(22) goto (5)
Copy Propagation

\[B_2: \]
(5) \(i = i + 1 \)
(6) \(t2 = 4 \times i \)
(7) \(t3 = a[t2] \)
(8) if \(t3 < v \) goto (5)

\[B_3: \]
(9) \(j = j - 1 \)
(10) \(t4 = 4 \times j \)
(11) \(t5 = a[t4] \)
(12) if \(t5 > v \) goto (9)

\[B_4: \]
(13) if \(i \geq j \) goto (23)

\[B_5: \]
(15') \(x = t3 \)
(19') \(a[t2] = t5 \)
(21') \(a[t4] = t3 \)
(22) goto (5)

Dead Code Elimination

\[B_2: \]
(5) \(i = i + 1 \)
(6) \(t2 = 4 \times i \)
(7) \(t3 = a[t2] \)
(8) if \(t3 < v \) goto (5)

\[B_3: \]
(9) \(j = j - 1 \)
(10) \(t4 = 4 \times j \)
(11) \(t5 = a[t4] \)
(12) if \(t5 > v \) goto (9)

\[B_4: \]
(13) if \(i \geq j \) goto (23)

\[B_5: \]
(15') \(x = t3 \)
(19') \(a[t2] = t5 \)
(21') \(a[t4] = t3 \)
(22) goto (5)

\[B_6: \]
(24') \(x = t3 \)
(27') \(t14 = a[t1] \)
(28') \(a[t2] = t14 \)
(30') \(a[t1] = t3 \)
Induction Variables and Strength Reduction

B_2: (5) $i = i + 1$
(6) $t2 = 4*i$ \hspace{1cm} t2 = t2+4
(7) $t3 = a[t2]$
(8) if $t3 < v$ goto (5)

B_3: (9) $j = j - 1$
(10) $t4 = 4*j$ \hspace{1cm} t4 = t4-4
(11) $t5 = a[t4]$
(12) if $t5 > v$ goto (9)

B_4: (13) if ($i \geq j \quad t2 \geq t4$) goto (23)

B_5: (19’) $a[t2] = t5$
(21’) $a[t4] = t3$
(22) goto (5)

B_6: (27’) $t14 = a[t1]$
(28’) $a[t2] = t14$
(30’) $a[t1] = t3$

Final Steps

B_2: (5) $i = i + 1$ \hspace{1cm} dead code
(6’) $t2 = t2+4$
(7) $t3 = a[t2]$
(8) if $t3 < v$ goto (5)

B_3: (9) $j = j - 1$ \hspace{1cm} dead code
(10’) $t4 = t4-4$
(11) $t5 = a[t4]$
(12) if $t5 > v$ goto (9)

B_4: (13’) if ($t2 \geq t4$) goto (23)

B_5: (19’) $a[t2] = t5$
(21’) $a[t4] = t3$
(22) goto (5)

B_6: (27’) $t14 = a[t1]$
(28’) $a[t2] = t14$
(30’) $a[t1] = t3$
Example

End Result

\[B_1: \]
\begin{align*}
(1) & \quad i = m-1 \\
(3) & \quad t_1 = n << 2 \\
(4) & \quad v = a[t_1] \\
(4a) & \quad t_2 = i << 2 \\
(4b) & \quad t_4 = t_1 \\
\end{align*}

\[B_2: \]
\begin{align*}
(6') & \quad t_2 = t_2 + 4 \\
(7) & \quad t_3 = a[t_2] \\
(8) & \quad \text{if } t_3 < v \text{ goto (5)} \\
\end{align*}

\[B_3: \]
\begin{align*}
(10') & \quad t_4 = t_4 - 4 \\
(11) & \quad t_5 = a[t_4] \\
(12) & \quad \text{if } t_5 > v \text{ goto (9)} \\
\end{align*}

\[B_4: \]
\begin{align*}
(13') & \quad \text{if } (t_2 >= t_4) \text{ goto (23)} \\
\end{align*}

\[B_5: \]
\begin{align*}
(19') & \quad a[t_2] = t_5 \\
(21') & \quad a[t_4] = t_3 \\
(22) & \quad \text{goto (5)} \\
\end{align*}

\[B_6: \]
\begin{align*}
(27') & \quad t_{14} = a[t_1] \\
(28') & \quad a[t_2] = t_{14} \\
(30') & \quad a[t_1] = t_3 \\
\end{align*}

Code Motion (via Another Example)

\begin{verbatim}
for (i=0; i<n; i++)
 for (j = 0; j < n; j ++)
 c[i][j] = 0.0;
\end{verbatim}

\begin{verbatim}
(1) i = 0
(2) if (i >= n) goto (12)
(3) j = 0
(4) if (j >= n) goto (10)
(5) \textcolor{red}{t_1 = i+n}
(6) \textcolor{red}{t_2 = c+t_1}
(7) t_2[j] = 0.0
(8) j = j+1
(9) goto (4)
(10) i = i+1
(11) goto (2)
(12) ... \\
\begin{align*}
(1) & \quad i = 0 \\
(1a) & \quad t_2 = c-n \\
(2) & \quad \text{if } (i >= n) \text{ goto (12)} \\
(3) & \quad j = 0 \\
(4) & \quad \text{if } (j >= n) \text{ goto (10)} \\
(5') & \quad t_2 = t_2 + n \\
(6') & \quad \text{if } (j >= n) \text{ goto (10)} \\
(7) & \quad t_2[j] = 0.0 \\
(8) & \quad j = j+1 \\
(9) & \quad \text{goto (6')} \\
(10) & \quad i = i+1 \\
(11) & \quad \text{goto (2)} \\
(12) & \quad ... \\
\end{align*}
\end{verbatim}
Reaching Definitions

- An assignment of the form $x = e$ for some expression e is said to define x.
- A definition at statement s_1 reaches another statement s_2 if:
 - there is some control flow path from s_1 to s_2, such that
 - there is no other definition of x on the path from s_1 to s_2.
- Let $In(s)$ be the set of all definitions that reach s.
- Let $Out(s)$ be the set of all definitions that reach all the immediate successors of s.
- Then $Out(s) = gen(s) \cup (In(s) - kill(s))$, where
 - $gen(s)$ is the set of definitions generated by s, and
 - $kill(s)$ is the set of definitions with the same lhs variables as those in s.
- $In(s) = \bigcup_{t \in pred(s)} Out(t)$

Reaching Definitions vs. Live Variables

- **Live Variables:** In and Out are the smallest sets such that
 \[
 In(s) = use(s) \cup (Out(s) - def(s))
 \]
 \[
 Out(s) = \bigcup_{t \in succ(s)} In(t)
 \]
- **Reaching Definitions:** In and Out are the smallest sets such that
 \[
 In(s) = \bigcup_{t \in pred(s)} Out(t)
 \]
 \[
 Out(s) = gen(s) \cup (In(s) - kill(s))
 \]
- The form of equations is identical, and they can be computed using the same procedure, except:
 - Live Variables are best computed backwards through the flow graph (information goes from successors to predecessors).
 - Reaching Definitions are best computed forwards through the flow graph (information goes from predecessors to successors).
Available Expressions

- An expression e is **available** at statement s if, on *every path* from entry to s, there is *some* statement s' where e is evaluated, and variables in e are not redefined between s' and s.
- Let $\text{In}(s)$ be the set of all expressions available immediately before s is evaluated.
- Let $\text{Out}(s)$ be the set of all expressions available immediately after s is evaluated.
- Then $\text{Out}(s) = \text{gen}(s) \cup (\text{In}(s) - \text{kill}(s))$, where
 - $\text{gen}(s)$ is the set of all expressions evaluated in s, and
 - $\text{kill}(s)$ is the set of all expressions that use the lhs variables defined in s.
- $\text{In}(s) = \bigcap_{t \in \text{pred}(s)} \text{Out}(t)$
- In and Out are the *greatest sets* that satisfy the above equations.

Data-Flow Analysis Framework

The 3 data-flow problems discussed so far (liveness, reaching definitions, and available expressions) can be seen as instances of a general *data-flow analysis framework*, specified by:

- Direction of data flow (forwards or backwards)
- A *semilattice* (V, \wedge):
 - V is a non-empty set that contains a special element \top.
 - "\wedge" is a binary operator, called *meet*, that is closed over V and is associative, commutative, and idempotent (i.e. $x \wedge x = x$, for all $x \in V$)
 - For all $x \in V$, $x \wedge \top = x$.
- A family of *transfer functions* from $V \rightarrow V$ such that
 - F contains the identity function
 - F is closed w.r.t. to composition. I.e., if $f_1, f_2 \in F$, then f_3 defined as $f_3(x) = f_2(f_1(x))$ is also in F.
DFA Frameworks (contd.)

- **Liveness Analysis:**
 - Backwards analysis.
 - \(V = \mathcal{P}(X) \), where \(X \) is the set of variables in the program;
 - Meet operator is set union.
 - \(\top \) in \(V \) is the empty set.
 - Transfer functions are of the form \(f(x) = G \cup (x - K) \) for constants \(G \) and \(K \).

- **Available Expression Analysis:**
 - Forwards analysis.
 - \(V = \mathcal{P}(E) \), where \(E \) is the set of expressions in the program.
 - Meet operator is set intersection.
 - \(\top \) in \(V \) is the universal set \((E) \)
 - Transfer functions are of the form \(f(x) = G \cup (x - K) \) for constants \(G \) and \(K \).

Specialized DFA Frameworks

Define \(x \leq y \) iff \(x \land y = x \). It can be shown that "\(\leq \)" is a partial order.

(Here, "\(\land \)" is the meet operator)

- **Monotone Frameworks:**
 - Every \(f \) in \(F \) is monotone: \(x \leq y \Rightarrow f(x) \leq f(y) \).
 - Alternatively: \(f(x \land y) \leq f(x) \land f(y) \)

- **Distributive Frameworks:**
 - \(f(x \land y) = f(x) \land f(y) \)
 - Note: distributivity implies monotonicity
Dataflow Analysis

Generic DFA Algorithm

Given below for a Forward analysis:

1. \(Out(entry) = v_{entry} \)
2. \(Out(b) = \top \), for each \(b \neq entry \)
3. While no change to any \(Out \):
 - For each \(b \neq entry \)
 - \(In(b) = \bigwedge_{a \in \text{predecessor}(b)} Out(a) \)
 - \(Out(b) = f_b(In(b)) \)

Computes the Maximum Fixed Point (MFP) for monotone frameworks.

If the framework is monotone and the height of the semilattice is finite, then the algorithm terminates.

If and when the algorithm terminates, it computes a solution to the data-flow equations.

MOP and MFP solutions

- **Ideal**: The property computed over all feasible execution paths:
 \[
 Ideal(B) = \bigwedge_{P: \text{feasible execution path}} f_P(v_{entry})
 \]

- **MOP**: (Meet over all paths) The property computed over all possible paths in the control flow graph:
 \[
 MOP(B) = \bigwedge_{P: \text{control flow path}} f_P(v_{entry})
 \]

 - Note that \(MOP(x) \leq Ideal(x) \) from monotonicity.
 - \(MFP(x) \leq MOP(x) \) in general.
 - \(MFP(x) = MOP(x) \) if the framework is distributive.
Constant Propagation

In terms of the DFA framework, constant propagation is a *forward* analysis:

- \(V \): Assignment to each variable in the program, one of the following:
 - a specific constant \(c \), not a constant “NAC” or undefined “UNDEF”.
- \(\land \): For each element in the assignment, the meet is defined as follows:

 \[
 \begin{align*}
 \text{UNDEF} \land v &= v; \quad \text{NAC} \land v = \text{NAC}. \\
 c \land c &= c \\
 c_1 \land c_2 &= \text{NAC} \quad \text{if } c_1 \neq c_2
 \end{align*}
 \]

 Then \(m_1 \land m_2 = m_3 \) if \(m_3(v) = m_1(v) \land m_2(v) \) for each \(v \).

- Transfer functions, as in next slide

Transfer Function for Constant Propagation

If \(s \) is not an assignment, then \(f_s \) is the identity function.

If \(s \) is an assignment of the form \(x = \text{rhs} \), then \(f_s(m) = m' \) such that

- \(m'(v) = m(v) \) for all \(v \neq x \)
- \(m'(x) \) as follows.

 - RHS is a single constant \(c \), then \(m'(x) = c \).
 - RHS is a single variable \(y \), then \(m'(x) = m(y) \).
 - RHS is an expression of the form \(y \oplus z \), then

 \[
 m'(x) = \begin{cases}
 m(y) \oplus m(z) & \text{if } m(y) \text{ and } m(z) \text{ are constants} \\
 \text{NAC} & \text{if either } m(y) \text{ or } m(z) \text{ is NAC} \\
 \text{UNDEF} & \text{otherwise}
 \end{cases}
 \]
Constant Propagation Optimization

- Compute m using the DFA algorithm for constant propagation.
- If $l : t \leftarrow e$ is an assignment (in the intermediate code):
 - If $e = s$, and $m(s) = c$, then replace the assignment with $l : t \leftarrow c$
 - If $e = s_1 \oplus s_2$, $m(s_1) = c_1$ and $m(s_2) = c_2$, then replace assignment with $l : t \leftarrow c$, where $c = c_1 \oplus c_2$.

Copy Propagation

- Perform reaching definitions analysis
- If $l_1 : t \leftarrow z$ and $l_2 : y \leftarrow t \oplus x$ are two statements such that
 - l_1 reaches l_2
 - No other definition of t reaches l_2
 - There is no definition of z along any path from l_1 ot l_2
 Then replace $l_2 : y \leftarrow t \oplus x$ with $l_2 : y \leftarrow z \oplus x$
Common Subexpression Elimination

- Perform available expressions and reaching definitions analyses.
- If \(l_1 : \ t \leftarrow x \oplus y \) is a statement where expression \(x \oplus y \) is available, and
 - Find statements of the form \(l_2 : \ z \leftarrow x \oplus y \) such that \(l_2 \) reaches \(l_1 \), and \(x, y \) are not redefined on any path from \(l_2 \) to \(l_1 \).
 - Generate a new temporary name \(w \).
 - Replace \(l_2 \) with the following two statements:
 \[
 l_2 : \quad w \leftarrow x \oplus y \\
 l_2' : \quad z \leftarrow w
 \]
- Replace \(l_1 \) with \(l_1 : \ t \leftarrow w \).
- Copy propagation can later remove the extra assignments (or better, coalesce the temporaries during register allocation).

Loops

A **loop** in a control flow graph is a set of nodes \(L \) such that

- \(L \) has a unique *header* node \(h \)
- There is a path from \(h \) to every node in \(L \)
- From every node in \(L \) there is a path to \(h \)
- There is no edge in any node outside \(L \) to any node in \(L - \{ h \} \).

Corollary: A loop may have multiple exits, but have a single entry (\(h \)).
Loop Invariants

A definition \(l_1 : \quad t \leftarrow a_1 \oplus a_2 \) inside loop \(L \) is invariant in \(L \) if \textit{one of the following conditions hold:}

- \(a_i \)'s are constants
- all definitions of \(a_1 \) and \(a_2 \) that reach \(l_1 \) are outside \(L \)
- only one definition for each \(a_i \) reaches \(l_1 \) and that definition is loop invariant in \(L \).

We can \textit{hoist} an invariant assignment \(l_1 : \quad t \leftarrow a_1 \oplus a_2 \) out of loop \(L \) if \textit{all of the following conditions hold:}

- \(l_1 \) dominates all loop exits at which \(t \) is live-out
- There is only one definition of \(t \) in \(L \).