INSTRUCTIONS

Read the following carefully before answering any question.

• Make sure you have filled in your name and USB ID number in the space above.
• Write your answers in the space provided; Keep your answers brief and precise.
• The exam consists of 4 questions, in 7 pages (including this page) for a total of 30 points.

<table>
<thead>
<tr>
<th>Question</th>
<th>Max.</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
1. [Total: 7 points] For this question, consider the Proto(1) program shown below:

```
1: x = input();
2: a = x + 1;
3: b = x * 2;
4: c = a + b;
5: d = c + x;
6: e = d * b;
7: f = e - a;
8: g = e * f;
9: h = g - x;
10: print (h);
```

(a) [3 points] Using liveness analysis, compute the set of variables live at each program point in the above program.

(b) [4 points] Can we allocate all variables using only 3 registers using the Simplify-Select-Spill algorithm without spilling? If so, show the register interference graph and the allocation. If not, show where the allocation will fail.
2. [Total: 4 points] Consider the following fragment of an imperative programming language’s grammar:

\[
S \rightarrow \text{if } e \text{ then } S \text{ else } S \\
S \rightarrow \text{if } e \text{ then } S \\
S \rightarrow o
\]

(a) [2 points] Show that this grammar is ambiguous by showing two distinct parse trees for the sentence \textit{if } e \text{ then if } e \text{ then } o \text{ else } o

(b) [2 points] Consider an SLR(1) parser for this grammar. The action table will have a shift-reduce conflict. If we want to associate an “else” with the nearest enclosing “if”, how will you resolve this conflict? Why?
3. [10 points total] A grammar is said to be in X-form if every production is either of the form $A \rightarrow \epsilon$ (i.e., an epsilon-production) or of the form $A \rightarrow a B$, where a is a terminal symbol and B is a non-terminal symbol (i.e., exactly two symbols, one terminal followed by one non-terminal, on the right hand side).

(a) [3 points] Write a grammar in X-form for the language of regular expression $(a|b)^*a$.

(b) [3 points] Does every X-form grammar describe a regular language? Justify.
(c) [3 points] Does every regular language have a grammar in X-form? Justify.
4. [10 points total] Consider the language L of regular expression $(a|b)^*a$.

(a) [5 points] Write a grammar for L such that it is $LL(1)$. For this question, you should argue convincingly that the language of your grammar is indeed L, then show that it is $LL(1)$.
(b) [5 points] Write a grammar for \mathcal{L} such that it is $SLR(1)$. For this question, you should argue convincingly that the language of your grammar is indeed \mathcal{L}, then show that it is $SLR(1)$.