A Logical Encoding of the w-Calculus:
Model Checking Mobile Processes Using
Tabled Resolution*

Ping Yang, C. R. Ramakrishnan, Scott A. Smolka

Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY, 11794-4400, USA
E-mail: {pyang,cram,sas}@cs.sunysb.edu

Abstract. We present MMC, a model checker for mobile systems spec-
ified in the style of the m-calculus. MMC’s development builds on our
experience gained in developing XMC, a model checker for an extension
of Milner’s value-passing calculus implemented using the XSB tabled
logic-programming system. MMC, however, is not simply an extension of
XMC; rather it is virtually a complete re-implementation that addresses
the salient issues that arise in the m-calculus, including scope extrusion
and intrusion, and dynamic generation of new names to avoid name cap-
ture. We show that tabled logic programming is especially suitable as an
efficient implementation platform for model checking m-calculus specifi-
cations, and can be used to obtain an exact encoding of the 7-calculus’s
transitional semantics. Moreover, MMC is easily extended to handle pro-
cess expressions in the spi-calculus. Our experimental data shows that
MMC outperforms other known tools for model checking the w-calculus.

1 Introduction

In [26], we showed that logic programming with tabulation can be used to con-
struct an efficient model checker for concurrent systems. In particular, we pre-
sented XMC, a model checker supporting XL (an extension of Milner’s value-
passing CCS [20]) as the system specification language, and the alternation-free
fragment of the modal p-calculus as the property specification language.

XMC is written in XSB Prolog, where XSB [32] is a logic-programming sys-
tem that extends Prolog-style SLD resolution with tabled resolution. The princi-
pal merits of this extension are that XSB terminates more often than Prolog (e.g.
for all datalog programs), avoids redundant sub-computations, and computes the
well-founded model of normal logic programs.

XMC is written in a highly declarative fashion. The model checker is encoded
in less than 200 lines of XSB Prolog using a binary predicate models/2 which
defines when an XL term satisfies a modal p-calculus formula. This definition

* This work was supported in part by NSF grants EIA-9705998, CCR-9876242,
CCR-9988155, and CCR-0205376; ONR grant N000140110967; and ARO grants
DAAD190110003, DAAD190110019.

uses a ternary predicate trans/3 which represents the transition relation of the
labeled transition system corresponding to an XL specification.

Our experience with XMC raises the following question: Can tabled logic
programming be brought to bear on the problem of verifying mobile systems
and what new insights are required? In this paper we present MMC, a practical
model checker for mobile systems specified in the style of the 7-calculus [22].!
The main technical difficulties that we encountered are due to the ability to
express channel passing in the w-calculus, which give rise to a variety of issues
that were not present in XMC, including scope extrusion and intrusion, and the
generation of new names to avoid name capture.

Logic programming with tabulation turns out to be an ideal framework in
which to implement a model checker for mobile systems. In particular, w-calculus
names are represented as Prolog variables in MMC, which enables us to treat
scope extrusion and intrusion, renaming, name restriction, etc., in a direct and
efficient manner. The result is that the MMC version of the trans relation, when
applied to a w-calculus expression p, generates the labeled transition system for
p as prescribed by the m-calculus’ transitional semantics [22].

By using the ability of a logic-programming engine to manipulate terms and
to perform unification, we can encode monadic and polyadic versions of the
m-calculus in a single framework. We can also treat the encryption/decryption
constructs of the spi-calculus [3], an extension of the w-calculus for cryptographic
protocols, as syntactic sugar. In fact, we can evaluate the operational semantics
of spi-calculus processes without changing the trans relation in MMC. Thus
MMC can also be viewed as a model checker for the spi-calculus.

Related work. A number of analysis techniques have been developed for the 7-
and spi-calculi, and many of them have been incorporated in tools. The Mobility
Workbench (MWB) [31] provided the first model-checking tool for the polyadic
m-calculus and the m-p-calculus [21,10]. In addition to the model checker, MWB
consists of a bisimulation checker and a prover based on sequent calculus [14].
Picasso [4] is a static analyzer for the m-calculus that focuses on checking secrecy
of information such as process-level leaks and insecure communications. Cryp-
tyc [15] uses static type checking to find security violations, such as secrecy and
authenticity errors, in cryptographic protocols specified in the spi-calculus. More
recently, techniques have been proposed for verifying secrecy and authenticity
of cryptographic protocols specified in an extension of spi-calculus and with the
intruder modeled using Prolog rules [2,7]. These techniques support the veri-
fication of an unbounded number of sessions of a protocol. In contrast, MMC
can verify only a finite number of concurrent sessions, but, being a full-fledged
model checker, can be used to verify other properties such as deadlock freedom
and lossless transmission. Recent extensions to the Maude system [8], which
uses equational and rewrite logic as a general framework for executable specifi-
cations, support cryptographic protocol analysis [11], mobile computation [13],
and may-testing equivalence of non-recursive w-calculus processes [29]. MMC, in

! Please see [1] for MMC’s source code, the source code of the examples used in this
paper, and an extended version of this paper.

contrast, is a more traditional model checker for recursive mobile processes en-
coded in the m-calculus. There are also some other well-known tools for analyzing
security protocols without using spi-calculus, such as FDR [18] and NRL [19].

Among these approaches, MMC is most closely related to the model checker
implemented in the MWB. The property logic used in MMC is an expressive
subset of the m-p-calculus that is amenable to efficient implementation. The
process language used in MMC, on the other hand, is more expressive than that
of MWB, and permits encoding of spi-calculus specifications. The performance
of MMC is considerably better than the model checkers and equivalence checkers
of MWB reported in the literature [30, 6]. Moreover, MMC is even comparable to
that of the first versions of XMC where, as in MMC, labeled transition systems
were generated by interpreting process terms (see Section 4).

In the following, Section 2 describes the computational basis of MMC: the
encoding of the operational semantics of the w-calculus as a logic program, and
the implementation of a model checker for a subset of m-u-calculus in MMC.
Section 3 describes extensions to MMC to support the spi-calculus. Experimental
results appear in Section 4 and our concluding remarks are given in Section 5.

2 MMC: A Model Checker for the w-Calculus

In this section, we describe our model checker (called MMC for the Mobility
Model Checker) for the m-calculus. Processes in the m-calculus are encoded as
described in Section 2.1. The operational semantics of the m-calculus is encoded
as a Prolog relation trans, which generates symbolic transition systems from
agent definitions (Section 2.2). For simplicity, we first describe the encoding for
the monadic m-calculus. This encoding is later optimized to reduce the size of the
symbolic transition system and extended to the polyadic w-calculus. Finally, the
semantics of m-p-calculus is encoded as another Prolog relation models which
determines whether a given w-calculus expression is in the model of a given
alternation-free m-u-calculus formula (Section 2.3).

2.1 Syntax of MMC Processes

We use P to denote the set of all process (or agent) expressions, and P, Py, Ps, ...
to range over individual process expressions. We use V to denote an enumerable
set of names, and X, X1, Xa,... to range over elements of V. In MMC, names
are represented by Prolog variables. We use PN to denote the enumerable set of
process (agent) names, and p,p1,ps, - .- to range over process names. In MMC,
process names are represented by Prolog function (i.e. data constructor) symbols.
Finally, D is used to denote the set of process definitions. Process expressions
and process definitions in the monadic m-calculus are encoded in MMC using
the language described by the following grammar.

A = in(V,V) | out(V,V) | outbound(V,V) | taun
P u= zero | pref(A,P) | nu(V,P) | par(P,P) | choice(P,P)

| match(V=V,P) | proc(’PN(l—}))
et (PN'(V), P)

9
ii

Actions in, out, outbound and tau represent input, output, bound output
and internal actions respectively. Among process expressions, zero is the pro-
cess with no transitions; pref(A, P) is the process obtained by prefixing ac-
tion A to P; nu(X, P) is the process obtained from P by restricting the name
X; match(X;=X,, P) is the process that behaves as P if the names X; and
X, match, and as zero otherwise. The operators choice and par represent
non-deterministic choice and parallel composition respectively. The expression

—
proc(p(X)) represents a process invocation where p is a process name (having a

N
corresponding definition) and X is a comma-separated list of names that are the
actual parameters of the invocation. Process invocation may be used to define

—
recursive processes. Each process definition of the form def(p(X), P) associates
—

a process name p and a list of formal parameters X with process expression P.
It is easy to see that MMC’s syntax simply encodes the standard syntax of
m-calculus expressions used in [22]. This observation is formalized below.

Definition 1 Given a one-to-one function 8 that maps names of Prolog vari-
ables to names in w-calculus expressions, the function fy mapping process ex-
pressions in MMC’s syntaz to standard m-calculus syntazx is defined as follows:

fo(zero) =0 fo(X) = 6(X)
fo(maten((X: = X»), P)) = [0(X1) = 0(X2)fs(P)) fo(pret(san, P)) = 7.fo (P)
fo(pret(in(Xy, Xa), P)) = 8(X1)8(X2).fo P fomu(X, P)) = (v (X)) fo (P)

fo(pret(out(Xy, Xz), P)) = 9(X1)8(Xz).fo P fo(choice(P, Q) = fo(P) + f5(Q)

fo(proc(p(X1,...,X5))) = p(6(X1),...,0(Xn)) fo(par(P,Q)) = fo(P) | fo(Q)
fo(@ef (p(X1,.., Xa), P)) = p(6(X0),-,6(Xn)) = fo(P)

Definition 1 allows us to directly import the notions of bound and free names
from m-calculus to our encoding. In actions of the form in(X,Y’), out(X,Y), and
outbound(X,Y’), the name X is said to be free. The name Y in the out action
is also free while the name Y in in and outbound actions is said to be bound.
Table 1 lists the free and bound names of process expressions (second and third
column, respectively).

Note that the same name may occur both bound and free in a process
expression. For instance, consider process expression pref (out(Y,X), nu(X,
pref (out (Y,X), nu(X, pref(out(Y,X), zero))))). The name X occurs both
free (in the first out) and bound, and there are two distinct bound occurrences
of X. Our encoding of the model checker becomes considerably simpler if we en-
sure that bound names are all distinct from each other and from free names. We
call process expressions having this distinct-name property as valid. The formal
definition of validity is achieved by associating with each process expression P
a set of uniquely bound names (denoted by ubn(P)), as defined in the fourth
column of Table 1.

Definition 2 (Validity) A process expression P is valid if and only if fn(P)N
—
bn(P) =0 and ubn(P) = bn(P). A process definition of the form def(p(X), P)
—

is valid if and only if P is valid and dbn(P)NX = 0, i.e. formal parameters do
not appear bound in P.

Process Expression Free Names Bound Names Uniquely Bound Names

n(P) bn(P) ubn(P)

pref(tau, P;) n(Pr) bn(Pp) ubn(Pr)

pref(in(X1, X2), P1) (fn(P)u {X1}) bn(P1) U {X2} [(ubn(P1)U{X2})

pref(outbound(Xi, X2), P1)|—{X2} —(bn(P1) N {X2})

pref(out(Xl,XQ),Pl) f'n,(Pl) U {Xl,XQ} bn(P1) 'u,bn(Pl)

match((X; = X2), P1)

par(P1, P2) Mm(P1)UMm(P2) [bn(P1) U bn(P2)|[(ubn(Pr) U ubn(Pr))

choice(Py, P») —(bn(P1) N bn(P2))

nu(X, Py) fn(Py) — {X} bn(P)U{X} [(ubn(P)U{X}) — (bn(P) N {X})

Table 1. Free, bound, and uniquely bound names of processes

The following property can be established based on the definition of validity:
Proposition 1 FEvery subexpression of a valid process expression is also valid.

We say that a process expression P is closed if and only if fn(P) = 0. We
—
say that a process definition of the form def(p(X), P) is closed if and only if

— —
all free names in P occur in X, i.e. fn(P) C X. The encoding of the model
checker described in this paper requires that all process definitions are valid and
closed. Note that restricting our attention to valid definitions does not reduce
expressiveness since any process expression can be converted to an equivalent
valid expression by suitably renaming the bound names.

2.2 Operational Semantics of MMC

The operational semantics of 7-calculus is traditionally given in terms of a sym-
bolic transition system [16,25]. The transition relation of such a system can be
derived from process definitions in MMC using the relation trans defined by the
rules in Figure 1. The relation trans can be seen as a direct encoding of the sym-
bolic semantics of [16]. At a high level, a tuple in the trans relation of the form
trans(P,,A,M,P,,Nin, Nout) means that process expression P; can evolve
into process expression P after an A action provided equality constraints over
the names in M hold. (Nin and Nout are integers used to generate new names,
an implementation detail explained later.) A conjunction of equality constraints
is encoded as a list in Prolog, each element in the list encoding an equality con-
straint over a pair of names. Each tuple in the trans relation corresponds to a

transition in the symbolic semantics of [16] of the form f5(P;) fea(M):Lo(A) fo(P),
where fc, is defined as follows:

Definition 3 The following function fcy maps the Prolog representation of
equality constraints over names to equivalent constraints over m-calculus names:

feg(L 1) = true
feg([X1=X51) = 0(X1) = 0(X2)
feg(append (M1, M>)) = fea(Mi) feo(Mz)

When the transitions are generated, we avoid name capture by binding each
distinct instance of a restricted name to a freshly generated name drawn from

% Pref
trans(pref (A, P), A, [1, P, Nin, Nout).

% Sum
trans(choice(P, Q), A, M, P1, Nin, Nout) :- trans(P, A, M, P1, Nin, Nout).
trans (choice(P, Q), A, M, Q1, Nin, Nout) :- trans(Q, A, M, Q1, Nin, Nout).

% Id
trans(proc(PN), A, M, Q, Nin, Nout) :-
def (PN, P), trans(P, A, M, Q, Nin, Nout).

% Match
trans (match((X=Y), P), A, ML, P1, Nin, Nout) :-
X==Y -> trans(P, A, ML, P1, Nin, Nout)
; trans(P, A, M, P1, Nin, Nout),
append ([X=Y], M, ML).

% Par
trans(par(P, Q), A, M, par(P1, Q), Nin, Nout) :- trans(P, A, M, P1, Nin, Nout).
trans(par(P, Q), A, M, par(P, Q1), Nin, Nout) :- trans(Q, A, M, Q1, Nin, Nout).

% Com
trans(par(P, Q), tau, MNL, par(P1, Q1), Nin, Nout) :-
trans(P, A, M, P1, Nin, Noutl),
trans(Q, B, N, Q1, Noutl, Nout),
complement (A, B, L),
append(M, N, MN),
append (MN, L, MNL).

% Res
trans (nu(Y, P), A, M, nu(Y, P1), Nin, Nout) :-
gen_new_name(Y, Nin, Noutl),
trans(P, A, M, P1, Noutl, Nout),
not_in_action(Y, A), % Y does not appear in action A
not_in_constraint(Y,M). % Y does not appear in constraint M

% Open
trans (nu(Y, P), outbound(X, Z), M, P1, Nin, Nout) :-
gen_new_name(Y, Nin, Noutl),
trans(P, out(X, Z), M, P1, Noutl, Nout),
Y == Z, Y\==X,
not_in_constraint (Y, M).

% Close
trans(par(P, Q), tau, MNL, nu(W, par(P1, Q1)), Nin, Nout) :-
trans(P, A, M, P1, Nin, Noutl),
trans(Q, B, M, Q1, Noutl, Nout),
comp_bound (A, B, W, L),
append(M, N, MN), append(MN, L, MNL).

gen_new_name (Y, Nin, Nout):-
(var(Y) -> Nout is Nin + 1, Y = name(Nout)
; Nout = Nin).

complement (in(X, V), out(Y, V), L) :- X==Y -> L=[1 ; L=[X=Y].

complement (out (X, V), in(Y, V), L) :- X==Y -> L=[] ; L=[X=Y].
comp_bound (outbound(X, W), in(Y, W), W, L):- X==Y -> L=[] ; L=[X=Y].
comp_bound (in(X, W), outbound(Y, W), W, L):- X==Y -> L=[] ; L=[X=Y].

Fig. 1. Encoding of w-calculus transition semantics.

an enumerable set indexed by an integer. These fresh names are represented by
terms of the form name (V). Fields Nin and Nout in the trans relation are used
to maintain the index of the set of fresh names: Nin records the name with the
largest index generated before a transition is generated; and Nout records the
same after the transition is generated.

It can be readily seen that the trans relation preserves validity, formalized
by the following proposition:

Proposition 2 Let C denote the set of Prolog constants, P, be a wvalid pro-
cess expression, and Ny be larger than any N in name(N) occurring in Py. For
any one-to-one function o : fa(Py) — C, if trans(Pio, A, M, P, N1, N>) is an
answer to the query trans(Pio, A, M,?,N1,?) then Py is also a valid process
expression.

Finally, by induction on the lengths of derivations, we can show that the tran-
sition relation computed using our encoding of Figure 1 is correct with respect
to the symbolic transition semantics of [16].

Theorem 3 Let S be the logic program encoding the symbolic semantics (given
in Figure 1), and D be a set of process definitions. Let Py be a valid MMC process
expression, N1 be the largest N in name(N) occurring in Py, and o : fa(P) —
C be a one-to-one function. Then trans(Pio, A, M, Py, N1, N>) is an answer

-1 -1
derivable from the logic program D U S if and only if fo(Py) feoMo™_)ofo(Ae™)
fo(Poo™1) is a derivation in the symbolic semantics for the m-calculus.

The use of structural congruence: While the encoding of the operational seman-

tics is complete, it is not yet sufficient to build a model checker: the semantics

distinguishes between process expressions based on their syntax, even if their

behaviors are identical. For example, consider the following process definitions:
def (ser(Pc), nu(X, pref(out(Pc, X), proc(ser(Pc))))).

def(cli(Pc), pref(in(Pc, X), proc(cli(Pc)))).
def (system, nu(Pc, par(proc(ser(Pc)), proc(cli(Pc))))).

Process system consists of processes ser (Pc) and c1i(Pc). Process ser (Pc)
repeatedly generates a new private name X and sends X to process c1i(Pc). Since
each time this happens the name X is different from any other names previously
generated during the computation, the state space of systemis infinite as shown
below:

system = nu(name(0) ,par (proc(ser(name(0))) ,proc(cli(name(0)))))
N nu(name (0) ,nu(name (1) ,par (proc(ser (name (0))) ,proc(cli(name(0))))))

-5 nu(name(0) ,nu(name (1) ,nu(name(2) ,par (proc(ser(name(0))) ,proc(cli(name(0)))))))
B

However, in nu(name (1) ,par (proc(ser(name(0))) ,proc(cli(name(0))))),
name (1) does not occur in par(proc(ser(name(0))),proc(cli(name(0)))),
and hence the behavior of these two process expressions is identical. This can be
formalized as the following structural-congruence rule:

nu(X,P) =P if X does not occur in P.

After applying this rule to modify the clauses for Res and Close, which
handle restricted names, the process system exhibits finite behavior.

Using resolution mechanism to generate new mames: Note that we have used
a global counter (implemented using Nin and Nout) to generate new names
when applying a restriction operator. However, using constants to generate
new names in Prolog results in redundant states and transitions. For exam-
ple, the two process terms nu(name(0) ,pref(out(X,name(0)),zero)) and
nu(name (1) ,pref (out (X,name(1)),zero)) appear different, although they dif-
fer only in the bound names: name(0) and name(1). We can exploit the fact
that wvariant checks— i.e. checking if two terms are identical modulo names of
variables— can be inexpensively performed in the XSB tabled logic program-
ming system on which MMC is implemented. Instead of generating integers to
index new names, we use existential logical variables in terms, and let the reso-
lution mechanism generate a new variable every time that clause is used. This is
done by discarding the arguments implementing the counter, i.e., Nin and Nowut,
and defining gen_new_name as the fact: gen_new_name (name(_)).

Using this mechanism, we generate name(V0) in the place of name(0),
and name(V1) in the place of name(1). The two terms, nu(name(VO0),
pref (out (X,name(V1)), zero)) and nu(name(V1), pref (out(X,name(V1)),
zero)), now become variants of each other and MMC will treat them as the same
state.

A consequence of this representation is that the equality of two names can
no longer be checked by unification (=), but by the identity operator (==). For
instance while the unification name (VO)=name (V1) will succeed after unifying VO
and V1, the identity check name (V0)==name (V1) will fail unless VO and V1 are
already unified.

Another consequence of this representation is that the goal-reordering op-
timization, which was employed in early versions of XMC, can no longer be
directly applied to our encoding. Consider the Com rule. In general, the number
of solutions of complement(A, B, L) is much smaller than that of trans(Q,
B, N, Q1) (note that the above optimization has discarded fields Nout! and
Nout). Thus, by reordering trans(Q, B, N, Q1) and complement(A, B, L),
we will compute fewer intermediate answers. This optimization can be applied
using the earlier (integer) representation of names and can result in significant
performance gains. However, the representation of restricted names using vari-
ables means that the program is dependent on the order in which variables are
bound, and hence this optimization is not directly applicable. Hence we special-
ize the trans rules to two versions, the first of which is used when the action (the
second argument) is known; and the second of which is used when the action is
unknown. The specialization lets us change the join order appropriately without
affecting the correctness.

From Monadic to Polyadic 7-Calculus: The polyadic version of the w-calculus is
supported in MMC by extending the above construction as follows. The syntax
is extended by introducing a set F of tuple constructors (n-ary function symbols

for n > 0) and considering the set of terms 7 built from F and V. The grammar
given in Section 2.1 becomes (only the changed rules are shown):

A == in(V,T) | out(V,T) | outbound(V,]_},T)
P = uwify(V=T),P) |proc(’PN('7—))

In essence, the communication actions can now be used to place names in (or
extract names from) tuples and other data structures, and process invocations
may contain such data structures. Note that when multiple names can be sent in
a single message (e.g. when sending a tuple of names), the bound output action
needs to keep track of the set of bound names (the second parameter) in the mes-
sage (the third parameter). The Open and Close rules in the transition semantics
for the polyadic version change correspondingly. Furthermore, we introduce an
operator unify to decompose a term into subterms by pattern matching. The
names in T are bound names in an expression of the form unify((X = T), P).
An expression unify((X = T'), P) behaves as P when the names in T' are bound
to terms over F and V such that X and T unify, and as zero if such a unifier
does not exist. The modified rules can be directly encoded in Prolog as before;
see [1] for details.

2.3 Model Checking in the w-p-Calculus

A modal logic for the monadic 7-calculus, the m-p-calculus, was originally pro-
posed in [23] and extended to the polyadic w-calculus in [21] and [10]. The
m-p-calculus has variants of the traditional box and diamond modal operators
to reflect the early and late semantics of the w-calculus.

Below, we present an encoding of a model checker for an expressive subset of
the 7-p-calculus which does not have explicit quantifiers (3 and V). We use the
following syntax to represent formulas in our subset of the 7-pu-calculus. We use
F to denote the set of (non fixed-point) formulas; A and V (from Section 2.1)
to denote sets of actions and names; Z to denote formula variables in the 7-p-
calculus; and £ to denote fixed-point equations defining the formula variables.

Fu=tt | £f | pred((V,V),F) | and(F,F) | or(F,F) | diam(A,F)
| box(A,F) | form(Z({}))
£ := £def(Z(V), 1£p(F)) | fdef(Z(V), gfp(F))

And and or are boolean connectives; diam and box are model operators;
1fp and gfp represent least and greatest fixed point operators respectively; and
pred is used to encode a match operation. Names in a formula definition are
implicitly quantified; the quantifiers are determined as follows. Names appear-
ing on the left hand side of a definition are called formal parameters, and the
remaining names in a definition are called local names. For a local name X,
let ¢ be a largest subformula of the right hand side such that ¢ = diam(A, F)
(¢ =box(A, F)) and X occurs in A. Then X is existentially (universally) quan-
tified, with its scope covering ¢. We require that every local name in a formula
be quantified in the above manner. Model checking 7-p-calculus where quanti-

Id P, ot 6 is consistent

Pty F
P kg pred((X=Y),F)

Pty F1 Pty Fy

Pred

0 =0Umgu(X,Y)

And S FLFD)
PFg F
Not P tg not(F)
O P |_9 " P |—g Fy
T Prg or(F1,F) P Fg or(FL,Fs)
. P by F , , ,
Diam m trans(P,A’,_, P1), 0' =0Umgu(A,A")
Py bg, F,...Pn kg, F , , o
BOX P |_0 bOX(A,F) {(Pl,ol)v"'y(Pnyon)}: {(P 1mgu(A’A)) | trans(P,A 7—1P)}
= =
Pty F[V'/V >
Lfp #/_,] tdet(Z(V), Lfp(F))

Pty form(Z(V'))

Fig. 2. The tableau rules of the subset of 7-u-calculus

fiers are restricted as described above requires the ability to handle inequality
constraints (e.g. X # Y). Inequality constraints arise even when the logic and
the process specification uses only equalities, for instance, to record the substi-
tutions under which a transition is not enabled. Equality constraints are handled
by a logic programming system. In contrast, inequality constraints have to be
explicitly treated: either representing them symbolically, or enumerating their
consequences (i.e., X # Y interpreted over a domain {a,b,c} for X and Y can
be enumerated as X = a,Y = b,X = a,Y = ¢, ...). While enumeration leads
to poor performance, symbolic representation adds an additional layer of im-
plementation (i.e. a constraint solver) with its attendant overheads. We avoid
this overhead by imposing a condition that the set of constraints (the constraint
store) needed while model checking is either empty or consist only of constraints
over restricted names.

The semantics of this subset of 7-u-calculus can be readily derived from the
semantics of the full logic given in [23]. From this semantics, we can also derive a
tableau proof system for our subset given in Figure 2.3. The tableau can be shown
to be sound and complete with respect to the semantics of 7-pu-calculus provided
all free names in the process expression and formula in original model-checking
goal P - F are distinct. The tableau treats only least fixed point formulas but
handles negation; greatest fixed point formulas are handled using their dual
least fixed point forms (i.e. using the identity vZ.F = -~uZ.~F[~Z/Z]). The
parameter 6 in the tableau keeps track of the current substitution of names in
the formula and names in the process expressions. A substitution 8 is said to
be consistent if for any name X, X =t € § and X = t5 € 6 then t; = to.
In the figure, mgu(ty,t2) denotes the most general unifier of the terms ¢; and
t2, where both terms denote actions. The logic programming encoding of the
tableau system is given in Figure 2.3 which can be directly executed on the XSB

Id models(_P, tt).
Match models(P, pred((X=Y), F)) :- X=Y, models(P, F).

And models(P, and(F_1, F_2)) :- models(P, F_1), models(P, F_2).
Or models(P, or(F_1, F_2)) - models(P, F_1) ; models(P, F_2).
<A> models (P, diam(A, F)) :- trans(P, A, _M, P1), models(P1, F).

[A] models (P, box(A, F))
Neg models (P, not(F))
Lfp models (P, form(Z))

forall(P1, trans(P, A, _M, P1), models(P1, F)).
sk_not (models (P, F)).
fdef(Z, 1fp(F)), models(P, F).

Fig. 3. Encoding of MMC’s w-p-calculus model checker

system. In the program, sk_not(Goal) refers to the negation of Goal which
treats all variables in the term Goal as existentially quantified.

The soundness and completeness of the tableau system can be proved follow-
ing [28]. The following theorem states the correctness of the model checker.

Theorem 4 Let D be a set of process and formula definitions, S be the program
consisting of the clauses in Figures 1 and 2.3, P be a valid process expression,
and F be a formula containing only processes and formula variables defined in
D. Let o be a one-to-one function mapping free variables in P and F' to Prolog
constants. Then models(Po, Fo) is an answer derivable from the logic program
DUS if and only if P+ F is a derivation in the tableau shown in Figure 2.3.

The models predicate in MMC is an optimized version of the one shown in
Figure 2.3 aimed at reducing the number of goals that will be tabled in XSB.
The optimization is routine and is not shown.

3 Encoding the spi-calculus

The spi-calculus is an extension of the 7-calculus with primitives for encryption
and decryption to facilitate specification of cryptographic protocols [3]. Below
we show that spi-calculus process expressions can be encoded in MMC using its
support for the polyadic m-calculus. To express message encryption and decryp-
tion, and to represent structured messages composed of multiple segments, we
use terms built from names and the two binary function symbols encrypt and
mesg. The encryption and decryption primitives of the spi-calculus are encoded
in MMC as follows.

Encryption of a message M with a symmetric key K, denoted in the spi-
calculus as {M }k, is encoded in MMC by the term encrypt(M, K). This term
can be passed as a parameter or can appear as data on an output action. De-
cryption is specified in the spi-calculus using a case expression. For example,
case L of {x}k in P behaves as P[M/z] if L is of the form {M}k, and as
a deadlocked process otherwise. In MMC, we use unify to look into message
components and match to verify whether the encryption and decryption keys
match. For instance, the above case expression is encoded in MMC by the expres-
sion unify(L = encrypt(X, E), match(E = K, P)).In MMC’s encoding,
unify extracts the key portion of the message and match checks if the given key
K matches the encryption key E.

For handling specifications that use asymetric public/private keys, we intro-
duce two unary function symbols priv and pub, and use priv(K) and pub(K)

to denote the private and public keys of a key pair K. We also introduce
a new process expression code(Oper, P) where Oper represents the opera-
tions written as Prolog predicate; code (Oper, P) performs Oper and then
behaves as P. We use operation complement (K;,K>) to map the public key
of a key pair to the corresponding private key and vice versa. For instance,
complement (pub (K 4) ,K') binds K’ to priv(K 4). Using the above represen-
tation, a message M encrypted by principal A with public key K%" is encoded
as the term ¢ =encrypt (M, pub(K 4)). For instance, a principal B attempt-
ing to decrypt the term ¢ with a key K will use the expression unify(t =
encrypt(X,K), code(complement (KX, Ki), match(Ki=priv(Kpg), ...)))
which will deadlock unless K is same as priv(Kp). Similarly, a message M en-
crypted with a private key K%4" is encoded in MMC as encrypt (M ,priv(Ky)).

Note that, as in the spi-calculus, the restriction operator nu can be used to
generate fresh nonces and shared keys.

Systems with an intruder are modeled so that all communication between
principals go through the intruder. We assume that there is only one intruder,
and that the behavior of the intruder can be specified by a recursive process
definition. When an intruder receives a message from a principal, it chooses to
either transmit, intercept or fake the message transmission. The capabilities of
the intruder to store and retrieve messages are encoded using a set data structure,
and operations store(S, t, S’) and retrieve(S, t), where S and S’ are sets
and t is a term. An intruder’s ability to decompose or compose messages can
be encoded using unify and requires no extensions. Details of the encoding of
example protocols and the extensions made to MMC appear in [1].

Security properties such as authenticity can be expressed in our subset of
the m-p-calculus. For verifying authenticity properties, we use two out actions
on distinguished, global channels (called send and commit below) for each pair
of principals in the protocol. For instance, when principal A initiates commu-
nication with B, it does an out action on channel send_AB; similarly, when A
thinks it is communicating with B, it does an out action on channel commit_AB.
Authenticity is violated if a principal commits to a communication without a
corresponding (preceding) initiation.

Using MMC, we can detect the violation of authenticity in the Needham-
Schroeder protocol originally found by [17]. We have also verified authenticity
properties of the Yahalom protocol, and the modified Needham-Schroeder pro-
tocol (see [1]).

4 Experimental Results

We implemented the MMC model checker starting from the encoding of the
trans and models relations given in Section 2.3. We then applied a number
of logic-programming optimizations to this encoding, including goal reordering,
clause resolution factoring, and the use of resolution to generate new names.
The experimental results presented in this section reflect the performance of this
optimized version of MMC, and were obtained on a 1GHz Pentium III machine
with 266MB memory running Linux 7.0 and XSB v2.4.

Benchmark[States[Trans{Property| Time(sec)
Protocol [States| Trans| Formula|Time| Mem XMC[MMC
(se0)|((MB)| Irether 593] 697]deadlock] 0.47] 0.57]

Handover 137 220(deadlock| 0.12| 0.93
lost data| 0.40] 2.68

|
[sieve(3) [615] 1423] aefinish] 0.73] 1.53]
|

Needham- 59 101(deadlock| 0.14] 0.70 |sieve(5) 4023|16091| ae_ﬁnish|10.12| 16.67|
Schroeder attack| 0.03 0.39 leader(3) 67 88|ae_leader| 0.07] 0.08
Yahalom |29133|107652| attack| 0.31| 1.07 leader(5) 864| 2687 aeleader| 2.00] 2.32
Table 2. Performance results of MMC on Han- leader(7) [11939]25632]ae_leader|45.83] 63.12
dover, Needham-Schroeder, and Yahalom proto- Table 3. Comparative performance of XMC and
cols. MMC.

Table 2 illustrates MMC’s performance on three standard benchmarks: a sim-
plified handover procedure from [24], and the Needham-Schroeder and Yahalom
cryptographic protocols. Our specifications of Needham-Schroeder and Yahalom
utilize MMC'’s spi-calculus extensions, and contain a number of process expres-
sions to which the restriction operator is applied. These expressions are candi-
dates for the structural congruence rule, which ensures that MMC terminates
for finite-control agents. Eliminating the application of this rule to expressions
for which the scope of a restricted name does not contain recursion, led to a
3-fold improvement in model-checking execution times.

We also conducted experiments aimed at assessing both how MMC scales to
large transition systems and how it compares in performance to the Mobility
Workbench. In particular, for verifying the absence of deadlocks in chains of
buffers of size 4, 8, and 12, MMC’s model checker takes 0.02s, 0.83s, and 25.46s,
respectively. On the same formula, the MWB’s model checker for the polyadic 7-
calculus takes 0.58s for a buffer of size 4, but does not terminate within 13 hours
for a buffer of size 8 The MWB also provides a built-in “deadlock” function
that uses depth-first search to detect deadlocks instead of model checking the
corresponding 7-pu-calculus formula. MMC’s model checker outperforms MWB'’s
deadlock function for large chain lengths (e.g. for a buffer of size 12, the MWB’s
deadlock function takes 139.43s); both systems show comparable performance
for smaller chain lengths. The MWB also has a prototype implementation of a
model prover [6] based on sequent calculus. However, at the time of this writing,
the implementation appears to be in an unstable state, either looping on certain
least fixed point formulas or terminating incorrectly (too early) on certain great-
est fixed point formulas. Hence we were unable to get meaningful performance
measurements for the MWB’s prover.

Finally, Table 3 compares the performance of MMC and the initial release of
XMC on several examples from the XMC benchmark suite. (The initial version of
XMC did not utilize the compiler for process expressions described in [12]). MMC
is slightly slower than the first version of XMC, and this is to be expected given
the non-mobile nature of these benchmarks. In particular, MMC spends time
checking for structural congruence, despite the optimization discussed above.
Also, the Open and Close clauses in the trans relation are never used, but
MMC tries (and eventually fails) to resolve using these rules. Implementing a
process-expression compiler for MMC along the lines of XMC’s compiler [12] will
eliminate these overheads.

5 Conclusion

We presented MMC, a practical model checker for the 7 and spi-calculi. We are
currently extending the functionality of MMC to include a symbolic bisimula-
tion checker [5], and to handle the full 7-p-calculus, taking advantage of recent
developments to add light-weight constraint processing to tabled logic program-
ming [9].

Our results indicate that MMC’s performance is comparable to that of the
first versions of XMC. However, the compilation techniques incorporated into
later versions of XMC have vastly improved its performance, reducing execution
times by factors of 2 or more and reducing space needs by an order of magni-
tude [12]. A central feature of XMC’s compiler is that it statically generates rules
that cover all possible synchronizations between processes composed in parallel.
XMC does not permit channel passing, rendering this kind of analysis possible.
For the m-calculus, such static techniques appear to be infeasible. Nevertheless,
we need to find mechanisms to reduce the cost of finding synchronizing tran-
sitions in order to derive model checkers for mobile processes that compete in
performance with the current version of XMC. Another avenue of research is to
augment MMC with program transformations (developed in [27] for combining
induction-based proofs with model checking) to verify infinite families of mobile
processes.

References

1. Mobility model checker for the m-calculus. Dept. of Computer Science, SUNY at
Stony Brook, 2002. Available from http://www.cs.sunysb.edu/~lmc/mme.

2. M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and
logic programs. In Proceedings of POPL’02, pages 33-44, Jan. 2002.

3. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. In Fourth ACM Conference on CCS, pages 36-47. ACM Press, 1997.

4. B. Aziz and G.W. Hamilton. A privacy analysis for the pi-calculus: The denota-
tional approach. In Proceedings of the 2nd Workshop on the Specification, Analysis
and Validation for Emerging Technologies, Copenhagen, Denmark, July 2002.

5. S. Basu, M. Mukund, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. M. Verma.
Local and symbolic bisimulation using tabled constraint logic programming. In
International Conference on Logic Programming, pages 166-180, 2001.

6. F. B. Beste. The model prover - a sequent-calculus based modal p-calculus model
checker tool for finite control w-calculus agents. Technical report, Swedish Institute
of Computer Science, 1998.

7. B. Blanchet. From secrecy to authenticity in security protocols. In 9th International
Static Analysis Symposium, pages 242—259, September 2002.

8. M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. Que-
sada. Maude: Specification and programming in rewriting logic. Theoretical Com-
puter Science, 2001.

9. B. Cui and D. S. Warren. A system for tabled constraint logic programming. In
First International Conference on Computational Logic, pages 478-492, 2000.

10. M. Dam. Proof systems for pi-calculus logics. Logic for Concurrency and Synchro-
nisation, 2001.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

G. Denker and J. Meseguer. Protocol specification and analysis in Maude. In Proc.
of Workshop on Formal Methods and Security Protocols, June 1998.

Y. Dong and C.R. Ramakrishnan. An optimizing compiler for efficient model
checking. In Proceedings of FORTE/PSTYV ’99, 1999.

F. Duran, S. Eker, P. Lincoln, and J. Meseguer. Principles of mobile maude. In
Proc. ASA/MA, volume 1882, pages 73-85. Springer-Verlag, 2000.

T. Franzen. A theorem-proving approach to deciding properties of finite-control
agents. Technical report, Swedish Institute of Computer Science, 1996.

A. Gordon and A.S.A.Jeffrey. Authenticity by typing for security protocols. In
IEEE Computer Security Foundations Workshop, 2001.

H. Lin. Symbolic bisimulation and proof systems for the m-calculus. Technical
report, School of Cognitive and Computer Science, U. of Sussex, UK, 1994.

G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters, pages 131-133, 1995.

G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. Software Concepts and Tools, 17:93-102, 1996.

C. Meadows. The NRL protocol analyzer: an overview. Journal of Logic Program-
ming, 26(2):113-131, 1996.

R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

R. Milner. The polyadic 7—calculus: a tutorial. The Proceedings of the International
Summer School on Logic and Algebra of Specification, 1991.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and
II. Information and Computation, 100(1):1-77, 1992.

R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, pages 149-171, 1993.

F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal
Aspects of Computing, 4:497-543, 1992.

J. Parrow. An introduction to the m-calculus. In Bergstra, Ponse, and Smolka,
editors, Handbook of Process Algebra. Elsevier, 2001.

Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. W.
Swift, and D. S. Warren. Efficient model checking using tabled resolution. In
Proceedings of CAV ’97, Haifa, Israel, July 1997.

A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, I.V. Ramakrishnan,
and S.A. Smolka. Verification of parameterized systems using logic-program trans-
formations. In Proceedings of TACAS 2000, 2000.

C. Stirling and D. Walker. Local model checking in the modal mu-calculus. The-
oretical Computer Science, pages 161-177, 1991.

P. Thati, K. Sen, and N. Marti-oliet. An executable specification of asynchronous
pi-calculus semantics and may testing in Maude 2.0. In Intl. Workshop on Rewrit-
ing Logic and its Applications, 2002.

B. Victor. The mobility workbench user’s guide. Technical report, Department of
Computer Systems, Uppsala University, Sweden, 1995.

B. Victor and F. Moller. The mobility workbench — a tool for the w-calculus. In
D. Dill, editor, Proceedings of CAV’94. Springer-Verlag, 1994.

XSB. The XSB logic programming system v2.4, 2001. Available from
http://xsb.sourceforge.net.

