
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

A Logical Encoding of the π-Calculus:
Model Checking Mobile Processes Using Tabled Resolution?

Ping Yang, C.R. Ramakrishnan, Scott A. Smolka

Department of Computer Science, SUNY at Stony Brook, Stony Brook, NY, 11794-4400, USA

Abstract. We present MMC, a model checker for mo-
bile systems specified in the style of the π-calculus. MMC’s
development builds on that of XMC, a model checker for
an expressive extension of Milner’s value-passing calcu-
lus implemented using the XSB tabled logic-programming
engine. MMC addresses the salient issues that arise in
the π-calculus, including scope extrusion and intrusion,
and dynamic generation of new names to avoid name
capture. We show that logic programming provides an
efficient implementation platform for model checking π-
calculus specifications, and can be used to obtain an ex-
act encoding of the π-calculus’s transitional semantics.
Moreover, MMC is easily extended to handle process ex-
pressions in the spi-calculus of Abadi and Gordon. Our
experimental data shows that MMC outperforms other
known tools for model checking the π-calculus.

1 Introduction

In previous work [35], we showed that logic programming
with tabulation can be used to construct an efficient and
versatile model checker for concurrent systems. In par-
ticular, we presented XMC, a model checker supporting
XL (an extension of Milner’s value-passing CCS [28]) as
the system specification language, and the alternation-
free fragment of the modal µ-calculus as the property
specification language.

XMC is written in XSB Prolog, where XSB [44] is
a logic-programming system that extends Prolog-style

? A preliminary version of this paper appeared as “A Logical
Encoding of the π-Calculus: Model Checking Mobile Processes Us-
ing Tabled Resolution,” P. Yang, C.R. Ramakrishnan, and S. A.
Smolka. In Proceedings of the Fourth International Conference on
Verification, Model Checking, and Abstract Interpretation (VM-
CAI 2003), New York, NY. Lecture Notes in Computer Science
Vol. 2575, Springer-Verlag, pp. 116-131 (Jan. 2003).

SLD resolution with tabled resolution. The principal mer-
its of this extension are that XSB terminates more of-
ten than Prolog (e.g. for all datalog programs),1 avoids
redundant sub-computations, and computes the well-
founded model of normal logic programs.

In general, tabled resolution enables XSB to termi-
nate when evaluating fixed points over finite domains.
The classic example illustrating the benefits derived from
tabling is in computing the transitive closure of a (finite)
graph. Such a computation will always terminate in XSB
while a standard Prolog engine (i.e. one without tabling)
may not! Tabling enables us to encode problems involv-
ing fixed-point computations, such as model checking, at
a high level, and provides us with the machinery needed
to solve such problems efficiently.

XMC is written in a highly declarative fashion. The
model checker is encoded in less than 100 lines of XSB
Prolog using a binary predicate models/2 which defines
when an XL term satisfies a modal µ-calculus formula.
The models predicate in turn utilizes the ternary predi-
cate trans/3 which represents the transition relation of
the labeled transition system corresponding to the given
XL specification.

Our experience with XMC raises the following ques-
tion: Can tabled logic programming be brought to bear
on the problem of verifying mobile systems and what
new insights are required? In this paper we present MMC
(the Mobility Model Checker), a practical model checker
for mobile systems specified in the style of the π-calculus
[30]. The main technical difficulties that we encountered
are due, not surprisingly, to the ability to express chan-
nel passing in the π-calculus, which in turn raises a va-
riety of issues that were not present in XMC, including
scope extrusion and intrusion, and the generation of new
names to avoid name capture.

1 A datalog program is a logic program for which all function
symbols are constants.

Logic programming with tabulation turns out to be
an ideal framework in which to implement a model check-
er for mobile systems. The key to a direct encoding of
the operational semantics of the π-calculus as a logic pro-
gram is the similarity between the manner in which res-
olution techniques (which underlie the query-evaluation
mechanism of XSB and other logic-programming sys-
tems) handle variables in a logic program and the man-
ner in which the operational semantics of the π-calculus
handles names. We exploit this similarity by represent-
ing π-calculus names in MMC as Prolog variables. In
particular, all top-down resolution techniques (including
SLD, OLDT and SLG resolution [23,39,11]) rename the
variables in a clause that is selected at each resolution
step in order to avoid the capture of free variables (a
procedure known as standardization apart [4]). Our en-
coding directly exploits this mechanism to rename bound
names in a π-calculus process definition, whenever the
definition is needed to identify a transition.

Our encoding enables us to treat scope extrusion and
intrusion, renaming, name restriction, etc., in a direct
and efficient manner. Moreover, resolution uses unifica-
tion for passing parameters and return values. In ad-
dition to using unification to pass parameter values to
process definitions in the π-calculus, we use unification
to pass values during communication. The result is that
the MMC version of the trans relation, when applied to
a π-calculus expression p, generates exactly the labeled
transition system for p as prescribed by the π-calculus’s
transitional semantics [30].

The proof of this result, given in Section 4, is non-
trivial, involving simultaneous induction on the depth
of the derivation tree for the given trans query (in the
case of soundness) or π-calculus transition (in the case
of completeness). Additionally, the soundness proof of
the encoding requires special care to guard against name
clashes in deriving an answer to a trans query, while
the completeness proof demands a careful accounting of
the alpha-conversions that occur during the derivation
of transitions.

In order to carry out the completeness proof,
we introduce a new symbolic semantics for the π-
calculus, called the constructive semantics, which care-
fully controls the manner in which alpha-conversions
are performed during a derivation. In particular, alpha-
conversion is limited to the application of the inference
rule for process definitions, and when applying this rule,
bound names are always renamed to fresh names not
previously encountered in the derivation.

We show that the constructive semantics is complete
with respect to the symbolic semantics of [22] (which
has been shown to be equivalent to the standard seman-
tics of [30]) and then prove that MMC’s trans relation
is complete with respect to the constructive semantics.
The process of building derivations is more deterministic
in the constructive semantics compared to the symbolic

semantics. Indeed, MMC’s trans relation can be seen as
an encoding of the constructive semantics.

When evaluated using a tabled resolution procedure
such as OLDT or SLG resolution [39,11], the trans re-
lation can be used to finitely compute the set of all sym-
bolic transitions (modulo names of bound variables) for
any finite-control π-calculus expression.2 Furthermore,
by taking advantage of a logic-programming engine’s
ability to manipulate terms and to perform unification,
we can encode the monadic and polyadic versions of the
π-calculus in a single framework. We can also treat, as
syntactic sugar, the encryption/decryption constructs of
the spi-calculus [2], an extension of the π-calculus for
cryptographic protocols. In fact, we can evaluate the
operational semantics of spi-calculus processes without
changing the trans relation in MMC. Thus, MMC can
also be viewed as a model checker for the spi-calculus.

In summary, MMC’s development and implementa-
tion exploits the close similarity between the treatment
of names in the symbolic semantics of the π-calculus
and the treatment of variables in the resolution proce-
dures for logic programs. Referring back to our original
question, the new insights required to derive a tabled-
resolution-based model checker for the π-calculus can be
seen as the following:

– Process definitions should be constructed such that
(i) all bound names are unique and distinct from
free names, and (ii) all free names appear as pro-
cess parameters. Process definitions constructed in
this manner are said to be valid and closed, and any
set of π-calculus definitions can be converted to valid
and closed form in linear time. In the presence of
valid and closed process definitions, the constructive
semantics for the π-calculus is easily derived. The
constructive semantics, which only requires alpha-
conversion in the application of the Ide rule for
(parameterized) process identifiers and their defini-
tions, is provably equivalent to the standard seman-
tics for the π-calculus. Its main benefit is that it is
amenable to direct implementation in a tabled logic-
progamming system.

– All operations for handling names in the construc-
tive semantics (binding of names, alpha-conversion,
etc.) can be performed using the operations for han-
dling variables in logic-program resolution (unifi-
cation, standardization-apart, etc.). Also, checking
whether two process expressions are alpha-equivalent
in the constructive semantics can be done naturally
using operations in tabled resolution that identify
variant terms (terms that differ only in the names
of variables).

The rest of the paper is organized as follows. Sec-
tion 2 outlines the notational conventions followed in

2 Finite-control π-calculus expressions are those that do not con-
tain a ! operator (infinite replication) or a | operator (parallel
composition) in the scope of a recursion.

2

this paper and provides an overview of query evaluation
in logic programs. Section 3 describes the computational
basis of MMC: the encoding of the operational seman-
tics of the π-calculus as a tabled logic program. The
soundness and completeness proofs for this encoding are
presented in Section 4. Section 5 defines the subset of
the π-µ-calculus handled by MMC, and the implemen-
tation of a model checker for this logic in MMC. Sec-
tion 6 addresses the extension of MMC to support the
spi-calculus. Section 7 gives experimental results docu-
menting MMC’s performance. Section 8 discusses related
work and our concluding remarks appear in Section 9.
The source code of MMC and the example programs ap-
pearing in this paper are publicly available for download
from [46].

2 Preliminaries

Syntax and semantics of the π-calculus. The π-calculus
[30] is a process algebra for systems whose interconnec-
tions may change dynamically. Let α denote the set of
action prefixes, P the set of process expressions, N the
set of process identifiers, and D the set of process defi-
nitions. Further, let u, v, w, x, y, z, . . . range over names
and p, q, r, . . . range over process identifiers. The syntax
of the π-calculus is as follows:

α ::= x(y) | xy | τ
P ::= 0 | α.P | (νx)P | P | P | P + P

| [x = y]P | p(y1, ..., yn)

D ::= p(x1, ..., xn)
def= P (where i 6= j ⇒ xi 6= xj)

Prefixes x(y), xy and τ represent input, output and in-
ternal actions, respectively. 0 is the process with no tran-
sitions while α.P is the process that can perform an α
action and then behave as process P . (νx)P behaves as
P with x local to P , meaning that x cannot be used as
a channel over which to communicate with the environ-
ment. Process [x = y]P behaves as P if the names x
and y match, and as 0 otherwise. The operators + and
| represent non-deterministic choice and parallel compo-
sition, respectively. The expression p(y1, . . . , yn) denotes
a process invocation where p is a process name (having
a corresponding definition) and y1, . . . , yn is a comma-
separated list of names that are the actual parameters
of the invocation. Process invocation may be used to de-
fine recursive processes. Each process definition of the
form p(x1, . . . , xn)

def= P associates a process name p
and a list of formal parameters x1, . . . , xn with process
expression P .

Of the several approaches to defining the operational
semantics of the π-calculus, the symbolic semantics of
Lin [22] is closest to the encoding described in this pa-
per. This semantics has been shown to be equivalent to
the standard semantics given in [30]. According to the se-
mantics of [22], transitions are inferred by keeping track

of equalities between names and deriving transitions in
the context of such constraints.

To make the paper self-contained, we recall the se-
mantics of [22] in Figure 1, which is given as a set of
inference rules. A transition inferred by the semantics is
denoted by P

M,α−→ P ′ where P and P ′ are π-calculus pro-
cess expressions, α is an action andM is a set of symbolic
constraints that describe the equalities between names
under which the transition is enabled. Action α can be
either an internal τ action; an input action x(y) that in-
puts a datum into name y via name x; an output action
xy that outputs name y via name x; or a bound output
action xνy that outputs local name y via name x.

The syntax of constraints M is as follows:

M ::= ∅ | {x = y} | M ∪M

M can be an empty set, an equality constraint over a pair
of names, or a set of equality constraints. ∅ is sometimes
denoted as true and the union of two sets of constraints
M1 and M2 is also denoted as M1M2.

Note that the semantics in Figure 1 are defined
up to alpha-equivalence, i.e., alpha-equivalent terms
have exactly the same transitions. Let ≡ denote alpha-
equivalence. We can add the following rule to Lin’s se-
mantics.

Alpha: P ′≡P, P
α−→Q, Q≡Q′

P ′
α−→Q′

Notation. Following the conventions used in logic pro-
gramming languages such as Prolog, we denote variables
by identifiers beginning with uppercase letters (possi-
bly subscripted) or underscore (‘_’). Specific variables
are written in the teletype font (e.g., X); entities that
range over variables are written in italic font (e.g., X).
Function symbols are denoted either by special symbols
(such as ‘+’ and ‘[]’) or by identifiers beginning with
lowercase letters. Again, specific function symbols are
written in the teletype font (e.g., f, pref, etc.) while en-
tities that range over function symbols are denoted by f
with/without subscripts and primes. A function symbol
f with arity n is denoted by f/n; the arity is dropped
whenever it is clear from the context. Function symbols
with zero arity are called constants.

We assume standard notions of terms, substitutions,
unification, and the most general unifier (mgu) of terms.
Terms constructed from function symbols and variables
are denoted by t with/without subscripts and primes.
Sets of terms are denoted by T . Two terms are variants
of each other if they are identical modulo names of vari-
ables. Two special function symbols ‘.’/2 and ‘[]’/0 are
used to construct lists (representing “cons” and “nil”, re-
spectively). For convenience, the following notation for
lists may also be used: [t1] for ‘.’(t1,‘[]’), [t1|t2] for
‘.’(t1, t2), and [t1, t2|t3] for [t1|[t2|t3]]. We use vars(t)
to denote the set of variables in a term t, t to denote
a sequence of terms, and overload vars(t) to denote the
set of variables in t.

3

Prefix:
α.P

true,α−→ P

Sum:
P1

M,α−→ Q1

P1+P2
M,α−→ Q1

P2
M,α−→ Q2

P1+P2
M,α−→ Q2

Ide:
P{y1,...,yn/x1,...,xn}

M,α−→ Q

A(y1,...,yn)
M,α−→ Q

A(x1, . . . , xn)
def
= P

Match:
P

M,α−→ Q

[x=y]P
ML,α−→ Q

L =


∅ if x = y;
x = y otherwise.

Par: (1)
P1

M,α−→ Q1

P1|P2
M,α−→ Q1|P2

bn(α) ∩ fn(P2) = ∅

(2)
P2

M,α−→ Q2

P1|P2
M,α−→ P1|Q2

bn(α) ∩ fn(P1) = ∅

Res:
P

M,α−→ Q

(νy)P
M,α−→ (νy)Q

y /∈ n(M, α)

Com:
P1

M,y(z)−→ Q1, P2
N,xv−→ Q2

P1|P2
MNL,τ−→ Q1{v/z}|Q2

L =


∅ if x = y;
x = y otherwise.

P1
M,xv−→Q1, P2

N,y(z)−→ Q2

P1|P2
MNL,τ−→ Q1|Q2{v/z}

L =


∅ if x = y;
x = y otherwise.

Open:
P

M,xy−→ Q

(νy)P
M,xνy−→ Q

y /∈ n(M, x)

Close:
P1

M,y(w)−→ Q1, P2
N,xνw−→ Q2

P1|P2
MNL,τ−→ (νw)(Q1|Q2)

L =


∅ if x = y;
x = y otherwise.

P1
M,xνw−→ Q1, P2

N,y(w)−→ Q2

P1|P2
MNL,τ−→ (νw)(Q1|Q2)

L =


∅ if x = y;
x = y otherwise.

Fig. 1. π-calculus Symbolic Transition Semantics of [22].

We use θ, σ to denote substitutions, which are func-
tions from variables to terms. When manipulating ex-
pressions in the π-calculus, we often use renaming func-
tions, which are a special case of substitutions, mapping
names to names in the π-calculus, or variables to vari-
ables in MMC. We often write substitutions as sets of
assignments for variables with t/X denoting the assign-
ment of term t to X. We overload vars(θ) to denote the
set of variables mentioned in θ; i.e. for each t/X ∈ θ,
vars(t) ⊆ vars(θ) and X ∈ vars(θ). Further, vars(θσ)
is defined as vars(θ)∪ vars(σ). Finally, we use tθ to rep-
resent the application of the substitution θ to term t and
Tθ to represent the set {tθ | t ∈ T}.

We use identifiers beginning with lowercase letters
to denote predicate symbols and p (with/without sub-
scripts and primes) to range over predicate symbols. A
predicate symbol p with arity n is written as p/n; the
arity is dropped when it is clear from the context. Terms
with predicate symbols at the root (and only at the root)
are called atoms. We use true to denote the special atom
that is true in all models. A goal G is a conjunction of
atoms. A logic program is a set of Horn clauses, where
each clause is of the form p(t) :− G where p(t) is known

as the head of the clause and G as its body. A definite
logic program is one that does not contain negative liter-
als in the clause bodies. Note that facts are represented
by clauses of the form p(t) :− true. P is used to denote
programs.

Query Evaluation in Logic Programs. Top-down evalu-
ation of logic programs is traditionally based on one of
several resolution mechanisms such as SLD, OLD, and
SLG [23,11]. We give here an overview of these mecha-
nisms, focusing on those aspects of resolution that are
most relevant to this paper, viz. the manner in which
variables and substitutions are handled in top-down,
goal-directed query evaluation. Completeness and other
aspects of resolution are addressed in e.g. [23].

Figure 2 presents the tableau rules for query evalu-
ation over a definite logic program. Each rule is of the
form

premises
consequent

where premises is a list of sequents and consequent is a
single sequent. A sequent is of the form G : θc → θa,
where G is a goal, θc is the call substitution (the substi-

4

1.
true : θ → θ

2.
G1 : θ → θ′′, G2 : θ′′ → θ′

G1, G2 : θ → θ′

3.
G′ : θσ → θ′

H : θ → θ′
where

(a) H′ :− G′ is a variant of some clause in P;

(b) (vars(H′) ∪ vars(G′)) ∩ (vars(θ) ∪ vars(H)) = ∅; and

(c) σ = mgu(Hθ, H′)

Fig. 2. Query evaluation using OLD resolution.

tution before calling G) and θa is the answer substitution
(the substitution after calling G).

Given an atom G, the atom Gθa is an answer for
query Gθc if and only if we can construct a finite tableau
for the sequent G : θc → θa. The call substitution θc
can be seen as the environment under which a goal is
evaluated. Rule 1 in Figure 2 states that the atom true
leaves its environment unchanged. Rule 2 captures the
effect of evaluating a conjunction of goals: the second
goal in the conjunction is evaluated in an environment
resulting from the evaluation of the first goal.

Rule 3 specifies how a goal is evaluated by looking up
its definition(s) in the program. Given a goal H, a clause
whose head can be unified with H is first selected from
the program (Rule 3(a)). Then the goal and the clause
are standardized apart; i.e. the variables in the selected
clause are renamed so that there are no name clashes be-
tween the clause and the variables in the goal or its en-
vironment (Rule 3(b)). In the third step (Rule 3(c)) the
goal is unified with the head of the selected clause. Then
the goals in the body of the selected clause are evaluated
in the environment θ with the substitution mgu(Hθ,H ′)
and the resultant environment θ′ is computed.

Of these steps, the one that is most relevant to this
paper is Rule 3(b): variables in the selected clause are
renamed so as not to clash with variables in the goal or
its call substitution. We exploit this renaming capability
by encoding π-calculus names as Prolog variables; this
gives us a direct and efficient means of computing the
operational semantics of π-calculus processes.

Relationship to Resolution. In general, resolution mech-
anisms construct a derivation for a goal by applying one
or more resolution rules at each step. These mechanisms
define both the derivability of answers to goals and a
strategy for constructing such a derivation. The tableau
rules specify only the derivability of answers and leave
the strategy unspecified.

The primary rule of resolution is called program
clause resolution and is captured by Rule 3 of Fig-
ure 2. Mechanisms such as SLD resolution (Selection
rule-driven Linear resolution for Definite clauses) not
only specify all the possible ways to extend a derivation
at any step, but also specify a rule to select among the
different possibilities. For instance, SLD resolution spec-
ifies that the atom selected for resolution at each step
in the derivation is picked based on a selection function

which picks the selected atom based on the entire deriva-
tion. Note that even after an atom is selected, there may
be multiple ways to generate the next step in the deriva-
tion, corresponding to different program clauses that can
be used to resolve against the selected atom. Although
SLD resolution is complete (i.e. every atom in the model
of a program is derivable), the selection function is not
fixed a priori and hence is not implemented in logic pro-
gramming systems.

In contrast, OLD resolution (Ordered Linear reso-
lution for Definite clauses) specifies that the first atom
in a goal is selected for resolution at each step. Note
that tableau Rule 2 also expands the first atom in a goal
before expanding the rest of a goal. Prolog systems typi-
cally implement OLD resolution, and, in addition select
the program clause to resolve within the order in which
the clauses appear in the program. However, OLD res-
olution is not complete in the sense that there may be
infinite derivations even when the logic program has a
finite model. The inability of Prolog systems to handle
logic programs with left recursion is a manifestation of
this incompleteness.

It should be noted that resolution mechanisms gen-
erally are concerned with the notion of strong complete-
ness: that every derivation for an atom in the model be
finite, to ensure that query evaluation terminates when-
ever there is an answer to the query. Tableau systems
such as the one shown in Figure 2 use a weaker notion
of completeness which demands only the existence of a
finite tableau for every atom in the model. Fixing the se-
lection function a priori as done in OLD resolution (as
well as in Figure 2) affects only the claim of strong com-
pleteness. In fact, it is easy to construct a finite tableau
using the rules in Figure 2 for any finite derivation com-
puted by SLD resolution.

OLDT resolution [39] augments OLD resolution with
memo tables (hence its name: OLD resolution with Tab-
ulation). In OLDT, the tables record certain aspects of
the derivation (e.g. goals that have been selected and an-
swers that have been computed for them). OLDT also
adds another resolution rule called answer clause resolu-
tion to resolve a selected atom with a previously gener-
ated answer instead of with program clauses. The choice
of resolution rule to apply at each step is driven by the
contents of the memo table. OLDT resolution is com-

5

plete for Datalog programs: i.e. logic programs where all
function symbols are constants.

SLG [11] is a tabled resolution mechanism for general
logic programs, i.e. programs that may contain negative
literals on the right-hand side of clauses. The query eval-
uation mechanism in the XSB system is an implemen-
tation of SLG resolution, but with an ordered selection
strategy (analogous to OLDT resolution).

We use the tableau rules of Figure 2 to show the
soundness and completeness of our logic programming-
based encoding of the transitional semantics of the π-
calculus. Thus the correctness of our encoding is based
not on the operational details of a particular resolution
procedure, but on the abstract notion of derivations in
logic programs.

Note that tabled resolution procedures such as
OLDT and SLG resolution have been shown to be com-
plete with respect to the tableau rules of Figure 2. Thus,
we can establish that our implementation itself is com-
plete when our encoding is evaluated with an engine such
as the XSB system that faithfully implements a tabled
resolution procedure.

3 Encoding the Operational Semantics of the
π-Calculus

In this section, we describe our encoding of the opera-
tional semantics of the π-calculus in MMC. We begin by
showing how π-calculus process expressions are encoded
in MMC (Section 3.1). The operational semantics of the
π-calculus is then given as the Prolog relation trans
which, given a process definition, generates the corre-
sponding symbolic transition system (Section 3.2). For
simplicity, we first describe the encoding for the monadic
π-calculus. This encoding is later modified to include op-
timizations for reducing the size of the generated sym-
bolic transition system (Section 3.3) and then extended
to the polyadic π-calculus (Section 3.4).

3.1 Syntax of MMC Processes

We use P to denote the set of all process expressions,
and P and Q, possibly subscripted, to range over in-
dividual process expressions. We use V to denote an
enumerable set of names, and X,X1, X2, . . . to range

over elements of V.
→
V denotes a comma-separated list of

names. In MMC, names are represented by Prolog vari-
ables. We use N to denote the enumerable set of process
names, and p, p1, p2, . . . to range over process names. In
MMC, process names are represented by Prolog func-
tion (i.e. data constructor) symbols. Finally, D is used
to denote the set of process definitions. Process expres-
sions and process definitions in the monadic π-calculus
are encoded in MMC using the language described by

the following grammar.

A ::= in(V,V) | out(V,V) | tau

P ::= zero | pref(A,P) | nu(V,P) | par(P,P)

| choice(P,P) | match(V=V,P) | proc(N (
→
V))

D ::= def(N (
→
V),P)

It is easy to see that MMC’s syntax encodes the standard
syntax for the π-calculus given in [30] and recounted in
Section 2. The correspondence between MMC and π-
calculus syntax is formalized in the following definition.

Definition 1 Given a one-to-one function ψ that maps
Prolog variables to π-calculus names, the function fψ
mapping process expressions and actions in MMC’s syn-
tax to the standard π-calculus syntax is defined as fol-
lows:

fψ(zero) = 0
fψ(tau) = τ

fψ(in(X1, X2)) = ψ(X1)(ψ(X2))

fψ(out(X1, X2)) = ψ(X1)ψ(X2)

fψ(outbound(X1, X2)) = ψ(X1)νψ(X2)
fψ(pref(A,P)) = fψ(A).fψ(P)
fψ(nu(X,P)) = (νψ(X))fψ(P)
fψ(par(P,Q)) = fψ(P) | fψ(Q)

fψ(choice(P,Q)) = fψ(P) + fψ(Q)
fψ(match((X1 = X2), P)) = [ψ(X1) = ψ(X2)]fψ(P))
fψ(proc(p(X1, . . . , Xn))) = p(ψ(X1), . . . , ψ(Xn))

Bound output actions (outbound(X1, X2) in MMC and
ψ(X1)νψ(X2) in the π-calculus) are not actually syn-
tactic constructs but rather arise in the context of the
π-calculus’s operational semantics and our encoding of
the same (Section 3.2).

We can also map MMC process definitions to π-
calculus process definitions using the syntax transformer
η.

Definition 2 Function η mapping process definitions in
MMC’s syntax to the standard π-calculus syntax is de-
fined as follows:

η(def(p(X1, . . . , Xn), P)) = p(ρ(X1), . . . , ρ(Xn))
def
= fρ(P)

where ρ is a one-to-one function mapping Prolog vari-
ables to π-calculus names.

Example 1 In Figure 3, three example process defini-
tions are given in both the MMC and π-calculus syntax.

2

Definition 1 allows us to directly import the notions
of bound and free names from the π-calculus to our en-
coding. In actions of the form in(X,Y), out(X,Y) and
outbound(X,Y), the name X is said to be free. The
name Y in the out action is also free while the name

6

MMC syntax π-calculus syntax

def(s(X4),par(proc(p(X4)),proc(q(X4)))). s(x4)
def
= p(x4) | q(x4)

def(p(X1),pref(in(X1,X2),proc(p(X1)))). p(x1)
def
= x1(x2).p(x1)

def(q(X3),nu(X2,pref(out(X3,X2),proc(q(X3))))). q(x3)
def
= (νx2)x3x2.q(x3)

Fig. 3. Example process definitions given in both the MMC and π-calculus syntax.

Y in the in and outbound actions is said to be bound.
Among the bound names of a process P , it is sometimes
useful to distinguish between names bound by input ac-
tions and the other bound names. The latter are called
the local names of P , denoted by ln(P)). Table 1 induc-
tively defines the free, bound, and local names of MMC
process expressions (columns 2-4, respectively).

Note that the same name may occur both
bound and free in a process expression. For exam-
ple, in pref(out(Y,X), nu(X, pref(out(Y,X), nu(X,
pref(out(Y,X), zero))))), the name X occurs both
free (in the first out) and bound, and there are two dis-
tinct bound occurrences of X.

The encoding of our model checker becomes consid-
erably simpler if we ensure that bound names are all
distinct from each other and from the free names. We
say that process expressions having this distinct-name
property are valid. The formal definition of validity is
achieved by associating with each process expression P
a set of uniquely bound names (denoted by ubn(P)), as
defined inductively in the fifth column of Table 1.

Definition 3 (Validity) A process expression P is
valid if bn(P) are Prolog variables, fn(P) ∩ bn(P) = ∅
and ubn(P) = bn(P). A process definition of the form

def(p(
→
X), P) is valid if P is valid and bn(P) ∩

→
X = ∅,

i.e. formal parameters do not appear bound in P .

The following property can be easily established based
on the definition of validity:

Proposition 1 Every subexpression of a valid process
expression is also valid.

We say that a process expression P is closed if fn(P) =

∅. A process definition of the form def(p(
→
X), P) is closed

if all free names in P occur in
→
X, i.e. fn(P) ⊆

→
X. The

encoding of the MMC model checker requires that all
process definitions are valid and closed. Note that re-
stricting our attention to valid definitions does not re-
duce expressiveness since any process expression can be
converted to an equivalent valid expression by suitably
renaming the bound names. Considering only valid and
closed process definitions ensures that the simple syntax
transformer η (Definition 2) preserves the distinctness of
free names and also prevents the capture of free names
by bound names.

We can also recast π-calculus process expressions and
definitions in MMC’s syntax. This is achieved by defining
a function gϕ (analogous to fψ) over π-calculus process

expressions, given a one-to-one mapping ϕ of π-calculus
names to Prolog variables; and a function ζ (analogous
to η) over π-calculus process definitions. Note that the
notions of validity of process expressions and closed pro-
cess definitions can be lifted to the π-calculus as well.

We will exploit the analogy between the syntactically
distinct domains of the π-calculus and MMC to help
establish the equivalence between the semantics of the π-
calculus and MMC. We begin by defining the operational
semantics of MMC in terms of a logic program.

3.2 Operational Semantics of MMC

The operational semantics of the π-calculus is tradition-
ally given in terms of a symbolic transition system [22,

33] where transitions are of the form P
M,α−→ Q, signify-

ing that process P can perform an α action and then
behave as process Q if constraint M holds. As we will
subsequently show (Theorems 2 and 3), the trans rela-
tion, defined by the rules of Figure 4, is a direct encoding
of the symbolic semantics of [22] and Figure 1.

Intuitively, a tuple trans(P1,A,M,P2) in the trans
relation means that process expression P1 can evolve
into process expression P2 via the execution of an A
action provided that the set M of equality constraints
over names hold. A set of equality constraints is encoded
as a conjunction of constraints in Prolog, each conjunct
representing an equality constraint over a pair of names.
A tuple in the trans relation such as the one above cor-
responds to a transition in the symbolic semantics of

Figure 1 of the form fψ(P1)
fcψ(M),fψ(A)−→ fψ(P2) where

fcψ is defined as follows:

Definition 4 Function fcψ maps the MMC represen-
tation of equality constraints over names to equivalent
constraints over π-calculus names as follows:

fcψ(true) = ∅
fcψ(X1 = X2) = {ψ(X1) = ψ(X2)}
fcψ((M1,M2)) = fcψ(M1)fcψ(M2)

Similarly, given a one-to-one function ϕ mapping π-
calculus names to MMC variables, we can define the
function gcϕ that maps equality constraints over π-
calculus names to an equivalent MMC representation of
equality constraints.

The following example illustrates how the opera-
tional semantics of the π-calculus is computed in MMC.

7

Process Expression Free Names Bound Names Local Names Uniquely Bound Names
P fn(P) bn(P) ln(P) ubn(P)

pref(tau, P1) fn(P1) bn(P1) ln(P1) ubn(P1)

pref(in(X1, X2), P1) (fn(P1) ∪ {X1}) bn(P1) ∪ {X2} ln(P1) (ubn(P1) ∪ {X2})
−{X2} −(bn(P1) ∩ {X2})

pref(out(X1, X2), P1) fn(P1) ∪ {X1, X2} bn(P1) ln(P1) ubn(P1)
match((X1 = X2), P1)

par(P1, P2) fn(P1) ∪ fn(P2) bn(P1) ∪ bn(P2) ln(P1) ∪ ln(P2) (ubn(P1) ∪ ubn(P1))
choice(P1, P2) −(bn(P1) ∩ bn(P2))

nu(X, P1) fn(P1)− {X} bn(P1) ∪ {X} ln(P1) ∪ {X} (ubn(P1) ∪ {X})
−(bn(P1) ∩ {X})

Table 1. Free, bound, local, and uniquely bound names of processes.

Example 2 Recall the MMC process definitions of
Example 1.
(1) def(s(X4),par(proc(p(X4)),proc(q(X4)))).

(2) def(p(X1),pref(in(X1,X2),proc(p(X1)))).

(3) def(q(X3),nu(X2,pref(out(X3,X2),proc(q(X3))))).

We carefully explain how the transitions of processes
proc(p(Y1)), proc(q(Y2)), and proc(s(Y3)) are com-
puted. We use the notation $n to denote the differ-
ent fresh variables generated during the computation of
these transitions, and use variables Ui as query variables.

1. Consider the query trans(Pr, U1, U2, U3) : θ1
→ θ2 where Prθ1 = proc(p(Y1)) and {U1, U2, U3} ∩
vars(θ1) = ∅. The Ide clause binds PN to p(Y1).
When predicate def(p(Y1),P) is invoked, all occur-
rences of X1 and X2 in process definition (2) are
renamed to fresh variables (Rule 3 in Figure 2), say
$1 and $2, respectively. Y1 and P are then uni-
fied with $1 and pref(in(Y1, $2), proc(p(Y1))),
respectively. Thus process p(Y1) has the same be-
havior as process pref(in(Y1, $2), proc(p(Y1))).
By applying the Prefix clause, we obtain the an-
swer (U1θ2 = in(Y1, $2), U2θ2 = true, U3θ2 =
proc(p(Y1))).

2. Consider the query trans(Qr, U4, U5, U6) : θ3
→ θ4 where Qrθ3 = proc(q(Y2)) and {U4, U5, U6}
∩ vars(θ3) = ∅. From the Ide clause, all oc-
currences of X3 and X2 in process definition (3)
are renamed to fresh variables, say $3 and $4,
respectively. Process q(Y2) then has the same
behavior as process nu($4, pref(out(Y2, $4),
proc(q(Y2)))). Both clauses Open and Res can be
applied to compute the transitions of process nu($4,
pref(out(Y2, $4), proc(q(Y2)))) when we con-
sider only the left-hand side of these clauses. Al-
though process pref(out(Y2, $4), proc(q(Y2)))
can perform the output action out(Y2, $4), clause
Res fails since local name $4 is in the action. Clause
Open, on the other hand, succeeds with the answer
(U4θ4 = outbound(Y2, $4), U5θ4 = true, U6θ4 =
proc(q(Y2))).

3. Consider the query trans(Sr, U7, U8, U9) : θc →
θa where Srθc = proc(s(Y3)) and {U7, U8, U9} ∩

vars(θc) = ∅. From clause Ide, all occurrences
of X4 in process definition (1) are renamed to a
fresh variable, say $5. Process s(Y3) then has
the same behavior as process par(proc(p(Y3)),
proc(q(Y3))). From 1. and 2. above, and by ap-
plying the Par clause, process par(proc(p(Y3)),
proc(q(Y3))) can perform input action in(Y3, $2)
and bound output action outbound(Y3, $4). To
compute the synchronous transitions, we cannot ap-
ply the Com clause since neither process can per-
form an output action. We can, however, apply
clause Close since the channel names used in actions
in(Y3, $2) and outbound(Y3, $4) are the same
(identity check ==).
Note that the evaluation of the query for
proc(p(Y3)) occurs earlier than that of the query
for proc(q(Y3)). Therefore, although two different
names are represented by the same variable X2 in
process definitions (2) and (3), the resolution mech-
anism renames these two instances of X2 to dif-
ferent variables (Rule 3(b) in Figure 2); i.e. $2
in Step 1 above and $4 in Step 2 are different.
The Close clause then binds $2 to $4 (unifica-
tion =), indicating that a name originally private
to process q is now in the scope of q. This corre-
sponds to scope extrusion in the π-calculus. Thus,
process par(proc(p(Y3)), proc(q(Y3))) can per-
form a tau action. The answers to this query are
(a) (U7θa = in(Y3, $2), U8θa = true, U9θa =
proc(p(Y3))), (b) (U7θa = outbound(Y3, $4),
U8θa = true, U9θa = proc(q(Y3))), and (c)
(U7θa = tau, U8θa = true, U9θa = nu($4,
par(proc(p(Y3)), proc(q(Y3))))). 2

3.3 Optimizing the Encoding of the Operational
Semantics

The encoding of Figure 4 can be optimized for perfor-
mance in several ways.

Eliminating unused names. While the encoding of the
operational semantics is sound and complete, it is not
yet sufficient to build a model checker: the semantics

8

% Pref
trans(pref(A, P), A, true, P).

% Sum
trans(choice(P1, P2), A, M, Q1) :- trans(P1, A, M, Q1).
trans(choice(P1, P2), A, M, Q2) :- trans(P2, A, M, Q2).

% Ide
trans(proc(PN), A, M, Q) :- def(PN, P), trans(P, A, M, Q).

% Match
trans(match((X=Y), P), A, ML, Q) :- X==Y, trans(P, A, ML, Q).
trans(match((X=Y), P), A, (X=Y,M), Q) :- X\==Y, trans(P, A, M, Q).

% Par
trans(par(P1, P2), A, M, par(Q1, P2)) :- trans(P1, A, M, Q1).
trans(par(P1, P2), A, M, par(P1, Q2)) :- trans(P2, A, M, Q2).

% Com
trans(par(P1, P2), tau, (M, N, L), par(Q1, Q2)) :-

trans(P1, A, M, Q1),
trans(P2, B, N, Q2),
complement(A, B, L).

% Res
trans(nu(Y, P), A, M, nu(Y, Q)) :-

trans(P, A, M, Q),
/* Y does not appear in action A*/
not_in_action(Y, A),
/* Y does not appear in constraint M*/
not_in_constraint(Y, M).

% Open
trans(nu(Y, P), outbound(X, Z), M, Q) :-

trans(P, out(X, Z), M, Q),
Y==Z, Y\==X,
not_in_constraint(Y, M).

% Close
trans(par(P1, P2), tau, (M,N,L), nu(W, par(Q1, Q2))) :-

trans(P1, A, M, Q1),
trans(P2, B, N, Q2),
comp_bound(A, B, W, L).

not_in_action(Y, in(X, Z)) :- Y \== X, Y \== Z.
not_in_action(Y, out(X, Z)) :- Y \== X, Y \== Z.
not_in_action(Y, outbound(X, Z)) :- Y \== X, Y \== Z.
not_in_action(Y, tau).

not_in_constraint(X, true).
not_in_constraint(X, (Y=Z)) :- X\==Y, X\==Z.
not_in_constraint(X, (M,N)) :-

not_in_constraint(X,M), not_in_constraint(X,N).

complement(in(X, V), out(Y, V), true) :- X==Y.
complement(in(X, V), out(Y, V), (X=Y)) :- X\==Y.
complement(out(X, V), in(Y, V), true) :- X==Y.
complement(out(X, V), in(Y, V), (X=Y)) :- X\==Y.

comp_bound(outbound(X, W), in(Y, W), W, true) :- X==Y.
comp_bound(outbound(X, W), in(Y, W), W, (X=Y)) :- X\==Y.
comp_bound(in(X, W), outbound(Y, W), W, true) :- X==Y.
comp_bound(in(X, W), outbound(Y, W), W, (X=Y)) :- X\==Y.

Fig. 4. Logic program MMCtrans encoding the π-calculus transi-
tional semantics.

distinguishes process expressions based on their syntax,
even if their behavior is identical. For example, consider
the following process definitions:

def(ser(Pc),nu(X,pref(out(Pc,X),proc(ser(Pc))))).

def(cli(Pc),pref(in(Pc,X),proc(cli(Pc)))).

def(system,nu(Pc,par(proc(ser(Pc)),proc(cli(Pc))))).

Process system is the parallel composition of
processes ser(Pc) and cli(Pc). Process ser(Pc)
repeatedly generates a new local name X and sends X
to process cli(Pc). Since each time this happens the
name X is different from any other name previously
generated during the computation, the state space of
system is infinite as shown below:

system = nu(Pc,par(proc(ser(Pc)),proc(cli(Pc))))
τ−→ nu(Pc,nu(X,par(proc(ser(Pc)),proc(cli(Pc)))))
τ−→ nu(Pc,nu(X,nu(X ′,

par(proc(ser(Pc)),proc(cli(Pc))))))
τ−→ . . .

The state space of process system can be
made finite by noticing that local names that are
not actually used can be eliminated. For exam-
ple, since X does not occur in par(proc(ser(Pc)),
proc(cli(Pc))), we can remove this name from pro-
cess nu(X, par(proc(ser(Pc)), proc(cli(Pc))))
without affecting its behavior. That is, the behav-
ior of nu(X, par(proc(ser(Pc)), proc(cli(Pc))))
and par(proc(ser(Pc)), proc(cli(Pc))) are identi-
cal. This observation can be formalized as the following
structural-congruence rule:

nu(X,P) ≡ P if X 6∈ fn(P)

We can use this rule to modify clauses Res and
Close, which handle local names; after doing so, pro-
cess system exhibits finite behavior. For example, the
Res clause becomes:

trans(nu(Y, P), A, M, Q) :-

trans(P, A, M, P1),

not_in_action(Y, A),

not_in_constraint(Y, M),

(occurs(Y, P1) % if Y occurs in P1

-> Q = nu(Y, P1)

; Q = P1).

Goal reordering. Consider the Com rule. In general, the
number of solutions of complement(A, B, L) is much
smaller than the number of tuples in trans(P2, B,
N, Q2). Thus, by reordering trans(P2, B, N, Q2) and
complement(A, B, L), we will compute fewer interme-
diate answers. This optimization has been applied to
early versions of the XMC model checker [35] and re-
sulted in significant performance gains. However, rep-
resenting local names using variables means that the
program is dependent on the order in which variables
are bound, and hence goal reordering is not directly

9

Open:

trans(nu(Y,P), out(X,[Y|R1],Z), M, Q):-

trans(P, out(X,R1,Z), M, Q),

contains(Z, Y), Y\==X,

not_in_constraint(Y, M).

Close/Com:

trans(par(P,Q), tau, (M,N,L), Ns):-

trans(P, A, M, P1),

trans(Q, B, N, Q1),

comp_bound(A, B, W, L),

makestate(W, par(P1,Q1), Ns).

Fig. 5. Open, Close, and Com rules for the polyadic π-calculus.

applicable. In particular, in clauses Com and Close,
the computation of complementary actions (complement
and comp bound) cannot be moved ahead of the compu-
tation of the second trans goal: the computation of com-
plementary actions checks for identity of channel names,
and one of the actions becomes unknown when the goals
are reordered.

We overcome this difficulty and enable the re-
ordering of goals by moving the check for identity of
channel names from the definition of complement and
comp bound into the definition of trans itself. For ex-
ample, consider the prefix clause of trans. When the
action (the second argument) is known, the rule will be
applied only when the channel names in the prefix action
and the given action are identical; when the action is un-
known, the logical variable denoting the unknown action
is simply bound to the action in the prefix. This change
requires us to identify and separate two cases throughout
the computation of trans: when the action (the second
argument) is known and when it is unknown. We do so
by specializing the trans clauses for these two cases.

3.4 From Monadic to Polyadic π-Calculus

The polyadic version of the π-calculus is supported in
MMC by extending the above encoding as follows. The
syntax is extended by introducing a set F of tuple con-
structors (n-ary function symbols for n ≥ 0) and con-
sidering the set of terms T built from F and V. The
grammar given in Section 3.1 becomes (only the changed
rules are shown):

A ::= in(V, T) | out(V, [], T)

P ::= unify((V = T), P) | proc(PN (
→
T))

In essence, communication actions can now be used
to place names in, or extract names from, tuples and
other data structures, and process invocations may con-
tain such data structures. We use terms of the form
out(V,

→
V , T) to represent output actions (when

→
V = [])

and bound output actions (
→
V 6= []). That is,

→
V is used

to keep track of the set of local names in a message
to support the scope extrusion of multiple names. Cor-
respondingly, we need to change the Open clause and
combine the Close and Com clauses in the transitional

semantics of the polyadic version. The changes are given
in Figure 5.

According to the Open clause, if process P can
perform the output action out(X, [], Z) where Y
occurs in Z, then process nu(Y , P) can make the
bound output action out(X, [Y], Z). Similarly, if pro-
cess P can make the bound output action out(X,
[V1, . . . , Vn], Z) with Y occurring in Z, then process
nu(Y ,P) can make the bound output action out(X,
[Y, V1, . . . , Vn], Z). Clauses Close and Com are com-
bined into one rule. In the Close/Com rule, predicate
comp_bound(A, B, W , L) checks if A and B are comple-
mentary actions, i.e. actions of the form in(X,Y) and
out(X,W,Z). Process par(P,Q) can perform a syn-
chronizing tau transition if processes P and Q can per-
form complementary actions. After the tau transition,
par(P, Q) evolves to par(P1, Q1) if W is empty,
and to nu(V1, . . ., nu(Vn,par(P1,Q1)). . .) if W is
[V1, . . . , Vn]. This construction is handled in predicate
makestate(W, par(P1,Q1), Ns).

We also introduce the operator unify to decompose a
term into subterms by pattern matching. The semantics
of unify is as follows:

trans(unify((X=T),P), A, C, T) :-
X = T, trans(P, A, C, T).

The names in T are bound names in an expression of the
form unify((X = T), P). An expression unify((X =
T), P) behaves as P when the names in T are bound to
terms over F and V such that X and T unify, and as
zero if such a unifier does not exist.

4 Soundness and Completeness of the Encoding

Our encoding of the symbolic semantics of the π-calculus
(Figure 1) is given in Figure 4 as a logic program. In
this section, we prove the soundness and completeness
of the encoding. By soundness we mean that every tran-
sition derivable by query evaluation over our encoding is
also derivable from the symbolic semantics of Figure 1.
By completeness we mean that every derivation in the
symbolic semantics of the π-calculus has an equivalent
derivation in MMC.

When talking about deriving transitions via query
evaluation, we are specifically referring to the rules of

10

1.
Y ==Z: θ → θ

∀σ.θσ is consistent ⇒ Y θσ = Zθσ.

2.
Y \==Z: θ → θ

∃σ.θσ is consistent and Y θσ 6= Zθσ.

Fig. 6. Resolution Rules for Built-in Prolog Operators: Y == Z
and Y \ == Z.

Figure 2, which are the basic rules of resolution. Our
encoding checks identity of Prolog variables using built-
in operators ‘==’ and ‘\==’. The rules of resolution for
these operators are given in Figure 6.

In the following theorem, Part 6 states that our en-
coding is sound; the other parts are propositions that are
used to establish this result. In particular, Parts 1-4 are
used to prove Part 5, which in turn is used to establish
Part 6. The proof of the theorem is by induction on the
length of the derivation using the resolution rules of Fig-
ures 2 and 6. The induction is simultaneous in the sense
that all six parts of the theorem are proved simultane-
ously. MMCtrans in the proof refers to the logic program
of Figure 4.

Theorem 2 (Soundness) Let D be a set of process
definitions and Pr be a Prolog variable. Assume that
trans(Pr, U1, U2, U3) : θc → θa is an answer derivable
from the logic program D∪MMCtrans where var(θc) ∩
{U1, U2, U3} = ∅ and Prθc is a valid process expression.
Let trans(S1, A, M, T1) = trans(Pr,U1,U2,U3)θa. Then
the following hold:

1. (Preservation of Free and Local Names) For
every free name Fv ∈ fn(Prθc), Fv = Fvθa; For every
local name Lv ∈ ln(Prθc), Lv = Lvθa.

2. (Origin of Free Names) For every name V ∈
(fn(A) ∪ n(M)), V ∈ fn(Prθc); For every name V1 ∈
fn(T1), V1 ∈ fn(Prθc) or V1 ∈ bn(A).

3. (Origin of Bound Names) For every name Y ∈
(bn(A) ∪ bn(T1)), Y is a variable and (Y ∈ bn(Prθc)
or Y 6∈ vars(θc)).

4. (Distinctness of Bound Names) vars(bn(A)) ∩
vars(bn(T1)) = ∅.

5. (Validity of Destination) T1 is a valid process
expression.

6. (Soundness of Transition) Given a one-to-
one function ψ mapping MMC variables to π-
calculus names such that vars(Prθc) ⊆ domain(ψ) ⊆
vars(θc), there exists an extension ψ′ of ψ such

that fψ(Prθc)
fcψ′ (M),fψ′ (A)

−→ fψ′(T1) is a derivation
in the symbolic semantics of the π-calculus in Fig-
ure 1 w.r.t. process definition η(D) where vars(T1) ⊆
domain(ψ′) ⊆ vars(θa).

Proof: See Appendix A.

The completeness proof is more complex compared
to the soundness proof. Recall that the soundness proof
establishes that for every transition derivable in MMC,
there is an “equivalent” transition derivable from the

π-calculus semantics. The notion of equivalence was for-
malized by showing that the corresponding process ex-
pressions in MMC and the π-calculus were related by
a one-to-one mapping between MMC variables and π-
calculus names.

However, when constructing a derivation using the
symbolic semantics of Figure 1 due to [22], the bound
names of processes can be renamed arbitrarily due to
alpha conversion; worse still, the same names can be
used repeatedly, with different binding occurrences. This
precludes us from relating process expressions in the π-
calculus and MMC in the completeness proof by map-
ping π-calculus names to MMC variables. Hence we es-
tablish the completeness of MMC in two steps:

1. We first present what we call the constructive sym-
bolic semantics (or simply the constructive seman-
tics) for the π-calculus where (i) alpha conversion is
limited to the application of the Ide inference rule
of Figure 1, and (ii) when applying the Ide rule,
bound names are always renamed to fresh names not
previously encountered in the derivation.3 We show
that when all process definitions are valid and closed,
every derivation derivable in the original symbolic
semantics—and indeed, every sequence of transitions
derivable in the original semantics—has an equiva-
lent derivation in the constructive semantics.

2. We then show that every transition derivable in the
constructive semantics has a corresponding transi-
tion derivable in MMC such that the names of π-
calculus process expressions have a one-to-one map-
ping to the names of the corresponding MMC process
expressions.

While the fundamental strategy used in the two-step
proof could be combined into a single-step proof, the de-
composition into two steps makes the proof clearer. The
problems of alpha-conversion and renaming are tackled
in the first step without reference to logic programming.
The implicit renaming of variables carried out by reso-
lution is brought to bear in the second step.

Constructive Symbolic Semantics To define the con-
structive semantics of the π-calculus we use sequents
of the form V1, V2 : P

M,α7−→ Q to denote that a valid
process P can make an α action under constraint M
and then behave as process Q, where V1 and V2 are sets
of names and n(P) ∈ V1. The constructive semantics
uses V1 to record the set of names that have been en-
countered in a derivation, and V2 to supply fresh names
whenever needed. The constructive semantics is given in
Figure 7. It assumes that all process definitions are valid
and closed.

The constructive semantics makes the search for
derivations more deterministic in the following sense.

3 We use the modifier “constructive” since the new semantics
provides some guidance on how to derive a transition as opposed
to just defining what a transition is.

11

Prefix:
V1,V1: α.P

true,α7−→ P

Sum:
V1,V2: P1

M,α7−→ Q1

V1,V2: P1+P2
M,α7−→ Q1

V1,V2: P2
M,α7−→ Q2

V1,V2: P1+P2
M,α7−→ Q2

Ide:
V2,V3: P ′

M,α7−→ Q

V1,V3: A(y1,...,yn)
M,α7−→ Q

A(x1, . . . , xn)
def
= P and {z1, . . . , zk} = bn(P),

V2 = V1 ∪ {z′1, . . . , z′k} such that z′i 6∈ V1 and z′i
are pairwise distinct, ϑ = {z′i/zi|1 ≤ i ≤ k}, and
P ′ = P{y1, . . . , yn/x1, . . . , xn}ϑ

Match:
V1,V2: P

M,α7−→ Q

V1,V2: [x=y]P
ML,α7−→ Q

L =


∅ if x = y;
x = y otherwise.

Par: (1)
V1,V2: P1

M,α7−→ Q1

V1,V2: P1|P2
M,α7−→ Q1|P2

bn(α) ∩ fn(P2) = ∅

(2)
V1,V2: P2

M,α7−→ Q2

V1,V2: P1|P2
M,α7−→ P1|Q2

bn(α) ∩ fn(P1) = ∅

Res:
V1,V2: P

M,α7−→ Q

V1,V2: (νy)P
M,α7−→ (νy)Q

y /∈ n(M, α)

Com:
V1,V2: P1

M,y(z)7−→ Q1, V2,V3: P2
N,xv7−→ Q2

V1,V3: P1|P2
MNL,τ7−→ Q1{v/z}|Q2

L =


∅ if x = y;
x = y otherwise.

V1,V2: P1
M,xv7−→Q1, V2,V3: P2

N,y(z)7−→ Q2

V1,V3: P1|P2
MNL,τ7−→ Q1|Q2{v/z}

L =


∅ if x = y;
x = y otherwise.

Open:
V1,V2: P

M,xy7−→ Q

V1,V2: (νy)P
M,xνy7−→ Q

y /∈ n(M, x)

Close:
V1,V2: P1

M,y(w)7−→ Q1, V2,V3: P2
N,xνw7−→ Q2

V1,V3: P1|P2
MNL,τ7−→ (νw)(Q1|Q2)

L =


∅ if x = y;
x = y otherwise.

V1,V2: P1
M,xνw7−→ Q1, V2,V3: P2

N,y(w)7−→ Q2

V1,V3: P1|P2
MNL,τ7−→ (νw)(Q1|Q2)

L =


∅ if x = y;
x = y otherwise.

Fig. 7. The constructive semantics for the π-calculus.

The symbolic semantics in [22] relies on the use of alpha-
conversion at any point in the proof. The alternative se-
mantics in [33] uses alpha-conversion whenever a bound
name is ”exposed” in the action of a transition; i.e. in the
Pref and Open rules. Neither semantics specifies how
the new names will be chosen when alpha-conversion
is applied. Note that the choice of names may affect
the success of the derivation search. Specifically, a poor
choice of names may prevent us from applying the Par
rule which checks for a disjointness among bound names
and free names of two process expressions. Thus, when
attempting to construct a derivation for a given transi-
tion, the failure to expand the current sequent may be
because:

1. the transition cannot be derived at all, or
2. we chose a wrong sequent at an earlier step (note the

nondeterminism due to the Choice and Par rules),
or

3. we made a poor choice of names when applying
alpha-conversion at an earlier step.

The problem of poor choice of names is relatively mi-
nor in theory, since the choice of names does not affect
the derivability of a transition but only the success of
the currently chosen derivation path. However, it com-
plicates the procedure for constructing derivations.

Our constructive semantics removes the nondeter-
minism due to choice of names during alpha-conversion.
In particular, in our semantics,

1. alpha-conversion is performed in the Ide rule, and
2. since all process definitions are valid and closed, the

choice of names for alpha-conversion does not affect
the successful completion of a derivation.

The second feature above ensures that the check for dis-
tinctness of names in the Par rule will always succeed,
thereby removing the need for the check.

The advantages of our semantics come at the cost
of extra bookkeeping: each sequent carries with it the
set of names seen so far in the derivation. When using
this semantics in MMC, this bookkeeping, as well as the
alpha-conversion in the Ide rule, are automatically per-
formed by the logic-program evaluation engine.

12

Note that every derivation in the constructive seman-
tics can be readily mapped to a derivation in the orig-
inal symbolic semantics (Figure 1). The proof that the
constructive semantics is complete, i.e. that every deriva-
tion in the original symbolic semantics has an equivalent
derivation in the constructive semantics is more compli-
cated and can be found in Appendix B. We can now
establish the completeness of MMC with respect to the
original semantics by giving a simpler proof that MMC
is complete with respect to the constructive semantics.

Theorem 3 (Completeness of MMC) Let Dπ be a
set of π-calculus process definitions and S be a pro-
cess expression. Let S

M,α−→ S′ be a transition deriv-
able in the symbolic semantics in Figure 1. Let θc be
a call substitution, Pr be a Prolog variable, and ψ be
a function mapping variables in Prolog to π-calculus
names such that Prθc is a valid process expression and
fψ(Prθc) ≡ S. Let U1, U2, U3 be three distinct variables
not in vars(θc). Then there is an answer trans(Pr, U1,

U2, U3) : θc → θa and a function ψ′ that agrees with
ψ on all free names of Prθc such that fψ′(U1θa) = α,
fcψ′(U2θa) = M , and fψ′(U3θa) ≡ S′.

Proof: See Appendix B.

Theorems 2 and 3, along with the requirement in
MMC that all process definitions are valid and closed,
allow us to inductively conclude that all derivable tran-
sitions for a given MMC process are correct with respect
to the symbolic semantics of Figure 1.

5 Model Checking in the π-µ-Calculus

In this section, we describe the MMC model checker for
systems specified in the polyadic π-calculus and proper-
ties written in an expressive subset of the π-µ-calculus.
The π-µ-calculus [14] extends the modal logic for the
monadic π-calculus proposed in [31] in two ways: (1) it
caters to the polyadic version of the π-calculus rather
than the monadic version; and (2) it introduces least
and greatest fixed-point operators. Like the logic of [31],
the π-µ-calculus has variants of the traditional box and
diamond modal operators to reflect the early and late
semantics of the π-calculus.

The main difference between the logic we use, which
we call the π-µ′-calculus, and the π-µ-calculus is that our
logic does not have explicit quantifiers (∃ and ∀). Rather,
as described below, names are implicitly quantified in
our logic. Opting for implicit as opposed to explicit quan-
tification of names leads to a considerably simpler im-
plementation of the MMC model checker, without a no-
ticeable sacrifice of expressiveness.

The syntax of the π-µ′-calculus is now given. Let F
denote the set of (non fixed-point) formulas; A and V
the sets of actions and names, respectively; Z the set of

formula variables; and E the set of fixed-point equations
defining the formula variables.

F ::= tt | ff | pred((V = V),F) | and(F ,F) | or(F ,F)

| diam(A,F) | box(A,F) | form(Z(
→
V))

E ::= fdef(Z(
→
V), lfp(F)) | fdef(Z(

→
V), gfp(F))

The operators and and or are boolean connectives;
diam and box are modal operators; lfp and gfp are
least and greatest fixed-point operators, respectively;
and pred is used to encode the match operator.

Often, properties can be written more succinctly
using additional derived modalities such as diamSet,
diamMinus, diamSetMinus, etc; formulas using the
derived modalities can always be rewritten us-
ing only the basic diam and box modalities. For
instance, diamSet({A1, A2, . . . An}, ϕ) represents
or(diam(A1, ϕ), or(diam(A2, ϕ), . . . diam(An, ϕ) · · ·));
diamMinus(A,ϕ) represents diamSet({B|B 6= A}, ϕ);
and diamSetMinus(A,ϕ) represents diamSet({B|B 6∈
A}, ϕ).

Names in a formula definition are implicitly quanti-
fied as follows. Names appearing in the left-hand side
of a definition are called “formal parameters” and the
remaining names are called “local names”. For a local
name X, let ϕ be a largest subformula of the right-hand
side such that ϕ = diam(A,F) and X occurs in A. Then
X is existentially quantified, with its scope covering ϕ.
Similarly, if ϕ = box(A,F) is the largest formula in the
right-hand side such that the local name X occurs in A,
then X is universally quantified, with its scope cover-
ing ϕ. We require that every local name in a formula be
quantified in this manner.

For example, the property f(X) states that there ex-
ists an input action on name X in all executions of the
system:

fdef(f(X), lfp(or(diam(in(X,Y), tt),

boxSetMinus({}, form(f(X)))))).

Note that name X is a parameter in f(X), and local name
Y is existentially quantified since it occurs within a dia-
mond modality.

Model checking the π-µ′-calculus requires the ability
to handle inequality constraints of the form X 6= Y . In-
equality constraints arise even when the logic and the
process specification use only equalities, for instance,
to record substitutions under which a transition is not
enabled. Equality constraints are handled by the logic-
programming system in MMC. In contrast, inequality
constraints must be explicitly treated, either by repre-
senting them symbolically, or by enumerating their con-
sequences; i.e. X 6= Y interpreted over a domain {a, b, c}
for X and Y can be enumerated as X = a, Y = b,X =
a, Y = c, While enumeration leads to poor perfor-
mance, symbolic representation adds an additional layer

13

True
P `θ tt

θ is consistent

Match
P `θ F

P `θ pred((X=Y),F)
Xθ = Y θ

And
P `θ F1 P `θ F2

P `θand(F1,F2)

Not
P 0θ F

P `θ not(F)

Or
P `θ F1

P `θ or(F1,F2)
P `θ F2

P `θ or(F1,F2)

Diam
P1 `θ1

F

P `θ diam(A,F)
trans(P, A1, , P1), θ1 = θ ∪mgu(A, A1)

Box
P1 `θ1

F,...,Pn `θnF

P `θ box(A,F)
{(P1, θ1), . . . , (Pn, θn)} = {(P ′, θ ∪mgu(A, A′)) | trans(P, A′, , P ′)}

Lfp
P `θ F [

→
V1/

→
V]

P `θ form(Z(
→
V1))

fdef(Z(
→
V), lfp(F)) and

P `θ form(Z(
→
V1)) does not occur in the derivation before

Fig. 8. Tableau rules for the π-µ′-calculus.

True models(_P,tt).

Match models(P,pred((X=Y),F)) :- X==Y, models(P,F).

And models(P,and(F1,F2)) :- models(P,F1), models(P,F2).

Or models(P,or(F1,F2)) :- models(P,F1); models(P,F2).

<A> models(P,diam(A,F)) :- trans(P,A1,_,P1), A1=A, models(P1,F).

[A] models(P,box(A,F)) :- forall(P1,trans(P,A,_,P1), models(P1,F)).

Neg models(P,not(F)) :- sk_not(models(P,F)).

Lfp models(P,form(D)) :- fdef(D,lfp(F)), models(P,F).

Fig. 9. Encoding of MMC’s π-µ′-calculus model checker.

of implementation (i.e. a constraint solver) with its at-
tendant overhead. We avoid this overhead by imposing
the condition that during model checking, the set of
constraints (the constraint store) associated with tran-
sitions be empty. In practice, we have found that most
π-calculus applications satisfy this condition.

The semantics of π-µ′ can be readily derived from the
semantics of the full logic given in [31]. From this seman-
tics, we can also derive the tableau proof system for π-µ′,
which is given in Figure 8. The tableau can be shown to
be sound and complete with respect to the semantics
of the π-µ′-calculus provided all free names in the pro-
cess expression and formula in the model-checking goal
P `θ F are distinct.

The tableau treats only least fixed-point formulas
but also handles negation. Therefore, greatest fixed-
point formulas are handled using their dual least
fixed-point forms; that is, using the identity νZ.F ≡
¬µZ.¬F [¬Z/Z]. The parameter θ in the tableau keeps
track of the current substitution of names in the formula
and names in the process expressions. A substitution θ
is said to be consistent if for any name X, if X = t1 ∈ θ
and X = t2 ∈ θ then t1 = t2. In Figure 8, mgu(t1, t2)
denotes the most general unifier of the terms t1 and t2,
where both terms denote actions.

The logic-programming encoding of the tableau sys-
tem is given in Figure 9 which can be directly executed

in the XSB system. In the program, sk_not(Goal) refers
to the negation of Goal which treats all variables in the
term Goal as existentially quantified.

The soundness and completeness of the tableau sys-
tem can be proved following the approach of [37]. The
following theorem states the correctness of the model
checker.

Theorem 4 Let D be a set of process and formula def-
initions, S the logic program consisting of the clauses in
Figures 4 and 9, P a valid process expression, and F a
formula. Also, let Pr and Fr be two distinct Prolog vari-
ables. Then there exists a δ mapping free names of P to
free names of F such that models(Pr, Fr) : θc → θa is
an answer derivable from the logic program D∪S if and
only if P `δ F is a derivation in the tableau of Figure 8
where Prθc = Pδ and Frθc = Fδ.

Proof: See Appendix C. 2

The models predicate implemented in MMC is an
optimized version of the one shown in Figure 9, aimed
at reducing the number of goals that will be tabled in
XSB. The optimization is routine and is not shown.

6 Encoding the spi-Calculus

The spi-calculus is an extension of the π-calculus with
primitives for encryption and decryption to facilitate

14

def(sender(MyID,In,Out,Key_ab,Key_ai),

nu(N_a, % Generate a nonce for A

pref(out(Out,mesg(MyID,encrypt(N_a,Key_ab))),

... /* A’s behavior after sending the message */

def(receiver(MyID,In,Out,Key_ab,Key_bi),

pref(in(In, M), % M is the received message

unify((M = mesg(A_id,encrypt(Nonce,Key))), % Decompose M

match((Key = Key_ab),

... /* B’s behavior after received the message */

def(intruder(MyID,In_a,Out_a,In_b,Out_b,Key_ai,Key_bi,Mset,Nset),

nu(N_i, pref(in(In_a,M),

choice(

/* Communicate with sender, decrypt the mesg and store the nonce.*/

unify((M = mesg(ID,encrypt(Nonce,Key))),

match((Key = Key_ai),code(store(Nset,(Nonce,ID),Nsetnew),

proc(intruder(MyID,In_a,Out_a,In_b,Out_b,Key_ai,Key_bi,Mset,Nsetnew))))),

choice(

/* Overhear, store the message.*/

pref(out(Out_b,M),code(store(Mset,M,Msetnew),

proc(intruder(MyID,In_a,Out_a,In_b,Out_b,Key_ai,Key_bi,Msetnew,Nset)))),

/* Replay an old message*/

code(retrieve(Mset,OldMesg), pref(out(Out_b,OldMesg),

proc(intruder(MyID,In_a,Out_a,In_b,Out_b,Key_ai,Key_bi,Mset,Nset))))))))).

def(proto(A,B,I),

nu(BAin,nu(ABout,nu(ABin,nu(BAout,nu(Key_ab,nu(Key_ai,nu(Key_bi,

par(proc(sender(A,BAin,ABout,Key_ab,Key_ai)),

par(proc(intruder(I,ABout,BAin,BAout,ABin,Key_ai,Key_bi,[],[])),

proc(receiver(B,ABin,BAout,Key_ab,Key_bi)))))))))))).

Fig. 10. Encoding transmission of encrypted messages in MMC.

specification of cryptographic protocols [2]. In this sec-
tion, we show that spi-calculus process expressions can
be encoded in MMC using its support for the polyadic
π-calculus. To capture message encryption and decryp-
tion, and to represent structured messages composed of
multiple segments, we use terms built from names and
two binary function symbols encrypt and mesg. The en-
cryption and decryption primitives of the spi-calculus are
encoded in MMC as follows.

Encryption of a message M with symmetric key K,
denoted in the spi-calculus as {M}K , is encoded in MMC
by the term encrypt(M,K). Such a term can be passed
as a parameter to a process invocation or cast as a data
item in an output action. Decryption is specified in the
spi-calculus using a case expression: case L of {x}K in P
behaves as P [M/x] if message L is of the form {M}K ,
and as the deadlocked process otherwise. This expression
is encoded in MMC as unify(L = encrypt(X, E),
match(E = K, P)), where unify extracts the key por-
tion of the message and match checks if the given key K
matches the encryption key E.

For protocols that use asymmetric public/private
keys, we introduce two unary function symbols priv
and pub, and use priv(K) and pub(K) to denote the
private and public keys of a key pair K. We also intro-

duce a new process expression code(Oper, P) which
performs operation Oper (written as a Prolog predicate)
and then behaves as P . Operator complement(K,K1)
is added to obtain the asymmetric key K1 of K. A
message M encrypted by principal A with B’s public
key Kpu

B is encoded as the term t =encrypt(M,
pub(KB)). A principal B attempting to decrypt the
term t with a key K will use the expression unify(t
= encrypt(X, K), code(complement(K, K1),
match(K1 = priv(KB), . . .))) which will deadlock
unless K1 is same as priv(KB). Similarly, a message M
encrypted with a private key Kpr

A is encoded in MMC
as encrypt(M,priv(KA)).

We can specify shared-key as well as public-key cryp-
tographic protocols in MMC using the above encoding.
Note that, as in the spi-calculus, the restriction operator
nu can be used to generate fresh nonces and shared keys.
For example, consider the fragment of a shared-key pro-
tocol given in Figure 10. N_a is a nonce generated by A
and Key_ab is a key shared by the principals A and B.
The code fragment models a message that principal A
sends to principal B with A’s identity (in clear text) and
the nonce N_a encrypted with Key_ab. BAin and ABout
represent the channels from which A receives and sends
the message, respectively.

15

Benchmark State Trans Formula Time Mem
(sec) (MB)

Handover 108 164 deadlock freedom 0.05 1.28
no data lost 0.09 2.49

Needham-Schroeder 167 287 attack 0.02 0.70

Needham-Schroeder-Lowe 108 181 no attack 0.22 1.93

BAN-Yahalom 29133 107652 interleaving attack 0.13 2.91
replay attack 0.75 13.41

Table 2. Performance data for Handover, Needham-Schroeder, and BAN-Yahalom protocols.

Systems with an intruder I are modeled such that all
communications between principals go through the in-
truder, the behavior of which is specified by a recursive
process definition. Note that the intruder model is dif-
ferent from that of spi-calculus where intruders are not
explicitly specified. When an intruder receives a message
from a principal, it chooses to either transmit, intercept
or fake the message transmission. The capabilities of the
intruder to store and retrieve messages are encoded us-
ing a set of data structures, and operations store(S,
t, S′) and retrieve(S, t), where S and S′ are sets and
t is a term. An intruder’s ability to decompose or com-
pose messages can be encoded using unify and require
no further extensions. In Figure 10, we present only the
communications between principals A and B, and the
intruder’s behaviors of overhearing and replaying mes-
sages. Other behaviors of the intruder can be modeled
in a similar way. Notice that MMC does not support
the modeling of unbounded sessions which requires an
unbounded message store. However, by specifying the
number of rounds, MMC supports the modeling of mul-
tiple sessions.

Security properties such as authenticity can be ex-
pressed in our subset of the π-µ-calculus; in contrast,
the spi-calculus specifies properties in terms of process
equivalence. For verifying authenticity properties, we use
two out actions on distinguished, global channels (called
send and commit below) for each pair of principals in the
protocol. Thus, when principal A takes part in the proto-
col run with B, it does an out action on channel send AB;
similarly, when A commits to a session with B, it does
an out action on channel commit AB. Authenticity is vio-
lated if a principal commits to a communication without
a corresponding (preceding) initiation. This style of au-
thenticity property is called an correspondence assertion
in [43]. For instance, an attack on principal A can be
stated by the following formula:

F = µF.〈commit ABx〉true ∨ 〈−send BAy〉F

Using MMC, we detected an authenticity violation, orig-
inally reported in [24], in the Needham-Schroeder pro-
tocol and several attacks in the BAN-Yahalom proto-
col [10]. We also verified several security properties of the
modified Needham-Schroeder protocol (the Needham-
Schroeder-Lowe protocol). In the case of BAN-Yahalom,

the protocol we specified is a variant of the one in [10],
while the attacks that we found are described in [38].

7 Benchmarking Results

In this section, we present a variety of experimental re-
sults aimed at assessing MMC’s performance. By MMC,
we expressly mean the tabled logic program comprising
the operational semantics of the π-calculus (Figure 4)
and the tableau system for our subset of the π-µ cal-
culus, π-µ′ (Figure 9), with the optimizations described
in Sections 3 and 5 suitably applied. All reported per-
formance data were obtained on an Intel Xeon 1.7GHz
machine with 2GB RAM running Debian GNU/Linux
2.4.21 and XSB version 2.5 (optimal mode, slg-wam with
batched scheduling, garbage collector turned off).

Handover, Needham-Schroeder, Needham-Schroeder-
Lowe, and BAN-Yahalom Protocols. Table 2 contains
performance data for MMC (the polyadic version)
applied to the verification of four benchmark proto-
cols: a simplified handover procedure from [32] and
the Needham-Schroeder, Needham-Schroeder-Lowe,
and BAN-Yahalom authenticity protocols. The han-
dover protocol is specified in the π-calculus while the
Needham-Schroeder, Needham-Schroeder-Lowe, and
BAN-Yahalom protocols are written in the spi-calculus.
The attacks MMC found in the BAN-Yahalom protocol
are described in [38]. One is the interleaving attack
specified as the property “responder B commits to
a session with initiator A before A commits to the
session with B”. Another is the replay attack specified
as property “initiator A commits to a session with
responder B before B participates in the protocol run
with A”.

Nonce generation in the specifications of the
Needham-Schroeder, Needham-Schroeder-Lowe, and
BAN-Yahalom protocols leads to a number of process
expressions containing the restriction operator. These
are candidates for the structural-congruence rule, which
can be used to eliminate unused names. Although the
structural-congruence rule is needed to ensure that
MMC terminates for finite-control agents, repeated
checks for whether the rule can be applied may impose
substantial performance overhead. We can eliminate the

16

def(buf(In,Out), pref(in(In,X), pref(out(Out,X), proc(buf(In,Out))))).

def(lbuf1(In,Out), proc(buf(In,Out))).

def(lbufi(In,Out), nu(M, par(proc(buf(In,M)), proc(lbufi−1(M,Out))))).

def(sbufi(V), nu(M, nu(Out, par(proc(gen(M,V)), par(proc(lbufi(M,Out)), proc(sink(Out))))))).

def(gen(Out,V), pref(out(Out,V), proc(gen(Out,V)))).

def(sink(In), pref(in(In,X), proc(sink(In)))).

Fig. 11. Specification of a chain of buffers.

 0

 25

 50

 75

 100

 10 11 12 13 14 15

M
od

el
 C

he
ck

in
g

Ti
m

e
(s

ec
)

Chain Length

Monadic
Polyadic

 0

 80

 160

 240

 320

 400

 480

 560

 640

 720

 800

 10 11 12 13 14 15

M
em

or
y

(M
B

)

Chain Length

Monadic
Polyadic

Fig. 12. Time and space performance of MMC for verifying deadlock-freedom of chains of buffers.

use of the structural-congruence rule and still ensure
termination whenever the scope of a restricted name
does not fall within a recursion. This optimization
can significantly reduce the model-checking time. For
example, to check if the BAN-Yahalom protocol has
the property “responder B commits to a session with
initiator A before A initiates the protocol run with
B”, the model checker takes 209.87 seconds to give the
answer “No”, requiring almost a complete traversal of
the state space. Introducing the optimization leads to a
three-fold improvement in model-checking time.

Monadic vs. polyadic versions of MMC. We compared
the monadic and the polyadic versions of MMC by check-
ing for deadlock-freedom in chains of buffers of varying
length, as specified in Figure 11. Note that when a chain
is deadlock-free, the model checker traverses the entire
state space of the system. Process lbufi(In,Out) rep-
resents a chain of buffers of length i, each of which re-
ceives an input from channel In and outputs a value
along channel Out. Process sbufi wraps lbufi with gen,
a generator of values, and sink, a consumer of values.

Figure 12 contains the execution times taken by
MMC (both the monadic and polyadic versions) for
verifying the deadlock-freedom property of process
sbufi(V) for different values of i. Note that the size
of the transition system grows exponentially in the
chain length while MMC’s time and space performance
grows linearly with the number of transitions in the sys-
tem. Furthermore, the polyadic version is slightly slower
(but no worse than 7%) than the monadic version and
consumes almost the same amount of memory as the
monadic version.

MMC vs. MWB. We now compare the performance of
MMC (the polyadic version) on process sbufi(V) with
that of the Mobility Workbench (MWB). The MWB has
a model checker and a model prover [7] for model check-
ing the polyadic π-calculus. It also provides a separate
function, called “deadlocks”, to check whether or not a
process is deadlocked [42].

MMC is considerably faster than the MWB’s model
checker. For example, MMC takes 0.02s for checking
deadlock-freedom on a buffer of size 4, while MWB takes
0.54s; on a buffer of size 8, MMC takes 0.83s while
MWB does not terminate in 13 hours. For small chain
lengths, MWB’s deadlock-detection function is compa-
rable in speed to MMC. However, for larger systems,
MMC outperforms the “deadlock” function in MWB.
For example, MMC takes 15.93s on a buffer of size 12,
while MWB’s deadlock detection function takes 139.43s.
MWB’s prover appears to be in an unstable state, either
looping on certain least fixed-point formulas or termi-
nating incorrectly (too early) on certain greatest fixed-
point formulas. Hence we were unable to get meaningful
performance measurements for this tool.

MMC vs. XMC. Table 3 shows the time performance
of MMC and the first versions of XMC, i.e. those that
did not employ the XMC compiler [16]. The exam-
ples, Rether (a real-time ethernet protocol), Sieve, and
Leader, were selected from the XMC benchmark suite.
Observe from the table that MMC is slightly slower than
the first version of XMC. Two factors contribute to this.
First, the check for structural congruence, despite the
optimization discussed earlier, results in additional time.
Secondly, the Open and Close clauses in relation trans

17

Benchmark States Trans Property Time(sec)
XMC MMC

rether 593 697 deadlock freedom 0.24 0.29

sieve(3) 615 1423 ae finish 0.37 0.78

sieve(5) 4023 16091 ae finish 5.01 8.25

leader(3) 67 88 ae leader 0.03 0.04

leader(5) 864 2687 ae leader 0.95 1.10

leader(7) 11939 25632 ae leader 21.59 29.74

Table 3. Comparative performance of XMC and MMC.

 0

 25

 50

 75

 100

 10 11 12 13 14 15 16 17

M
od

el
 C

he
ck

in
g

Ti
m

e
(s

ec
)

Chain Length

MMC(orig.)
MMC(comp.)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 11 12 13 14 15 16 17

M
em

or
y(

M
B

)

Chain Length

MMC(orig.)
MMC(comp.)

Fig. 13. Performance comparison between MMC with and without compilation on chains of buffers.

are not needed in these examples; but MMC tries (and
eventually fails) to resolve using these two rules.

In recent work [45], we have implemented a compiler
for MMC, along the lines of the XMC compiler [16],
which, given a π-calculus process expression, produces
a succinct representation of the process’s symbolic tran-
sition system. The compiler is equipped with a number
of optimizations that, as we have seen through exten-
sive benchmarking, practically eliminate the overheads
in MMC discussed above. These optimizations include:
implementation of a trie data structure for transition
indexing; an AC unification-based notion of symmetry
reduction; and a new state representation that elimi-
nates futile attempts to apply the restriction operator.
Figure 13 (taken from [45]) illustrates the speedup en-
joyed by the compiled version of MMC over the inter-
preted version on the example of Figure 11 (checking for
deadlock-freedom in varying-length chains of buffers).

8 Related Work

A number of analysis techniques have been developed
for the π-calculus, and several of them have been incor-
porated in tools. The Mobility Workbench (MWB) [42]
implemented the first model checker for the polyadic π-
calculus [29] and the π-µ-calculus [14]. In addition to
a model checker, the MWB consists of a bisimulation
checker and a prover based on the sequent calculus [19].
Picasso [5] is a static analyzer for the π-calculus that fo-

cuses on checking secrecy of information such as process-
level leaks and insecure communications. The Maude
system is based on rewriting logic and supports cryp-
tographic protocol analysis [15] and mobile computa-
tion [17]. Maude also handles may-testing equivalence
of non-recursive π-calculus processes [40]. MMC, in con-
trast, is a more traditional model checker for recursive
mobile processes encoded in the π-calculus.

Regarding related work for the spi-calculus, Cryp-
tyc [20] uses static type checking to find security vio-
lations such as secrecy or authenticity errors in cryp-
tographic protocols specified in the spi-calculus. In [1,
8], techniques are proposed for verifying secrecy and au-
thenticity of cryptographic protocols specified in an ex-
tension of the π-calculus; the intruder is modeled using
Prolog rules. These techniques as well as Cryptyc sup-
port the verification of an unbounded number of sessions
of a protocol.

In contrast, MMC can verify only a finite number
of concurrent sessions, but, being a full-fledged model
checker, can be used to verify other properties such
as deadlock freedom as well as liveness properties such
as lossless transmission. Interestingly in this regard,
Hüttel [21], along with Josva Kleist, Uwe Nestmann and
Björn Victor, have shown that the finite-control frag-
ment of the spi-calculus is Turing-powerful. Hüttel has
also shown that framed bisimilarity, an equivalence rela-
tion proposed by Abadi and Gordon [3], is decidable for
finite (non-recursive) spi-calculus processes.

18

Other related tools and techniques for analyzing se-
curity protocols besides those based on the spi-calculus
include the FDR model checker for CSP [25]; the NRL
Protocol Analyzer [26]; Paulson’s inductive approach us-
ing the theorem prover Isabelle [34]; the Strand Space
approach of [18], where a “strand” is a sequence of
events representing either an execution by a legitimate
party or a penetrator; the resolution-based verification
method for cryptographic protocols of [9], which uses
“tagging” to enforce termination, a syntactic transfor-
mation of messages that leaves attack-free executions in-
variant; Cohen’s first-order invariant-based method for
proving protocols secure against guessing attacks in an
unbounded model, which has been implemented as an
extension to the protocol verifier TAPS [12]; and the
constraint-solving method of Miller and Shmatikov [27].
MMC also uses constraint-solving in its implementation
of a model checker for the spi-calculus, where the con-
straints required are limited to equality and inequality
constraints.

MMC is perhaps most closely related to the model
checker implemented in the MWB. The property logic
used in MMC is an expressive subset of the π-µ-calculus
that is amenable to efficient implementation. The pro-
cess language used in MMC, on the other hand, is more
expressive than that of MWB, and permits encoding of
spi-calculus specifications. The performance of MMC is
considerably better than that of the model checkers and
equivalence checkers of the MWB reported in the liter-
ature [41,42,7]. Moreover, MMC’s performance is even
comparable to that of the first versions of XMC where,
as in MMC, labeled transition systems were generated
by interpreting process terms. Extensive benchmark re-
sults documenting MMC’s performance are given in Sec-
tion 7.

9 Conclusion

We have presented MMC, a practical model checker for
the π-calculus. Through the use of tabled logic pro-
gramming, MMC directly encodes the the operational
semantics of the π-calculus and (a subset of) the π-µ
calculus without unduly sacrificing performance. Key to
this development is the similarity in the way resolution
techniques handle variables in a logic program and the
way the operational semantics of the π-calculus handles
names. This similarity is exploited in MMC through the
use of Prolog variables to represent π-calculus names.

We have also provided a detailed, formal proof of
the correctness of our encoding, showing that MMC,
given a π-calculus expression p, generates exactly the
labeled transition for p as prescribed by the π-calculus’s
transitional semantics. Moreover, the high-level nature
of the encoding makes it particularly versatile, allowing
us to encode the monadic and polyadic versions of the

π-calculus, as well as the spi-calculus for cryptographic
protocols, in a single framework.

The results presented in this paper are a step to-
ward routinely deploying model checkers for expressive
process calculi with channel passing. The next step is
to expand on the functionality of MMC. We are cur-
rently investigating extensions to the symbolic bisimu-
lation checker developed using logic programming [6] to
the transition systems derived from the π-calculus. We
also plan to extend MMC to the full π-µ-calculus, tak-
ing advantage of recent developments to add light-weight
constraint processing to tabled logic programming [13].

Another avenue of research is to extend MMC’s capa-
bilities beyond that of finite-control systems. A promis-
ing approach to this problem lies in the technique of [36]
which uses logic-program transformations to seamlessly
integrate induction-based proofs with model checking.
This yields a model checker for parameterized systems
(infinite families) of processes.

Acknowledgements

The authors are grateful to the anonymous review-
ers for their valuable comments and suggestions. They
would also like to thank Lenore Zuck for her much-
appreciated editorial support. The research reported
in this article was supported in part by NSF grants
EIA-9705998, CCR-9876242, CCR-9988155, and CCR-
0205376; ONR grant N000140110967; and ARO grants
DAAD190110003 and DAAD190110019.

References

1. M. Abadi and B. Blanchet. Analyzing security proto-
cols with secrecy types and logic programs. In 29th An-
nual ACM SIGPLAN - SIGACT Symposium on Prin-
ciples of Programming Languages (POPL 2002), pages
33–44, Portland, Oregon, Jan. 2002. ACM Press.

2. M. Abadi and A. D. Gordon. A calculus for crypto-
graphic protocols: The spi calculus. In Fourth ACM
Conference on Computer and Communications Security,
pages 36–47. ACM Press, 1997.

3. M. Abadi and A. D. Gordon. A bisimulation method for
cryptographic protocols. Nordic Journal of Computing,
5(4):267–303, 1998.

4. K. Apt. Logic programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B:
Formal Models and Semantics, pages 493–574. Elsevier
and MIT Press, 1990.

5. B. Aziz and G.W. Hamilton. A privacy analysis for the
pi-calculus: The denotational approach. In Proceedings
of the 2nd Workshop on the Specification, Analysis and
Validation for Emerging Technologies, Copenhagen, Den-
mark, July 2002.

6. S. Basu, M. Mukund, C. R. Ramakrishnan, I. V.
Ramakrishnan, and R. M. Verma. Local and sym-
bolic bisimulation using tabled constraint logic program-

19

ming. In International Conference on Logic Program-
ming, pages 166–180, 2001.

7. F. B. Beste. The model prover - a sequent-calculus based
modal µ-calculus model checker tool for finite control π-
calculus agents. Technical report, Swedish Institute of
Computer Science, 1998.

8. B. Blanchet. From secrecy to authenticity in security pro-
tocols. In Manuel Hermenegildo and Germán Puebla, ed-
itors, 9th International Static Analysis Symposium, vol-
ume 2477 of Lecture Notes on Computer Science, pages
242–259, Madrid, Spain, September 2002. Springer Ver-
lag.

9. B. Blanchet and A. Podelski. Verification of crypto-
graphic protocols: Tagging enforces termination. In
Foundations of Software Science and Computation
Structures (FoSSaCS’03), volume 2620 of Lecture Notes
on Computer Science, pages 136–152. Springer-Verlag,
2003.

10. M. Burrows, M. Abadi, and R. Needham. A logic of au-
thentication, from proceedings of the royal society, vol-
ume 426, number 1871, 1989. In W. Stallings, editor,
Practical Cryptography for Data Internetworks. IEEE
Computer Society Press, 1996.

11. W. Chen and D. S. Warren. Tabled evaluation with de-
laying for general logic programs. Journal of the ACM,
43(1):20–74, January 1996.

12. E. Cohen. Proving protocols safe from guessing. In Pro-
ceedings of the Workshop on Foundations of Computer
Security (FCS’02), Copenhagen, Denmark, July 2002.

13. B. Cui and D. S. Warren. A system for tabled constraint
logic programming. In First International Conference
on Computational Logic, volume 1861 of Lecture Notes
in Computer Science, pages 478–492. Springer, 2000.

14. M. Dam. Proof systems for pi-calculus logics. Logic for
Concurrency and Synchronisation, 2001.

15. G. Denker and J. Meseguer. Protocol specification and
analysis in Maude. In Proc. of Workshop on Formal
Methods and Security Protocols, June 1998.

16. Y. Dong and C.R. Ramakrishnan. An optimizing com-
piler for efficient model checking. In Formal Methods for
Protocol Engineering and Distributed Systems (FORTE),
volume 156 of IFIP Conference Proceedings, pages 241–
256, Beijing, China, October 1999. Kluwer.

17. F. Duran, S. Eker, P. Lincoln, and J. Meseguer. Princi-
ples of mobile Maude. In D. Kotz and F. Mattern, ed-
itors, Proc. ASA/MA, volume 1882 of Lecture Notes in
Computer Science, pages 73–85. Springer-Verlag, 2000.

18. F. J. Thayer Fabrega, J. C. Herzog, and J. D. Guttman.
Strand Spaces: Proving security protocol correct. Journal
of Computer Security, 7:191–230, 1999.

19. T. Franzen. A theorem-proving approach to deciding
properties of finite-control agents. Technical report,
Swedish Institute of Computer Science, 1996.

20. A. Gordon and A.S.A. Jeffrey. Authenticity by typing for
security protocols. In IEEE Computer Security Founda-
tions Workshop, 2001.

21. H. Hüttel. Deciding framed bisimilarity. In Proceed-
ings of Fourth International Workshop on Verification
of Infinite-State Systems (INFINITY 2002), Brno, Czech
Republic, August 2002.

22. H. Lin. Symbolic bisimulation and proof systems for the
π-calculus. Technical report, School of Cognitive and
Computer Science, U. of Sussex, UK, 1994.

23. J. W. Lloyd. Foundations of Logic Programming.
Springer, 1984.

24. G. Lowe. An attack on the Needham-Schroeder public-
key authentication protocol. Information Processing Let-
ters, 56:131–133, 1995.

25. G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. Software Concepts and
Tools, 17:93–102, 1996.

26. C. Meadows. The NRL protocol analyzer: an overview.
Journal of Logic Programming, 26(2):113–131, 1996.

27. J. Millen and V. Shmatikov. Constraint solving for
bounded process cryptographic protocol analysis. In
Proceedings of Eigth ACM Conference on Computer and
Communications Security. ACM Press, 2001.

28. R. Milner. Communication and Concurrency. Interna-
tional Series in Computer Science. Prentice Hall, 1989.

29. R. Milner. The polyadic π–calculus: a tutorial. The Pro-
ceedings of the International Summer School on Logic
and Algebra of Specification, 1991.

30. R. Milner, J. Parrow, and D. Walker. A calculus of mo-
bile processes, Parts I and II. Information and Compu-
tation, 100(1):1–77, 1992.

31. R. Milner, J. Parrow, and D. Walker. Modal logics
for mobile processes. Theoretical Computer Science,
114:149–171, 1993.

32. F. Orava and J. Parrow. An algebraic verification of a
mobile network. Formal Aspects of Computing, 4:497–
543, 1992.

33. J. Parrow. An introduction to the π-calculus. In
Bergstra, Ponse, and Smolka, editors, Handbook of Pro-
cess Algebra. Elsevier, 2001.

34. L. Paulson. The inductive approach to verifying crypto-
graphic protocols. Journal of Computer Security, 6:85–
128, 1998.

35. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakr-
ishnan, S. A. Smolka, T. W. Swift, and D. S. Warren. Ef-
ficient model checking using tabled resolution. In Ninth
International Conference on Computer-Aided Verifica-
tion (CAV), volume 1254 of Lecture Notes in Computer
Science, pages 143–154. Springer, 1997.

36. A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrish-
nan, I.V. Ramakrishnan, and S.A. Smolka. Verification
of parameterized systems using logic-program transfor-
mations. In Sixth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1785 of Lecture Notes in Computer
Science, pages 172–187, Berlin, Germany, March 2000.
Springer.

37. C. Stirling and D. Walker. Local model checking in
the modal mu-calculus. Theoretical Computer Science,
89:161–177, 1991.

38. P. Syverson. A taxonomy of replay attacks. In Com-
puter Security Foundations Workshop VII. IEEE Com-
puter Society Press, 1994.

39. H. Tamaki and T. Sato. OLDT resolution with tabula-
tion. In International Conference on Logic Programming,
pages 84–98. MIT Press, 1986.

40. P. Thati, K. Sen, and N. Marti-Oliet. An executable
specification of asynchronous pi-calculus semantics and
may testing in Maude 2.0. In 4th International Workshop
on Rewriting Logic and its Applications, 2002.

20

41. B. Victor. The Mobility Workbench user’s guide. Tech-
nical report, Department of Computer Systems, Uppsala
University, Sweden, 1995.

42. B. Victor and F. Moller. The Mobility Workbench — a
tool for the π-calculus. In D. Dill, editor, Proceedings of
the Sixth International Conference on Computer Aided
Verification (CAV ’94), volume 818. Springer-Verlag,
1994.

43. T. Y. C. Woo and S. S. Lam. A semantic model for au-
thentication protocols. In Proceedings IEEE Symposium
on Research in Security and Privacy, May 1993.

44. XSB. The XSB logic programming system v2.5, 2002.
Available from http://xsb.sourceforge.net.

45. P. Yang, Y. Dong, C.R. Ramakrishnan, and S. A.
Smolka. Compilation techniques for mobile processes,
2003. In progress.

46. P. Yang, C.R. Ramakrishnan, and S. A. Smolka. Mobility
Model Checker for the π-calculus, 2002. Available from
http://www.cs.sunysb.edu/~lmc/mmc.

A Proof of Theorem 2

Theorem 2 (Soundness) Let D be a set of process
definitions and Pr be a Prolog variable. Assume that
trans(Pr, U1, U2, U3) : θc → θa is an answer derivable
from the logic program D∪MMCtrans where var(θc) ∩
{U1, U2, U3} = ∅ and Prθc is a valid process expression.
Let trans(S1, A, M, T1) = trans(Pr,U1,U2,U3)θa. Then
the following hold:

1. (Preservation of Free and Local Names) For
every free name Fv ∈ fn(Prθc), Fv = Fvθa; For every
local name Lv ∈ ln(Prθc), Lv = Lvθa.

2. (Origin of Free Names) For every name V ∈
(fn(A) ∪ n(M)), V ∈ fn(Prθc); For every name V1 ∈
fn(T1), V1 ∈ fn(Prθc) or V1 ∈ bn(A).

3. (Origin of Bound Names) For every name Y ∈
(bn(A) ∪ bn(T1)), Y is a variable and (Y ∈ bn(Prθc)
or Y 6∈ vars(θc)).

4. (Distinctness of Bound Names) vars(bn(A)) ∩
vars(bn(T1)) = ∅.

5. (Validity of Destination) T1 is a valid process
expression.

6. (Soundness of Transition) Given a one-to-
one function ψ mapping MMC variables to π-
calculus names such that vars(Prθc) ⊆ domain(ψ) ⊆
vars(θc), there exists an extension ψ′ of ψ such

that fψ(Prθc)
fcψ′ (M),fψ′ (A)

−→ fψ′(T1) is a derivation
in the symbolic semantics of the π-calculus in Fig-
ure 1 w.r.t. process definition η(D) where vars(T1) ⊆
domain(ψ′) ⊆ vars(θa).

Proof: The proof is by induction on the depth of the
derivation tree, derived using the resolution procedure
of Figure 2, for the given trans query. Parts 1 and 2 are
easy to prove. We present the proofs for the remaining
parts. For Part 4, we give the proof for the case where
Y ∈ bn(T1); the case where Y ∈ bn(A) can be similarly
proved. For Part 5, inductively assuming that the bound
names of T1 are variables (Part 3), we need only prove
that bn(T1) ∩ fn(T1) = ∅ and bn(T1) = ubn(T1).

The proof is split into different cases based on the
clause of Figure 4 used in the last step of the deriva-
tion. Clause names are written in the bold font for easy
identification; i.e., clause Prefix, clause Sum, etc. In-
ference rules from the symbolic semantics of Figure 1
are referred to in the proof as rule Prefix, rule Sum,
etc. Whenever we say “symbolic semantics” (or simply
“semantics”) in the proof, we are indeed referring to the
inference rules of Figure 1.

Pref: If Prθc = pref(A,P), then the derivation tree is
of the following form:

true : θcσ → θcσ

trans(Pr,U1,U2,U3): θc → θcσ where

i. trans(pref(A′,P ′),A′,true,P ′). is a variant of the
Prefix clause;

21

ii. {A′, P ′} ∩ ({Pr, U1, U2, U3} ∪ vars(θc)) = ∅;
iii. σ = {A′ = A, P ′ = P, U1 = A′, U2 = true, U3 = P ′}.

Part 3: From iii, bn(U3θcσ) = bn(P). Since pref(A,P)
is a valid process expression, the bound names of
pref(A,P) are variables and hence the bound names of
P are variables. Further, since bn(P) ⊆ bn(pref(A, P)),
Part 3 holds.

Part 4 can be directly proved by the fact that
pref(A,P) is a valid process expression.

Part 5: Let T1 = U3θcσ. Then by iii, T1 = P. We
need to prove that P is a valid process expression, which
follows from the fact that pref(A,P) is a valid process
expression and from Proposition 1.

Part 6: Assume that trans(Pr, U1, U2, U3): θc →
θcσ is derivable from the above derivation tree in the
logic program D∪MMCtrans. From the Prefix rule,
for any one-to-one function ψ mapping MMC vari-

ables to π-calculus names, fψ(A).fψ(P)
true,fψ(A)−→ fψ(P)

is an inferable transition in the symbolic semantics.
Since vars(pref(A, P)) ⊆ domain(ψ) ⊆ vars(θc),
vars(P) ⊆ domain(ψ) ⊆ vars(θcσ). Since Prθc =
pref(A, P), U1θa = A, U2θa = true, and U3θa = P,

fψ(Prθc),
fcψ(U2θa),fψ(U1θa)−→ fψ(U3θa) is also an inferable

transition in the symbolic semantics.

Sum: If Prθc = choice(P1,P2), then the derivation
tree is of the following form:

.

.

.

trans(P ′
1,A

′,M ′,Q′
1) : θcσ → θa

trans(Pr,U1,U2,U3): θc → θa where

i. trans(choice(P ′
1,P

′
2), A′, M ′, Q′

1) :− trans(P ′
1,

A′, M ′, Q′
1). is a variant of the first of the two Sum

clauses. The symmetric clause of Sum can be similarly
proved;

ii. {P ′
1, P

′
2, A

′, M ′, Q′
1} ∩ ({Pr, U1, U2, U3} ∪ vars(θc)) = ∅;

iii. σ = {P ′
1 = P1, P ′

2 = P2, U1 = A′, U2 = M ′, U3 = Q′
1}.

Part 3: Let T1 = U3θa. Then from iii, T1 = Q′
1θa. We

need to prove that for every Y ∈ bn(Q′
1θa), Y is a vari-

able, and (Y ∈ bn(choice(P1, P2)) or Y 6∈ vars(θc)).
By the induction hypothesis, for every Y ∈ bn(Q′

1θa),
Y is a variable, and (Y ∈ bn(P ′

1θcσ) or Y 6∈ vars(θcσ)).
Since bn(P ′

1θcσ) ⊆ bn(choice(P1,P2))), and vars(θc) ⊂
vars(θcσ), 3 holds.

Part 4 can be proved directly from the induction hy-
pothesis.

Part 5: Let T1 = U3θa. Then from iii, T1 = Q′
1θa.

We need to show that T1 is a valid process expression.
Since choice(P1,P2) is a valid process expression, P1 is
a valid process expression, i.e., P ′

1θcσ is a valid process
expression. By the induction hypothesis, Q′

1θa is a valid
process expression.

Part 6: Suppose that trans(Pr,U1,U2,U3): θc → θa
is an answer derived from the above derivation tree in the

logic program D∪MMCtrans. By the induction hypothe-
sis, given a one-to-one function ψ where vars(Prθc) ⊆
domain(ψ) ⊆ vars(θc), there exists an extension ψ′

of ψ such that fψ(P ′
1θcσ)

fcψ′ (M ′θa),fψ′ (A′θa)−→ fψ′(Q′
1θa)

is an inferable transition in the symbolic semantics
where vars(Q′

1θa) ⊆ domain(ψ′) ⊆ vars(θa). From the

Sum rule, fψ(P ′
1θcσ) + fψ(P ′

2θcσ)
fcψ′ (M ′θa),fψ′ (A′θa)−→

fψ′(Q′
1θa) is an inferable transition in the sym-

bolic semantics. Since Prθc = choice(P ′
1θcσ, P

′
2θcσ),

U1θa = A′θa, U2θa = M ′θa, U3θa = Q′
1θa,

fψ(Prθc)
fcψ′ (U2θa),fψ′ (U1θa)−→ fψ′(U3θa) is also an infer-

able transition in the symbolic semantics.

Par: If Prθc = par(P1,P2), then the derivation tree is
of the following form:

.

.

.

trans(P ′
1,A

′,M ′,Q′
1) : θcσ → θa

trans(Pr,U1,U2,U3): θc → θa where

i. trans(par(P ′
1,P

′
2), A′, M ′, par(Q′

1,P
′
2)) :−

trans(P ′
1, A′, M ′, Q′

1). is a variant of the first of
the two Par clauses. The symmetric Par clause can be
proved along the same lines;

ii. {P ′
1, P

′
2, A

′, M ′, Q′
1} ∩ ({Pr, U1, U2, U3} ∪ vars(θc)) = ∅;

iii. σ = {P ′
1 = P1, P ′

2 = P2, U1 = A′, U2 = M ′, U3 =
par(Q′

1, P
′
2)}.

Part 3: Let T1 = U3θa. Then from iii, T1 =
par(Q′

1, P
′
2)θa. We need to show that for every

Y ∈ bn(par(Q′
1, P

′
2)θa), Y is a variable, and (Y ∈

bn(par(P1, P2)) or Y 6∈ vars(θc)). Since par(P ′
1θcσ,

P ′
2θcσ) is a valid process expression, bn(P ′

1θcσ) ∩
bn(P ′

2θcσ) = ∅, and hence P ′
2θa = P ′

2θcσ = P2. From
Proposition 1, P ′

2θa is a valid process expression, and
hence by Definition 3, the bound names of P ′

2θa are
variables. By the induction hypothesis, for every Y ∈
bn(Q′

1θa), Y is a variable and (Y ∈ bn(P ′
1θcσ) or Y 6∈

vars(θcσ)). Thus, the bound names of T1 are variables.
Since bn(P ′

1θcσ) ⊆ bn(par(P1,P2))) and bn(P ′
2θa) ⊆

bn(par(P1,P2))) and vars(θc) ⊂ vars(θcσ), 3 holds.
Part 4 can be proved directly from the induction hy-

pothesis.
Part 5: Let T1 = U3θa. Then from iii, T1 =

par(Q′
1, P

′
2)θa. We need to show that T1 is a valid pro-

cess expression. Since par(P1,P2) is a valid process ex-
pression, P1 is a valid process expression, i.e., P ′

1θcσ is
a valid process expression. By the induction hypothesis,
Q′

1θa is a valid process expression. We need to show that
1) fn(Q′

1θa) ∩ bn(P ′
2θa) = ∅; 2) bn(Q′

1θa) ∩ fn(P ′
2θa);

and 3) bn(Q′
1θa) ∩ bn(P ′

2θa) = ∅. We give the proof
of 1). Assume that X ∈ fn(Q′

1θa). Then, from Part 2,
X ∈ fn(P ′

1θcσ) or X ∈ bn(A′θa). Assume that Y ∈
bn(P ′

2θa). Then, as we discussed above, P ′
2θcσ = P ′

2θa
and hence Y ∈ bn(P ′

2θcσ). If X ∈ fn(P ′
1θcσ), then since

par(P ′
1, P

′
2)θcσ is a valid process expression, X 6= Y .

If X ∈ bn(A′θa), then from Part 3, X ∈ bn(P ′
1θcσ) or

22

X 6∈ vars(θcσ). In the former case, since par(P ′
1,P

′
2)θcσ

is a valid process expression, X 6= Y . In the latter case,
since Y ∈ vars(θcσ), X 6= Y .

Part 6: Suppose that trans(Pr,U1,U2,U3): θc → θa
is an answer derived from the above derivation tree in the
logic program D∪MMCtrans. Given a one-to-one func-
tion ψ where vars(Prθc) ⊆ domain(ψ) ⊆ vars(θc), since
vars(P ′

1θcσ) ⊆ vars(Prθc), vars(P ′
1θcσ) ⊆ domain(ψ) ⊆

vars(θc). By the induction hypothesis, there exists an ex-

tension ψ′ of ψ such that fψ(P ′
1θcσ)

fcψ′ (M ′θa),fψ′ (A′θa)−→
fψ′(Q′

1θa) is an inferable transition in the symbolic se-
mantics where vars(Q′

1θa) ⊆ domain(ψ′) ⊆ vars(θa).
Since P ′

2θa = P ′
2θcσ and vars(P ′

2θcσ) ⊆ domain(ψ),
vars(par(Q′

1, P
′
2)θa) ⊆ domain(ψ′) ⊆ vars(θa). By the

fact that Prθc is a valid process expression and by Part 3,
we can infer that bn(A′θa) ∩ fn(P ′

2θcσ) = ∅. So we do
not need to explicitly check this side condition in MMC.
Because ψ′ is a one-to-one function, the side condition of
the Par rule bn(fψ′(A′θa)) ∩ fn(fψ′(P ′

2θcσ)) = ∅ holds.

Therefore, fψ(P ′
1θcσ) | fψ(P ′

2θcσ)
fcψ′ (M ′θa),f

′
ψ(A′θa)−→

fψ′(Q′
1θa) is an inferable transition in the symbolic se-

mantics. Since Prθc = par(P ′
1θcσ,Q

′
1θcσ), U1θa = A′θa,

U2θa = M ′θa, U3θa = Q′
1θa, fψ(Prθc)

fcψ′ (U2θa),fψ′ (U1θa)−→
fψ′(U3θa) is an inferable transition in the symbolic se-
mantics.

Ide: If Prθc = proc(PN), then the derivation tree is of
the following form:

true : θcσσ1 → θcσσ1

.

.

.

def(PN ′,P ′) : θcσ → θcσσ1, trans(P ′,A′,M ′,Q′) : θcσσ1 → θa

def(PN ′,P ′), trans(P ′,A′,M ′, Q′) : θcσ → θa

trans(Pr,U1,U2,U3) : θc → θa

where

i. trans(proc(PN ′),A′,M ′,Q′) :− def(PN ′, P ′),

trans(P ′,A′,M ′,Q′). is a variant of the Ide clause;
ii. (vars(PN ′) ∪ {A′, M ′, P ′, Q′}) ∩ ({Pr, U1, U2, U3} ∪

vars(θc)) = ∅;
iii. σ = mgu((PN, U1, U2, U3), (PN ′, A′, M ′, Q′));
iv. def(PN′′,P′′) is a variant of the definition of PN;
v. (vars(P′′) ∪ vars(PN′′)) ∩ ({P ′, PN ′} ∪ vars(θcσ)) = ∅;
vi. σ1 = mgu((PN′′, P′′), (PN ′, P ′)).

We now show that P ′θcσσ1 is a valid process expres-
sion. By iii and vi, P ′θcσσ1 = P′′σ1. So it suffices to
show that P′′σ1 is a valid process expression. Recall that
all process definitions are valid in MMC and vars(PN′′)
are the only free names occurring in P′′. From v, we can
infer that all bound names of P′′σ1 are variables and
bn(P′′σ1) ∩ vars(θcσ) = ∅. By iii and vi, P′′σ1 is a valid
process expression.

Part 3: Let T1 = U3θa. We need to show that for
every Y ∈ bn(T1), Y is a variable and (Y ∈ bn(PN)
or Y 6∈ vars(θc)). Since PN does not contain bound
names, we need to show that Y is a variable and Y 6∈

vars(θc). From iii, T1 = Q′θa. By the induction hypoth-
esis, Y is a variable and (Y ∈ bn(P ′θcσσ1), or V 6∈
vars(θcσσ1)). If Y ∈ bn(P ′θcσσ1), then since P ′θcσσ1 =
P′′σ1 and bn(P′′σ1) ∩ vars(θc) = ∅, Y 6∈ vars(θc). If
Y 6∈ vars(θcσσ1), then since vars(θc) ⊂ vars(θcσσ1),
Y 6∈ vars(θc).

Part 4 can be proved directly from the induction hy-
pothesis.

Part 5: Let T1 = U3θa. We need to show that T1 is a
valid process expression. From the induction hypothesis,
Q′θa is a valid process expression. Since T1 = Q′θa, T1
is a valid process expression.

Part 6: Suppose that trans(Pr,U1,U2,U3): θc →
θa is an answer derived from the above derivation
tree in the logic program D∪MMCtrans. We can con-
struct an extension ψ1 of ψ such that ψ1 maps
all bound variables of P ′θcσσ1 to π-calculus names
which do not occur in range(ψ). Since vars(Prθc) ⊆
domain(ψ) ⊆ domain(θc) and fn(P ′θcσσ1) = fn(Prθc),
vars(P ′θcσσ1) ⊆ domain(ψ1) ⊆ vars(θcσσ1). By
the induction hypothesis, there exists an extension

ψ′ of ψ1 such that fψ1(P
′θcσσ1)

fcψ′ (M ′θa),fψ′ (A′θa)−→
fψ′(Q′θa) is an inferable transition in the sym-
bolic semantics where vars(Q′θa) ⊆ domain(ψ′) ⊆
vars(θa). Assume that PN = r(Y1, . . . , Yn) and the
process definition for PN is def(r(X1, . . . , Xn),P),
then r(η(X1), . . . , η(Xn)))

def= η(P) is the corre-
sponding π-calculus process definition. Since P ′θcσσ1

is alpha-equivalent to P{Y1, . . . , Yn/X1, . . . , Xn} and
η is a one-to-one function, and by the way that
ψ1 is constructed, fψ1(P

′θcσσ1) is alpha-equivalent
to η(P){fψ(Y1), . . . , fψ(Yn)/η(X1), . . . , η(Xn)}. There-

fore η(P)δ
fcψ′ (M ′θa),fψ′ (A′θa)−→ fψ′(Q′θa) is an in-

ferable transition in the symbolic semantics where
δ = {fψ(Y1), . . . , fψ(Yn)/η(X1), . . . , η(Xn)}. Thus,

fψ(proc(r(Y1, . . . , Yn)))
fcψ′ (M ′θa),fψ′ (A′θa)−→ fψ′(Q′θa)

is also an inferable transition in the symbolic se-
mantics. Finally, since Prθc = proc(r(Y1, . . . , Yn)),
U1θa = A′θa, U2θa = M ′θa and U3θa = Q′θa,

fψ(Prθc)
fcψ′ (U2θa),fψ′ (U1θa)−→ fψ′(U3θa) is an inferable

transition in the symbolic semantics.

Match: If Prθc = match(X= Y, P), then we obtain the
following two derivation trees.

1)

.

.

.

X′ == Y ′ : θcσ → θcσ, trans(P ′, A′,ML′, Q′) : θcσ → θa

X′ == Y ′, trans(P ′, A′,ML′, Q′) : θcσ → θa

trans(Pr, U1, U2, U3) : θc → θa

2)

.

.

.

X′\ == Y ′ : θcσ1 → θcσ1, trans(P ′, A′,M ′, Q′) : θcσ1 → θa1

X′\ == Y ′, trans(P ′, A′,M ′, Q′) : θcσ1 → θa1

trans(Pr, U1, U2, U3) : θc → θa1

where

23

i. trans(match(X ′ = Y ′,P ′), A′, ML′, Q′) :− X ′ ==
Y ′, trans(P ′, A′, ML′, Q′). and trans(match(X ′ =
Y ′, P ′), A′, (X ′ = Y ′, M ′), Q′) :− X ′\ == Y ′,

trans(P ′, A′, M ′, Q′). are variants of the Match
clause;

ii. {X ′, Y ′, P ′, A′, ML′, Q′} ∩ ({Pr, U1, U2, U3} ∪ vars(θc))
= ∅ (derivation tree 1)); {X ′, Y ′, P ′, A′, M ′, Q′} ∩
({Pr, U1, U2, U3} ∪ vars(θc)) = ∅ (derivation tree 2));

iii. σ = {X ′ = X, Y ′ = Y, P ′ = P, U1 = A′, U2 = ML′, U3 =
Q′} (derivation tree 1)); σ1 = {X ′ = X, Y ′ = Y, P ′ =
P, U1 = A′, U2 = (X ′ = Y ′, M ′), U3 = Q′} (derivation
tree 2)).

Parts 3, 4 and 5 for these two derivation trees can be
proved directly by the induction hypothesis.

Part 6: Suppose that trans(Pr, U1, U2, U3):
θc → θa is derived from derivation tree 1) in the
logic program D∪MMCtrans where X ′θcσ is identical
to Y ′θcσ. By the induction hypothesis, given a one-
to-one function ψ where vars(Prθc) ⊆ domain(ψ) ⊆
vars(θc), there exists an extension ψ′ of ψ such that

fψ(P ′θcσ)
fcψ′ (ML′θa),fψ′ (A′θa)−→ fψ′(Q′θa) is an inferable

transition in the symbolic semantics where vars(Q′θa) ⊆
domain(ψ′) ⊆ vars(θa). Since ψ is a one-to-one function,
fψ(X ′θcσ) is equal to fψ(Y ′θcσ) and hence [fψ(X ′θcσ) =

fψ(Y ′θcσ)]fψ(P ′θcσ)
fcψ′ (ML′θa),fψ′ (A′θa)−→ fψ′(Q′θa) is

an inferable transition in the symbolic semantics. Since
Prθc = match(X ′ = Y ′, P ′)θcσ, U ′

1θa = A′θa, U ′
2θa =

ML′θa, and U ′
3θa = Q′θa, fψ(Prθc)

fcψ′ (U2θa),fψ′ (U1θa)−→
fψ′(U3θa) is also an inferable transition in the sym-
bolic semantics. The case where trans(Pr, U1, U2,
U3): θc → θa is derived from derivation tree 2) can be
similarly proved.

Res: If Prθc = nu(Y,P), then the derivation tree is of
the following form:

.

.

.

trans(P ′,A′,M ′,Q′) : θcσ → θ1, side cond : θ1 → θa

trans(P ′,A′,M ′,Q′), side cond : θcσ → θa

trans(Pr, U1, U2, U3) : θc → θa

where

i. trans(nu(Y ′,P ′), A′, M ′, nu(Y ′,Q′)) :−
trans(P ′, A′, M ′, Q′), side cond. is a variant of
the Res clause;

ii. ({Y ′, P ′, A′, M ′, Q′} ∩ ({Pr, U1, U2, U3} ∪ vars(θc))) = ∅;
iii. σ = (Y ′ = Y, P ′ = P, U1 = A′, U2 = M ′, U3 =

nu(Y ′, Q′)).

Here “side cond” refers to the queries
not in action(Y ′, A′) and not in constraint(Y ′,
M ′). We now show that Q′θ1 = Q′θa. Note that
Y ′θ1 = Y. Let A′θ1 = in(X, Z). We give the derivation
tree for the query not in action(Y ′,A′). The proof is
similar when A′θ1 is an output or internal action.

Y ′′\ == X′′ : θ1σ2 → θ1σ2, Y ′′\ == Z′′ : θ1σ2 → θ1σ2

Y ′′\ == X′′, Y ′′\ == Z′′ : θ1σ2 → θ1σ2

not in action(Y ′, A′) : θ1 → θ1σ2

where

iv. not in action(Y ′′, in(X ′′, Z′′)) is a variant of the
not in action clause;

v. {Y ′′, X ′′, Z′′} ∩ ({Y ′, A′} ∪ vars(θ1)) = ∅;
vi. σ2 = {Y ′′ = Y, X ′′ = X, Z′′ = Z};
vii. ∃δ such that θ1σ2δ is consistent, Y ′′θ1σ2δ\ = X ′′θ1σ2δ

and Y ′′θ1σ2δ\ = Z′′θ1σ2δ;

Clearly, σ2 does not affect names in Q′θ1 and hence
Q′θ1 = Q′θ1σ2. Similarly, we can show that the query
not in constraint(A′,M ′) does not affect names in
Q′θ1σ2. Thus, Q′θ1 = Q′θa. Similarly, A′θ1 = A′θa and
M ′θ1 = M ′θa.

Part 3: Let T1 = U3θa. From iii, T1 = nu(Y ′, Q′)θa.
We need to show that for every Y ∈ bn(nu(Y ′, Q′)θa), Y
is a variable and (Y ∈ bn(nu(Y, P)) or Y 6∈ vars(θc)).
If Y = Y ′θa, then from Part 1, Y ′θa = Y and hence
Y = Y. Since nu(Y,P) is a valid process expression,
Y is a variable. Further, since Y ∈ bn(nu(Y, P)), Y ∈
bn(nu(Y, P)). If Y ∈ bn(Q′θa), then since Q′θa = Q′θ1,
from the induction hypothesis, for every V ∈ bn(Q′θa),
V is a variable and (V ∈ bn(P ′θcσ) or V 6∈ vars(θcσ)).
Thus Y is a variable. Since bn(P ′θcσ) ⊆ bn(nu(Y, P)),
and vars(θc) ⊆ vars(θcσ), Y ∈ bn(nu(Y, P)) or Y 6∈
vars(θc).

Part 4: We need to show that bn(nu(Y ′, Q′)θa) ∩
bn(A′θa) = ∅. It suffices to show that Y ′θa 6∈ bn(A′θa)
and bn(Q′θa) ∩ bn(A′θa) = ∅. By the induction hy-
pothesis, bn(Q′θ1) ∩ bn(A′θ1) = ∅. Since A′θ1 = A′θa
and Q′θ1 = Q′θa, bn(Q′θa) ∩ bn(A′θa) = ∅. By vii,
Y ′θ1 6∈ vars(A′θ1). This means that Y ′θa 6∈ vars(A′θa).
Thus, 4 holds.

Part 5: Let T1 = U3θa. We need to show that T1
is a valid process expression. By the induction hypoth-
esis, Q′θa is a valid process expression. Since T1 =
nu(Y ′, Q′)θa, it suffices to show that Y ′θa 6∈ bn(Q′θa),
i.e., Y 6∈ bn(Q′θa). By Part 3, for every V ∈ bn(Q′θa),
V ∈ bn(P ′θcσ) (i.e., V ∈ bn(P)) or V 6∈ vars(θcσ). If
V ∈ bn(P), then since nu(Y,P) is a valid process expres-
sion, Y 6∈ bn(P) and hence Y 6= V . If V 6∈ vars(θcσ)),
then since Y ∈ vars(θcσ), Y 6= V .

Part 6: Suppose that trans(Pr,U1,U2,U3): θc →
θa is derived from the above derivation tree in the
logic program D∪MMCtrans. By the induction hypoth-
esis, given a one-to-one function ψ where var(Prθc) ⊆
domain(ψ) ⊆ vars(θc), there exists an extension ψ′

of ψ such that fψ(P ′θcσ)
fcψ′ (M ′θ1),fψ′ (A′θ1)−→ fψ′(Q′θ1)

is an inferable transition in the symbolic semantics
where vars(Q′θ1) ⊆ domain(ψ′) ⊆ vars(θ1). As dis-
cussed above, Q′θ1 = Q′θa, A′θ1 = A′θa, and

M ′θ1 = M ′θa. Thus fψ(P ′θcσ)
fcψ′ (M ′θa),fψ′ (A′θa)−→

fψ′(Q′θa) is an inferable transition where vars(Q′θa) ⊆
domain(ψ′) ⊆ vars(θa). Since ψ′ is a one-to-one func-
tion, side conditions fψ′(Y) 6∈ n(fψ′(A′θa)) (correspond-
ing to not_in_action/2) and fψ′(Y) 6∈ n(fψ′(M ′θa))
(corresponding to not_in_constraint/2) hold. Since

24

ψ′ is an extension of ψ, fψ(Y) = fψ′(Y). From

the Res rule, (νfψ(Y))fψ(P ′θcσ)
fcψ′ (M ′θa),fψ′ (A′θa)−→

(νfψ′(Y))fψ′(Q′θa) is an inferable transition. Since Prθc
= nu(Y, P ′θcσ), U1θa = A′θa, U2θa = M ′θa, and U3θa =

nu(Y, Q′θa), fψ(Prθc)
fcψ′ (U2θa),fψ′ (U1θa)−→ fψ′(U3θa) is

also an inferable transition in the symbolic semantics.

Open: The proof is similar to that for the Res rule.

Close: The proof for the Close rule is more compli-
cated than the others. There are four cases to consider,
corresponding to the four defining clauses for predicate
comp_bound/2. We treat only the first as the proofs of
other cases are similar. Let Prθc = par(P1,P2) and as-
sume that a Close rule is applied in the last step of
the derivation. In this case, the derivation tree is of the
following form:

.

.

.

trans(P ′
1,A

′,M ′,Q′
1) : θcσ → θcσσ1,

trans(P ′
2,B

′,N ′,Q′
2) : θcσσ1 → θ1,

“side cond′′ : θ1 → θa

trans(P ′
1,A

′,M ′,Q′
1), trans(P

′
2,B

′,N ′,Q′
2), “side cond′′ : θcσ → θa

trans(Pr,tau,U1,U2) : θc → θa

where

i. trans(par(P ′
1,P

′
2),tau,MNL′,nu(W ′,par(Q′

1,Q
′
2)))

:− trans(P ′
1,A

′, M ′, Q′
1), trans(P ′

2, B′, N ′,

Q′
2), side cond. is a variant of the Close clause;

ii. ({P ′
1, P

′
2, A

′, B′, M ′, N ′, W ′, MNL′, Q′
1, Q

′
2} ∩

({Pr, U1, U2} ∪ vars(θc))) = ∅;
iii. σ = (P ′

1 = P1, P ′
2 = P2, U1 = MNL′, U2 =

nu(W ′, par(Q′
1, Q

′
2))).

Here, “side cond” refers to the query comp bound(A′,
B′, U3, U4).

We first show that P ′
1θcσ and P ′

2θcσσ1 are valid pro-
cess expressions, which we are required to do to induc-
tively prove Parts 1-6 for this case. In particular, this will
enable us to prove that par(Q′

1, Q
′
2)θ1, par(Q

′
1,Q

′
2)θa

and nu(W ′,par(Q′
1,Q

′
2))θa are valid process expres-

sions (Part 5).
Since process par(P1,P2) is a valid process expres-

sion, from Proposition 1, P1 and P2 are valid process
expressions, i.e., P ′

1θcσ and P ′
2θcσ are valid process ex-

pressions. Further, since P ′
1θcσ and P ′

2θcσ have only free
names in common, bn(P ′

2θcσ) = bn(P ′
2θcσσ1). From

Part 1, free names do not change in the evaluation,
which gives us P ′

2θcσσ1 = P ′
2θcσ and hence P ′

2θcσσ1 is
a valid process expression. By the induction hypothesis,
Q′

1θcσσ1 and Q′
2θ1 are valid process expressions.

Next, we show that Q′
1θcσσ1 = Q′

1θ1. This
is achieved by first proving that bn(Q′

1θcσσ1) ∩
bn(P ′

2θcσσ1) = ∅, i.e., by proving that bn(Q′
1θcσσ1) ∩

bn(P ′
2θcσ) = ∅. For every V1 ∈ bn(Q′

1θcσσ1), from
Part 3, V1 ∈ bn(P ′

1θcσ) (i.e., V1 ∈ bn(P1)) or V1 6∈
vars(θcσ). For every V2 ∈ bn(P ′

2θcσ), V2 ∈ bn(P2). If

V1 ∈ bn(P1), then since par(P1,P2) is a valid pro-
cess expression, V1 6= V2. If V1 6∈ vars(θcσ), then
since V2 ∈ vars(θcσ), V1 6= V2. Thus, bn(Q′

1θcσσ1) ∩
bn(P ′

2θσσ1) = ∅. By Part 1, we know that the free
names of Q′

1θcσσ1 are not affected by the evaluation of
query trans(P ′

2,B
′,N ′,Q′

2). Thus Q′
1θcσσ1 = Q′

1θ1.
Similarly, A′θcσσ1 = A′θ1.

We now proceed with the proofs of Parts 3-6.
Part 3: Let T1 = U2θa. We need to show

that for every V ∈ bn(T1), V is a variable, and
(V ∈ bn(par(P1, P2)) or V 6∈ θc). Since T1 =
nu(W ′, par(Q′

1, Q
′
2))θa, V = W ′θa (i.e., V = W), or

V ∈ bn(Q′
1θa) or V ∈ bn(Q′

2θa). We first show that
bn(Q′

1θa) = bn(Q′
1θ1) and bn(Q′

2θa) = bn(Q′
2θ1).

Assume that A′θ1 = outbound(X, W) and B′θ1
= in(Y, Z). The derivation tree for the query
comp bound(A′, B′, U3, U4) is the following:

X′′ == Y ′′ : θ1σ2 → θ1σ2

comp bound(A′, B′, U3, U4) : θ1 → θ1σ2

where

iv. comp bound(outbound(X ′′,W ′′), in(Y ′′,W ′′), W ′′,

true) :− X ′′ == Y ′′. is a variant of the (first clause
of) Close rule;

v. ({X ′′, Y ′′, W ′′} ∩ ({A′, B′, U3, U4} ∪ vars(θc))) = ∅;
vi. σ2 = (X ′′ = X, W ′′ = W, Y ′′ = Y, W ′′ = Z, U3 = W ′′, U4 =

true);
vii. θ1σ2 = θa.

From iv - vi, Q′
1θa = Q′

1θ1 and Q′
2θa = Q′

2θ1σ2. Thus
bn(Q′

1θa) = bn(Q′
1θ1) holds. Further, since Z 6∈ bn(Q′

2θ1)
(by Part 4), bn(Q′

2θa) = bn(Q′
2θ1).

If V = W, then since W is a bound name in action
outbound(X, W), by the induction hypothesis, W is a
variable, and (W ∈ bn(P1), or W 6∈ vars(θcσ)). Since
bn(P1) ⊆ bn(par(P1, P2)), and vars(θc) ⊆ vars(θcσ),
W ∈ bn(par(P1, P2)) or W 6∈ vars(θc). If V ∈ bn(Q′

1θ1),
then by the induction hypothesis, V is a variable,
and (V ∈ bn(P ′

1θcσ) (i.e., V ∈ bn(P1))) or V 6∈
vars(θcσ). Since bn(P1) ⊆ bn(par(P1, P2) and vars(θc) ∈
vars(θcσ), V ∈ bn(par(P1, P2) or V 6∈ vars(θc). Simi-
larly, we can prove the case where V ∈ bn(Q′

2θ1).
Part 4 holds because bn(tau) = ∅.
Part 5: Let T1 = U2θa. We need to prove

that T1 is a valid process expression. From iii,
T1 = nu(W ′, par(Q′

1, Q
′
2))θa. First, we prove that

par(Q′
1, Q

′
2)θ1 is a valid process expression. It suffices

to show the following:

– fn(par(Q′
1, Q

′
2)θ1) ∩ bn(par(Q′

1, Q
′
2)θ1) = ∅.

We need to prove (a)fn(Q′
1θ1) ∩ bn(Q′

2θ1) = ∅ and
(b)bn(Q′

1θ1)∩fn(Q′
2θ1) = ∅. Below, we give the proof

of (a). (b) can be similarly proved.
Here we consider only the case when none
of fn(Q′

1θ1), fn(Q′
2θ1), bn(Q′

1θ1), and bn(Q′
2θ1) are

empty, since, otherwise, the above argument holds
immediately. Let X be a free name of process Q′

1θ1.
By Part 2, X is either a free name of process P ′

1θcσ,

25

i.e., a free name of process P1, or a bound name of
action A′θ1. If Y is a bound name of process Q′

2θ1,
by Part 3, Y ∈ bn(P ′

2θcσσ1) or Y 6∈ vars(θcσσ1).
We now consider the case where X is a free name of
process P1.
– If Y ∈ bn(P ′

2θcσσ1), then as described above, Y ∈
bn(P ′

2θcσ), i.e., Y ∈ bn(P2). Since par(P1,P2) is
a valid process, X 6= Y .

– If Y 6∈ vars(θcσσ1), then since X ∈ vars(θcσσ1)
or X is not a variable, X 6= Y .

Similarly, we can prove the case where X is a bound
name of action A′θ1.

– ubn(par(Q′
1θ1, Q

′
2θ1)) = bn(par(Q′

1θ1, Q
′
2θ1)).

This suffices to show bn(Q′
1θ1) ∩ bn(Q′

2θ1) = ∅. The
proof is similar to that of (a).

Next, we show that process par(Q′
1,Q

′
2)θa is a valid

process expression. Similar to the above proof, we need
to establish the following three equations: bn(Q′

1θa) ∩
fn(Q′

2θa) = ∅, fn(Q′
1θa)∩bn(Q′

2θa) = ∅, and bn(Q′
1θa)∩

bn(Q′
2θa) = ∅. Assume that A′θcσσ1 = outbound(X, W)

and B′θ1 = in(Y, Z). Then bn(Q′
1θa) = bn(Q′

1θ1) and
fn(Q′

2θa) ⊆ (fn(Q′
2θ1) ∪ {W}). Since W /∈ bn(Q′

1θ1) (by
Part 4) and par(Q′

1, Q′
2)θ1 is a valid process expres-

sion, par(Q′
1,Q

′
2)θa is a valid process expression.

Finally, we show that nu(W ′,par(Q′
1,Q

′
2))θa is a

valid process expression. Since W ′θa = W, it suffices to
show that W 6∈ bn(par(Q′

1, Q
′
2)θa), i.e, W 6∈ bn(Q′

1θa)
and W 6∈ bn(Q′

2θa). Since Q′
1θa = Q′

1θcσσ1, by Part 4,
W 6∈ bn(Q′

1θa). We now show that W 6∈ bn(Q′
2θa).

From Part 3, W ∈ bn(P ′
1θcσ) (i.e., W ∈ bn(P1)) or

W 6∈ var(θcσ). We consider the case where W ∈ bn(P1).
Since bn(Q′

1θa) = bn(Q′
1θ1), from Part 3, for every

V ∈ bn(Q′
2θa), V ∈ bn(P ′

2θcσσ1) (i.e., V ∈ bn(P2)) or
V 6∈ vars(θcσσ1). If V ∈ bn(P2), then since par(P1, P2)
is a valid process expression, W 6= V . If V 6∈ vars(θcσσ1),
then since W ∈ vars(θcσσ1), W 6= V .

Part 6: Suppose that trans(Pr, tau, U1, U2):
θc → θa is an answer derived from the above
derivation tree in the logic program D∪MMCtrans.
By the induction hypothesis, given a one-to-one
function ψ where vars(Prθc) ⊆ domain(ψ) ⊆
vars(θc), there exists an extension ψ′ of ψ such

that fψ(P ′
1θcσ)

fcψ′ (M ′θcσσ1),fψ′ (A′θcσσ1)−→ fψ′(Q′
1θcσσ1)

and fψ(P ′
2θcσσ1)

fcψ′ (N ′θ1),fψ′ (B′θ1)−→ fψ′(Q′
2θ1) are in-

ferable transitions in the symbolic semantics where
vars(Q′

1θcσσ1) ⊆ domain(ψ′) ⊆ vars(θcσσ1) and
vars(Q′

2θ1) ⊆ domain(ψ′) ⊆ vars(θ1). Assume that
A′θcσσ1 = outbound(X, W), B′θ1 = in(Y, Z) and X = Y.
Then, since ψ′ is a one-to-one function, fψ′(X) and fψ′(Y)
are the same π-calculus name. Note that by apply-
ing alpha-conversion to rule Close, rule Close can be
rewritten as follows:

P1
M,xνw−→ Q1, P2

N,y(z)−→ Q2

P1|P2
MNL,τ−→ (νw)(Q1|Q2{w/z})

L =
{
∅ if x = y;
x = y otherwise.

where w 6∈ fn(Q2).

Thus fψ(P ′
1θcσ) | fψ(P ′

2θcσσ1)
fcψ′ (M ′θcσσ1N

′θ1),τ−→
(νfψ′(W))(fψ′(Q′

1θcσσ1) | fψ′(Q′
2θ1{W/Z})) is an infer-

able transition in symbolic semantics. Because names in
M ′θcσσ1 and N ′θ1 are free names of P ′

1θcσ and P ′
2θcσσ1

respectively, M ′θcσσ1 = M ′θa and N ′θ1 = N ′θa. Fur-
ther, as discussed above, P ′

2θcσσ1 = P ′
2θcσ, Q′

1θcσσ1 =
Q′

1θa and Q′
2θ1{W/Z} = Q′

2θa. Thus fψ(P ′
1θcσ) |

fψ(P ′
2θcσ)

fcψ′ (M ′N ′)θa,τ−→ (νfψ′(W)) (fψ′(Q′
1θa) |

fψ′(Q′
2θa)) is an inferable transition in symbolic se-

mantics where vars(par(Q′
1, Q

′
2)θa) ⊆ domain(ψ′) ⊆

vars(θa). Since Prθc = par(P ′
1, P

′
2)θcσ, fψ′(tau) = τ ,

U1θa = (M ′N ′)θa, and U2θa = nu(W, par(Q′
1, Q

′
2))θa,

fψ(Prθc)
fcψ′ (U1θa),fψ′ (tau)

−→ fψ′(U2θa) is also an infer-
able transition in symbolic semantics. The proofs for the
other clauses of comp_bound/2 are similar.

Com: The proof is similar to that for clause Close. 2

B Proof of Theorem 3

We first present a constructive symbolic semantics for
the π-calculus where (i) alpha-conversion is limited to
the application of the Ide inference rule of Figure 1,
and (ii) when applying the Ide rule, bound names are al-
ways renamed to fresh names not previously encountered
in the derivation. We show that every derivation deriv-
able in the original symbolic semantics has an equivalent
derivation in the constructive semantics.

Next, we show that every transition derivable in the
constructive semantics has a corresponding transition
derivable in MMC such that the names of π-calculus
process expressions have a one-to-one mapping to the
names of the corresponding MMC process expressions.

We then prove the completeness of the constructive
semantics of Figure 7 with respect to the semantics of
Figure 1. That is, whenever there is a derivation in the
original semantics, then there is an equivalent derivation
in the constructive semantics. We first establish several
fundamental properties of derivations in the constructive
semantics used in the proof of completeness.

Proposition 5 Let Dπ be a set of π-calculus process
definitions and P be a valid process expression. Let V1

be a set of names where (n(P)∪n(Dπ)) ⊆ V1. If V1, V2 :

P
M,α7−→ P ′ is a derivation in the semantics in Figure 7,

then the following hold:

1. For every y ∈ (fn(α) ∪ n(M)), y ∈ fn(P); for every
y ∈ fn(P ′), y ∈ fn(P) or y ∈ bn(α)

2. For every y ∈ (bn(α)∪ bn(P ′)), y ∈ bn(P) or y 6∈ V1

3. bn(α) ∩ bn(P ′) = ∅
4. V1 ⊆ V2

5. P ′ is a valid process expression.

26

Proof: The proof is by induction on the number of steps
used to derive a transition according to the symbolic se-
mantics of Figure 7. Part 4 is a straightforward conse-
quence of the way the sets V1 and V2 are maintained
and manipulated by the rules of Figure 7. The proofs
for Parts 1, 2, 3, and 5 can be carried out along the lines
of the proof for Theorem 2 and are omitted. 2

Theorem 6 (Completeness of Constructive Se-
mantics) Let Dπ be a set of π-calculus process defini-
tions and S be a process expression. Let T be a valid
process expression and σ be a renaming function such
that Tσ ≡ S. Also, let V1 be a set of names such that
(n(T) ∪ n(Dπ)) ⊆ V1 and domain(σ) ⊆ V1. If S

M,α−→ S′

is a derivation in the semantics of Figure 1, then there

exists a derivation V1, V2 : T
M ′,α′

7−→ T ′ in the semantics
of Figure 7 and a renaming function σ′ such that

– σ′(v′) =

 v if α′ = x′(v′) and α = σ(x′)(v),
or α′ = x′νv′ and α = σ(x′)νv;

σ(v′) otherwise.

– M ′σ′ = M and T ′σ′ ≡ S′

– n(T ′) ⊆ V2 and domain(σ′) ⊆ V2

Proof By induction on the number of steps used to de-
rive a transition according to the original symbolic se-
mantics of Figure 1. We give the proofs for Pref, Ide,
Par, Open, Com, and α-conversion rules. The other
rules can be similarly proved.

Prefix: Let S = α.P . We first consider the case where
α is an output or internal prefix. Since Tσ ≡ S, T is of
the form α′.P ′ where α′σ = α and P ′σ ≡ P . Assume
that α.P

true ,α−→ Q is a derivation in the semantics of
Figure 1. Since the Prefix rule of Figure 7 is an axiom,

V1, V1 : α′.P ′ true ,α′

7−→ P ′ is a derivation in the semantics
of Figure 7. In this case, σ = σ′. Since n(α′.P ′) ⊆ V1,
n(P ′) ⊆ V1. Further, since domain(σ) ⊆ V1, the theorem
holds.

If α is an input action x(y) and α′ = x′(y′) such that
x = σ(x′), then there exists a renaming function σ′ such

that σ′(v′) =
{
y if v′ = y′;
σ(v′) otherwise.

Clearly, α′σ′ = α. Since fn(P ′) ⊆ fn(α′.P ′) ∪ {y′}, from
the definition of σ′, P ′σ′ ≡ P . Since n(α′.P ′) ⊆ V1,
n(P ′) ⊆ V1. Further, since domain(σ′) = domain(σ),
domain(σ′) ⊆ V1.

Ide: Let S = r(y1, . . . , yn) and assume that
T = r(v1, . . . , vn). Then, since Tσ ≡ S, σ(vi) = yi

for 1 ≤ i ≤ n. Assume that r(y1, . . . , yn)
M,α−→ S′ is a

derivation in the semantics of Figure 1 derived from
P{y1, . . . , yn/x1, . . . , xn}

M,α−→ S′ where r(x1, . . . , xn)
def=

P is a definition. Let ϑ = {z′i/zi | 1 ≤ i ≤ k} where
{z1, . . . , zk} = bn(P) and z′i 6∈ V1 and z′i are pairwise
distinct. Also, let P ′ = P{y1, . . . , yn/x1, . . . , xn}ϑ

and V2 = V1 ∪ {z′1, . . . , z′k}. It is easy to see
that n(P ′) ⊆ V2. Since all definitions are valid,
P ′ϑ is valid. Further, since yi are the only free
names in both P{y1, . . . , yn/x1, . . . , xn} and in P ′,
P ′ ≡ P{y1, . . . , yn/x1, . . . , xn}. Let σ1 be an exten-
sion of σ such that P ′σ1 = P{y1, . . . , yn/x1, . . . , xn}
and domain(σ1) ⊆ V2. By the induction hypothesis,

there exists a derivation V2, V3 : P ′ M
′,α′

7−→ T ′ in the se-
mantics of Figure 7 and a renaming function σ′ such that

σ′(v′) =

 v if α′ = x′(v′) and α = σ1(x′)(v),
or α′ = x′νv′ and α = σ1(x′)νv;

σ1(v′) otherwise.

M ′σ′ = M , α′σ′ = α, T ′σ′ ≡ S′, n(T ′) ⊆ V3,
and domain(σ′) ⊆ V3. Thus there exists a derivation

r(y1, . . . , yn)
M ′,α′

7−→ T ′ in the semantics of Figure 7 and
σ′ described above such that M ′σ′ = M , α′σ′ = α,
T ′σ′ ≡ S′, n(T ′) ⊆ V3, and domain(σ′) ⊆ V3.

Par: Let S = P1 | P2 and assume that the Par rule
is applied in the last step of the derivation. Since
Tσ ≡ S, T = Q1 | Q2 where Q1σ ≡ P1 and Q2σ ≡ P2.

Assume that P1 | P2
M,α−→ P ′

1 | P2 is a derivation in the

semantics of Figure 1 derived from P1
M,α−→ P ′

1 where
bn(α)∩P2 = ∅. Since T is a valid process expression, Q1

and Q2 are valid. Further, since n(T) ⊆ V1, n(Q1) ⊆ V1.
By the induction hypothesis, there exist a derivation

V1, V2 : Q1
M ′,α′

7−→ Q′
1 in the semantics of Figure 7 and a

renaming function σ′ such that

σ′(v′) =

 v if α′ = x′(v′) and α = σ(x′)(v),
or α′ = x′νv′ and α = σ(x′)νv;

σ(v′) otherwise.

M ′σ′ = M , α′σ′ = α, Q′
1σ

′ ≡ P ′
1, n(Q′

1) ⊆ V2 and
domain(σ′) ⊆ V2. Since n(T) ⊆ V1 and n(Q′

1) ⊆ V2 and
V1 ⊆ V2, n(Q′

1 | Q2) ⊆ V2. Further, since Q′
1σ

′ ≡ P ′
1 and

Q2σ
′ ≡ P2, (Q′

1 | Q2)σ′ ≡ P ′
1 | P2. We now show that

bn(α′)∩fn(Q2) = ∅. Let x ∈ bn(α′). From Proposition 5,
x ∈ bn(Q1) or x 6∈ V1. If x ∈ bn(Q1), then since Q1 | Q2

is a valid process expression, x 6∈ fn(Q2). If x 6∈ V1,
then since n(Q2) ⊆ V1, x 6∈ fn(Q2). Thus V1, V2 : Q1 |
Q2

M ′,α′

7−→ Q′
1 | Q2 is a derivation in the semantics of

Figure 7 where M ′σ′ = M , α′σ′ = α, (Q′
1 | Q2)σ′ ≡

(P ′
1 | P2), n(Q′

1 | Q2) ⊆ V2 and domain(σ′) ⊆ V2.

Open: Let S = (νy)P and assume that the Open rule is
applied in the last step of the derivation. Since Tσ ≡ S,
T is of the form (νy′)Q. Assume that (νy)P

M,xy−→ P ′ is
a derivation in the semantics of Figure 1 derived from
P

M,xy−→ P ′ where y 6∈ n(x,M). Since T is a valid process
expression, Q is valid. Further, since n(T) ⊆ V1, n(Q) ⊆
V1. Let σ1 be a renaming function such that

σ1(v′) =
{
y if v′ = y′

σ(v′) otherwise.

27

Then Qσ1 ≡ P . By the induction hypothesis, there

exist a derivation V1, V2 : Q
M ′,x′y′

7−→ Q′ in the seman-
tics of Figure 7 and a renaming function σ′ = σ1 such
that M ′σ′ = M , α′σ′ = α, Q′σ′ ≡ P ′, n(Q′) ⊆ V2 and
domain(σ′) ⊆ V2. We now show that y′ 6∈ n(x′,M ′).
From Proposition 5, x′ ∈ fn((νy′)Q) and n(M ′) ⊆
fn((νy′)Q). Since (νy′)Q is a valid process expression,
y′ 6∈ n(x′,M ′). Thus there exists a derivation V1, V2 :

(νy′)Q
M ′,x′νy′

7−→ Q′ derived in the semantics in Figure 7
and a renaming function σ′ described above such that
M ′σ′ = M , α′σ′ = α, Q′σ′ ≡ P ′, n(Q′) ⊆ V2 and
domain(σ′) ⊆ V2.

Com: Let S = P1 | P2, and assume that the Com
rule is applied in the last step of derivation. Since
Tσ ≡ S, Tσ = Q1 | Q2 where Q1σ ≡ P1 and

Q2σ ≡ P2. Assume that P1 | P2
MN,τ−→ P ′

1{v/z} | P ′
2

is a derivation in the semantics of Figure 1 derived

from P1
M,y(z)−→ P ′

1 and P2
N,xv−→ P ′

2 where x = y. Since
T is a valid process expression, Q1 and Q2 are valid.
Since n(T) ⊆ V1, n(Q2) ⊆ V1 and hence n(Q2) ⊆ V2.
By the induction hypothesis, there exist derivations

V1, V2 : Q1
M ′,y′(z′)7−→ Q′

1 and V2, V3 : Q2
N ′,x′v′

7−→ Q′
2 in

the semantics of Figure 7 and σ′ such that

σ′(w′) =
{
z if w′ = z′;
σ(w′) otherwise.

M ′σ′ = M , N ′σ′ = N , (y′(z′))σ′ = y(z), (x′v′)σ′ =
xv, Q′

1σ
′ ≡ P ′

1, Q
′
2σ

′ ≡ P2, (n(Q′
1) ∪ n(Q′

2)) ⊆ V3 and
domain(σ′) ⊆ V3. Since v′ ∈ fn(x′v′), by Proposition 5,
v′ ∈ fn(Q′

2), and hence v′ ∈ V3. Thus, n(Q′
1{v′/z′} |

Q′
2) ⊆ V3. From Proposition 5, z′ 6∈ bn(Q′

1) and hence
z′ 6∈ bn(Q′

1{v′/z′}). Thus, Q′
1{v′/z′}σ′ = Q′

1{v′/z′}σ.
Further, since σ(v′) = v, Q′

1{v′/z′}σ ≡ P ′
1{v/z}. From

Proposition 5, we can infer that z′ 6∈ n(Q′
2). Thus,

Q′
2σ

′ = Q′
2σ. Also, since names in M ′ and N ′ are free

names of Q1 and Q2, respectively, and Q1 | Q2 is a valid
process expression, z′ 6∈ n(M ′) and z′ 6∈ n(N ′). Thus,
M ′N ′σ = M ′N ′σ′. Therefore, there exists a derivation

V1, V3 : Q1 | Q2
M ′N ′,τ7−→ Q′

1{v′/z′} | Q′
2 in the seman-

tics of Figure 7 and σ′ = σ such that M ′N ′σ′ = MN ,
(Q′

1{v′/z′} | Q′
2)σ

′ ≡ (P ′
1{v/z} | P ′

2), n(Q′
1{v′/z′} |

Q′
2) ⊆ V3 and domain(σ′) ⊆ V3. The case where x 6= y

can be similarly proved.

Alpha: Assume that S
M,α−→ S′ is derived from S1

M,α−→ S2

via alpha-conversion where S ≡ S1 and S2 ≡ S′.
Since Tσ ≡ S, Tσ ≡ S1. By the induction hypothesis,

there exists a derivation V1, V2 : T
M ′,α′

7−→ T ′ in the se-
mantics of Figure 7 and a renaming function σ′ such that

σ′(v′) =

 v if α′ = x′(v′) and α = σ(x′)(v),
or α′ = x′νv′ and α = σ(x′)νv;

σ(v′) otherwise.

M ′σ′ = M , α′σ′ = α, T ′σ′ ≡ S2, n(T ′) ⊆ V2, and
domain(σ′) ⊆ V2. Since S2 ≡ S′, T ′σ′ ≡ S′. Thus the
theorem holds. 2

We can now establish the completeness of the encod-
ing. In particular, we show that each transition deriv-
able using the constructive semantics of the π-calculus
(Figure 7) has an equivalent transition derivable via res-
olution using the logic program of Figure 4. We call this
program MMCtrans.

Theorem 7 (Completeness of MMC with re-
spect to Constructive Semantics) Let Dπ be a set
of π-calculus process definitions and S be a valid pro-
cess expression. Also, let V1 be a set of names, θc be
a call substitution, ϕ be a one-to-one function mapping
π-calculus names to Prolog variables such that n(S) ⊆
domain(ϕ) ⊆ V1 and range(ϕ) ⊆ vars(θc). Finally, let
Pr be a Prolog variable such that Prθc = gϕ(S), and
U1, U2 and U3 be three distinct Prolog variables not in
vars(θc). If the transition V1, V2 : S

M,α7−→ S′ is deriv-
able in the π-calculus semantics (Figure 7), then there
exist a derivation for trans(Pr, U1, U2, U3) : θc → θa
from the logic program ζ(Dπ)∪MMCtrans, and an ex-
tension ϕ′ of ϕ such that n(S′) ⊆ domain(ϕ′) ⊆ V2,
range(ϕ′) ⊆ vars(θa), U1θa = gϕ′(α), U2θa = gcϕ′(M),
and U3θa = gϕ′(S′).

Proof: By induction on the number of steps used to
derive a transition according to the symbolic semantics
of Figure 7. We give the proof for the Ide rule. The
proofs for the other rules are easier and can be similarly
proved.

Ide: Suppose that V1, V3 : r(y1, . . . , yn)
M,α7−→ S′ is a

derivation in the semantics of Figure 7 derived from
V2, V3 : P1

M,α7−→ S′. Let ϕ be a one-to-one func-
tion such that {y1, . . . , yn} ⊆ domain(ϕ) ⊆ V1. Since
domain(ϕ) ⊆ V1 and range(ϕ) ⊆ vars(θc), bn(P1) ∩
domain(ϕ) = ∅ and bn(P ′θcσσ1) ∩ range(ϕ) = ∅. (For
P ′θcσσ1, refer to the derivation tree of the Ide rule in
Theorem 2). Thus, we can construct a one-to-one func-
tion ϕ1 which is an extension of ϕ such that ϕ1 maps
bound names of P1 to the corresponding bound names
in P ′θcσσ1. In this case, gϕ1(P1) = P ′θcσσ1. Since P1

is a valid process expression and ϕ1 is a one-to-one
function, P ′θcσσ1 is a valid process expression. Further,
since bn(P1) ⊆ V2, and bn(P ′θcσσ1) ∈ vars(θcσσ1),
domain(ϕ1) ⊆ V2 and range(ϕ1) ⊆ vars(θcσσ1) hold.
By the induction hypothesis, there exists an extension
ϕ′ of ϕ1 such that trans(P ′, U1, U2, U3) : θcσσ1 →
θa is an answer derivable from the logic program
ζ(Dπ)∪MMCtrans where n(S′) ⊆ domain(ϕ′) ⊆ V2,
range(ϕ′) ⊆ vars(θa), {U1, U2, U3} ∩ vars(θcσσ1) = ∅,
U1θa = gϕ′(α′), U2θa = gcϕ′(M ′), and U3θa = gϕ′(S′)
and gϕ′(S′) is a valid process expression. Thus, there ex-
ists an extension ϕ′ of ϕ such that trans(Pr, U1, U2, U3) :

28

θc → θa is an answer derivable from the logic pro-
gram ζ(Dπ)∪MMCtrans where Prθc = gϕ(r(y1, . . . , yn)),
n(S′) ⊆ domain(ϕ′) ⊆ V2, range(ϕ) ⊆ vars(θa),
{U1, U2, U3} ∩ vars(θc) = ∅, U1θa = gϕ′(α′), U2θa =
gcϕ′(M ′), and U3θa = gϕ′(S′). 2

The proof of Theorem 3 directly follows from Theo-
rems 6 and 7.

C Proof of Theorem 4

Theorem 4 Let D be a set of process and formula
definitions, S the logic program consisting of the clauses
in Figures 4 and 9, P a valid process expression, and F
a formula. Also, let Pr and Fr be two distinct Prolog
variables. Then there exists a δ mapping free names of P
to free names of F such that models(Pr, Fr) : θc → θa
is an answer derivable from the logic program D ∪ S
if and only if P `δ F is a derivation in the tableau of
Figure 8 where Prθc = Pδ and Frθc = Fδ.

Proof: For the “if” part of the theorem, the proof is
by induction on the number of steps used to derive
a goal in the tableau of Figure 8. For the “only-if”
part, the proof is by induction on the number of steps
needed to derive an answer using the logic program
given in Figure 9. Here, we give the proof for rules
True, Match, Diam, and Lfp for the “if” part. The
“only-if” part can be proved similarly.

True: Let F = tt and assume that True rule is applied
in the last step of the derivation. Since P `δ tt is an
axiom in the tableau of Figure 8, P `δ tt is derivable
in the tableau. Let Prθc = Pδ and Frθc = tt. The
derivation tree of the True clause is as follows:

true : θcσ → θcσ

models(Pr,Fr): θc → θcσ where

i. models(P ′,tt). is a variant of the True clause;
ii. {P ′} ∩ ({Pr, Fr} ∪ vars(θc)) = ∅;
iii. σ = mgu(Prθc, P

′).

Since true : θcσ → θcσ is an axiom in the derivation
tree, models(Pr, Fr): θc → θcσ is derivable from logic
program D ∪ S.

Match: Let F = pred((X = Y), F1) and assume that
Match rule is applied in the last step of the derivation,
i.e., P `δ pred((X = Y), F1) is derived from P `δ F1

under the condition Xδ = Y δ. Let Prθc = Pδ and
Frθc = Fδ. The derivation tree of the Match clause
is as follows:

.

.

.

X′ == Y ′ : θcσ → θcσ, models(P ′, F ′
1) : θcσ → θa

X′ == Y ′, models(P ′, F ′
1) : θcσ → θa

models(Pr, Fr) : θc → θa

where

i. models(P ′, pred((X ′ = Y ′),F ′
1) :− X ′ == Y ′,

models(P ′, F ′
1). is a variant of the Match clause;

ii. {X ′, Y ′, P ′, F ′
1} ∩ ({Pr, Fr} ∪ vars(θc)) = ∅;

iii. σ = mgu((Prθc, F rθc), (P
′, pred((X ′ = Y ′), F ′

1)).

Since Prθc = Pδ and Frθc = Fδ, from iii, P ′θcσ =
Pδ and F ′

1θcσ = F1δ. By the induction hypothesis,
models(P ′,F ′

1): θcσ → θa is derivable from logic
program D ∪ S. The identity check (X ′ == Y ′)θcσ
in the derivation tree corresponds to the condition
Xδ = Y δ in Figure 8. Thus models(Pr, Fr): θc → θa is
derivable from D ∪ S.

Diam: Let F = diam(A, F1) and assume that Diam
rule is applied in the last step of the derivation, i.e.,
P `δ diam(A,F1) is derived from P1 `δ′ F1 where P can
perform a transition A1 to P1 and δ′ = δ ∪mgu(A,A1).
Let Prθc = Pδ and Frθc = Fδ. The derivation tree of
the Diam clause is as follows:

.

.

.

trans(P ′, A′
1, C

′, P ′
1) : θcσ → θ1,

A′
1 = A′ : θ1 → θ1σ1,

models(P ′
1, F

′
1) : θ1σ1 → θa

trans(P ′, A′
1, C

′, P ′
1), A

′
1 = A′, models(P ′

1, F
′
1) : θcσ → θa

models(Pr, Fr) : θc → θa

where

i. models(P ′, diam(A′,F ′
1)) :− trans(P ′, A′1, C′

1,

P ′
1), A′ = A′1, models(P

′
1, F ′

1). is a variant of the Diam
clause;

ii. {P ′, A′, F ′
1, A

′
1, C

′
1, P

′
1} ∩ ({Pr, Fr} ∪ vars(θc)) = ∅;

iii. σ = mgu((Prθc, F rθc), (P
′, diam(A′, F ′

1))) and σ1 =
mgu(A′, A′1).

Since Prθc = Pδ and Frθc = Fδ, from
iii, P ′θcσ = Pδ and F ′

1θcσ = F1δ. Since
σ1 = mgu(A′, A′1), P ′

1θ1σ1 = P1(δ ∪ mgu(A,A1))
and F ′

1θ1σ1 = F1(δ ∪ mgu(A,A1)). By the induction
hypothesis, models(P ′

1,F
′
1): θ1σ1 → θa is derivable

from D∪S. Thus models(Pr,Fr): θc → θa is derivable
from D ∪ S.

Lfp: Let F = form(Z(
→
V1) and assume that Lfp rule

is applied in the last step of the derivation. Suppose

that fdef(Z(
→
V), lfp(F1)) is the process definition of

process Z(
→
V1) and P `δ form(Z(

→
V1)) is derived from

P `δ F1[
→
V1/

→
V]. Let Prθc = Pδ and Frθc = Fδ. The

derivation tree of the Lfp clause is as follows:

.

.

.

fdef(D′, lfp(F ′
1)), : θcσ → θ1, models(P ′, F ′

1) : θ1 → θa

fdef(D′, lfp(F ′
1)), models(P ′, F ′

1) : θcσ → θa

models(Pr, Fr) : θc → θa

where

29

i. models(P ′,form(D′)) :− def(D′,lfp(F ′
1)), models(P

′,

F ′
1). is a variant of the Lfp clause;

ii. {P ′, D′, F ′
1} ∩ ({Pr, Fr} ∪ vars(θc)) = ∅;

iii. σ = mgu((Prθc, F rθc), (P
′, form(D′))).

Since Prθc = Pδ and Frθc = Fδ, from iii, P ′θcσ =

Pδ and D′θcσ = Z(
→
V1)δ. Thus P ′θ1 = Pδ and F ′

1θ1 =
F1δ. By the induction hypothesis, models(P ′, F ′

1):
θ1 → θa is a derivation of the logic program D ∪ S and
models(Pr,Fr): θc → θa does not previously occur in
the derivation. Thus models(Pr, Fr): θc → θa is deriv-
able from D ∪ S.

2

30

