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Abstract. We present an optimizing compiler for the π-calculus that
significantly improves the time and space performance of the MMC
model checker. MMC exploits the similarity between the manner in
which resolution techniques handle variables in a logic program and the
manner in which the operational semantics of the π-calculus handles
names by representing π-calculus names in MMC as Prolog variables,
with distinct names represented by distinct variables. Given a π-calculus
process P , our compiler for MMC produces an extremely compact rep-
resentation of P ’s symbolic state space as a set of transition rules. It
also uses AC unification to recognize states that are equivalent due to
symmetry.

1 Introduction

The recent literature describes a number of efforts aimed at building practical
tools for the verification of concurrent systems using Logic Programming (LP)
technology; see e.g. [23, 20, 11, 7, 6]. The basic idea underlying these approaches is
to pose the verification problem as one of query evaluation over (constraint) logic
programs; once this has been accomplished, the minimal-model computation in
LP can be used to compute fixed points over different domains.

Taking this idea one step further, in [26], we developed the MMC model
checker for the π-calculus [17], a process algebra in which new channel names
can be created dynamically, passed as values along other channels, and then used
themselves for communication. This gives rise to great expressive power: many
computational formalisms such as the λ-calculus can be smoothly translated into
the π-calculus, and the π-calculus provides the semantic foundation for a number
of concurrent and distributed programming languages (e.g. [19]). MMC also
supports the spi-calculus [1], an extension of the π-calculus for the specification
and verification of cryptographic protocols. The treatment of channel names
in the π- and spi-calculi poses fundamental problems in the construction of a
model checker, which are solved in MMC using techniques based on LP query-
evaluation mechanisms as explained below.
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MMC, which stands for the Mobility Model Checker, targets the finite-control
subset of the π- and spi-calculi1 so that model checking, the problem of deter-
mining whether a system specification S entails a temporal-logic formula ϕ, may
proceed in a fully automatic, push-button fashion. It uses the alternation-free
fragment of the π-µ-calculus, a highly expressive temporal logic, for the property
specification language.

MMC is built upon the XSB logic programming system with tabulation [25]
and, indeed, tabled resolution played a pivotal role in MMC’s development.
State-space generation in MMC is performed by querying a logic program, called
trans, that directly and faithfully encodes π’s symbolic operational seman-
tics [15]. The key to this encoding is the similarity between the manner in which
resolution techniques (which underlie the query-evaluation mechanism of XSB
and other logic-programming systems) handle variables in a logic program and
the manner in which the operational semantics of the π-calculus handles names.
We exploit this similarity by representing π-calculus names in MMC as Prolog
variables, with distinct names represented by distinct variables.

Query evaluation in MMC resorts to renaming (alpha conversion) when-
ever necessary to prevent name capture, and parameter passing is realized via
unification. Variables are checked for identity (i.e. whether there is a substitu-
tion that can distinguish two variables) whenever names need to be equal, for
instance, when processes synchronize. The management of names using resolu-
tion’s variable-handling mechanisms makes MMC’s performance acceptable.

Other than MMC, there have been few attempts to build a model checker
for the π-calculus, despite its acceptance as a versatile and expressive modeling
formalism. The Mobility Workbench (MWB) [24] is an early model checker and
bisimulation checker for π; the implementation of its model checker, however,
does not address performance issues. The PIPER system [3] generates CCS pro-
cesses as “types” for π-calculus processes, and formulates the verification prob-
lem in terms of these process types; traditional model checkers can then be ap-
plied. This approach requires, however, user input in the form of type signatures
and does not appear to be fully automated. In [13], a general type system for the
π-calculus is proposed that can be used to verify properties such as deadlock-
freedom and race-freedom. A procedure for translating a subset of the π-calculus
into Promela, the system modeling language of the SPIN model checker [12], is
given in [21]. Spin allows channel passing and new name generation, but may not
terminate in some applications that require new name generation where MMC
does; e.g. a handover protocol involving two mobile stations.

Problem Addressed and our Solution: Although MMC’s performance is
considerably better than that of the MWB, it is still an order of magnitude worse
than that of traditional model checkers for non-mobile systems, such as SPIN and
the XMC model checker for value-passing CCS [20]. XMC, like MMC, is built on
top of the XSB logic-programming engine; despite its high-level implementation
in Prolog, benchmarks show that it still exhibits competitive performance [8].

1 The class of finite-control processes are those that do not admit parallel composition
within the scope of recursion.
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One reason for this is the development of a compiler for XMC that produces
compact transition-system representations from CCS specifications [9].

In this paper, we present an optimizing compiler, developed along the lines
of [9], for the π- and spi-calculi. Our compiler (Section 3), which uses LP tech-
nology and other algorithms developed in the declarative-languages community
(such as AC unification), seeks to improve MMC’s performance by compiling
process expressions into a set of transition rules. These rules, which form a logic
program, can then be queried by a model checker for generating actual transi-
tions. In contrast to the compiler for value-passing CCS, a number of fundamen-
tal compilation issues arise when moving to a formalism where channels can be
passed as messages, and communication links can be dynamically created and
altered via a technique known as scope extrusion and intrusion. Our approach
to dealing with these issues is as follows:

– Representation of states: The compiler uses a very compact representation
for transition-system states, requiring only a symbol for the control location
(i.e. a program counter value) and the valuations of variables that are free
and live at that state. It also identifies certain semantically equivalent states
that may have different syntactic representations. For instance, process ex-
pressions (νx)((νy)p(x, y) | q(x)) and (νx)(νy)(p(x, y) | q(x)) are considered
distinct in [26]. According to the structural congruence rule of the π-calculus,
however, these expressions are behaviorally identical and are given the same
state representation by the compiler.

– Determining the scope of names: Since names can be dynamically created
and communicated in the π-calculus, the scope of a name cannot in general be
determined at compile time. The compiler therefore generates transition rules
containing tagged names that allows the scope of a name to be determined
at model-checking time, when transitions are generated from the rules.

– State-space reduction via symmetry: The compiler exploits the associativity
and commutativity (AC) of the parallel composition operator when gener-
ating transition rules for the model checker (Section 4). In particular, tran-
sition rules may contain AC symbols and the compiler uses AC unification
and indexing techniques to realize a form of symmetry reduction, sometimes
leading to an exponential reduction in the size of the state space.

Another important aspect of MMC’s compiler is that it is provably correct :
The compiler is described using a syntax-directed notation, which when encoded
as a logic program and evaluated using tabled resolution becomes its implemen-
tation. Thus the compilation scheme’s correctness implies the correctness of the
implementation itself. Given the complex nature of the compiler, the ability to
obtain a direct, high-level, provably correct implementation is of significant im-
portance, and is a practical illustration of the power of declarative programming.

Our benchmarking results (Section 5) reveal that the compiler significantly
improves MMC’s performance and scalability. For example, on a handover pro-
tocol involving two mobile stations, the original version of MMC runs out of
memory while attempting to check for deadlock-freedom, even though 2GB of
memory is available in the system. In contrast, MMC with compilation verifies
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this property in 47.01sec while consuming 276.29MB of memory. In another ex-
ample, a webserver application, the AC operations supported by the compiler
allow MMC to verify a system having more than 20 servers; MMC without com-
pilation could handle only 6 servers. The MMC system with the compiler is
available in full source-code form from http://lmc.cs.sunysb.edu/~mmc.

2 Preliminaries

MMC: A Model Checker for the π-Calculus. In MMC [26], π-calculus processes
are encoded as Prolog terms. Let A denote the set of prefixes, P the set of process
expressions, and D the set of process identifiers. Further, let X, Y, Z . . . range
over Prolog variables and p, q, r, . . . range over process identifiers. The syntax of
the MMC encoding of π-calculus processes is as follows:

A ::= in(X, Y ) | out(X, Y ) | tau

P ::= zero | pref(A,P) | nu(X,P) | par(P,P) | choice(P,P)
| match(X=Y,P) | proc(p(Y1, Y2, . . . , Yn))

D ::= def(p(X1, X2, . . . , Xn),P) where Xi’s are pairwise distinct

Prefixes in(X,Y ), out(X,Y ) and tau represent input, output and internal
actions, respectively. zero is the process with no transitions while pref(α,P)
is the process that can perform an α action and then behave as process P .
nu(X,P) behaves as P and X cannot be used as a channel over which to
communicate with the environment. Process match(X=Y ,P) behaves as P if the
names X and Y match, and as zero otherwise. The constructors choice and
par represent non-deterministic choice and parallel composition, respectively.
The expression proc(p(Y1, . . . , Yn)) denotes a process invocation where p is a
process name (having a corresponding definition) and Y1, . . . , Yn is a comma-
separated list of names that are the actual parameters of the invocation. Each
process definition of the form def(p(X1, . . . , Xn), P) associates a process name
p and a list of formal parameters X1, . . . , Xn with process expression P . A formal
definition of the correspondence between MMC’s input language and the syntax
of the π-calculus can be found in [26].

The standard notions of bound and free names (denoted by bn() and fn()
respectively) in the π-calculus carry over to the MMC syntax. We use n(e)
to denote the set of all names in a process expression e. Names bound by a
restriction operator in e are called local names of e.

In order to simplify the use of resolution procedures to handle names rep-
resented by variables, we use the following naming conventions. We say that a
process expression is valid if all of its bound names are unique and are distinct
from its free names. We say that a process definition of the form def(N,P) is
valid if P , the process expression on the right-hand side of the definition, is valid.
A process definition of the form def(N,P) is said to be closed if all free names
of P appear in N (i.e. are parameters of the process). In MMC, we require
all process definitions to be valid and closed. Note that this does not reduce
expressiveness since any process expression can be converted to an equivalent
valid expression by suitably renaming the bound names.
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The operational semantics of the π-calculus is typically given in terms of
a symbolic transition system [17, 15]. The MMC model checker computes sym-
bolic transitions using the relation trans(s,a,c,d) where s and d represent the
source and destination states of a transition, a the action and c a constraint
on the names of s under which the transition is enabled. In the original model
checker [26], this relation was computed by interpreting MMC process expres-
sions: the trans relation was a direct encoding of the constructive semantics of
π-calculus given in [26] which is equivalent to the symbolic semantics of [15].

In MMC, properties are specified using the alternation-free fragment of the
π-µ-calculus [5], and the MMC model checker is encoded as the binary predicate
models(P,F) which succeeds if and only if a process P satisfies a formula F .
The encoding of the model checker is given in [26].

Logic Programs: We assume standard notions of predicate symbols, function
symbols, and variables. Terms constructed from these such that predicate sym-
bols appear at (and only at) the root are called atoms. The set of variables
occurring in a term t is denoted by vars(t); we sometimes use vars(t1, t2, . . . , tn)
to denote the set of all variables in terms t1, t2, . . ., tn. A substitution is a map
from variables to terms constructed from function symbols and variables. We use
(possibly subscripted) θ, θ′ to denote substitutions; the composition of two sub-
stitutions θ1 and θ2 is denoted by θ1θ2. A term t under substitution θ is denoted
by tθ. A renaming is a special case of substitution that defines a one-to-one
mapping between variables.

Horn clauses are of the form a0 :− a1, . . . , an where the ai are atoms. A
goal (also called a query) is an atom. Definite logic programs are a set of Horn
clauses. In this paper, we consider only definite logic programs, and henceforth
drop the qualifier “definite”. Top-down evaluation of logic programs based on
one of several resolution mechanisms such as SLD, OLD, and SLG [16, 4], deter-
mines the substitution(s) under which the goal can be derived from the program
clauses. We use G

θ=⇒P 2 to denote the derivation of a goal G over a program
P , where θ represents the substitution collected in that derivation.

3 A Compiler for the π-calculus

In this section, we present our compiler for the MMC model checker. Given
a process expression E, it generates a set of transition rules from which E’s
transitions can be easily computed. The number of transition rules generated
for an expression E is typically much smaller than the number of transitions in
E’s state space. More precisely, the number of transition rules generated for an
expression E is polynomial in the size of E even in the worst case, while the
number of transitions in E’s state space may be exponential in the size of E.

The rules generated by the compiler for a given MMC process expression
E define E’s symbolic transition system, and are represented using a Prolog
predicate of the form trans(s,a,c,d) where s and d are the transition’s source
and destination states, a is the action taken, and c is a constraint on the names
of s under which the transition is enabled. Although the clauses of the definition
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of trans resemble facts, the constraints c that appear in them can be evaluated
only at run-time, and hence encode rules.

The representation used for states is as follows. If E is a sequential process
expression (i.e. does not contain a parallel composition operator) then it is rep-
resented by a Prolog term of the form si(V ) where V are the free variables in E
and si represents the control location (analogous to a program counter) of E. For
instance, let E1 be the MMC process expression pref(in(X,Z),pref(out(Z,Y),
zero)). Names X and Y are free in E1 and Z is bound in E1. The symbolic state
corresponding to E1 is then given by a Prolog term of the form s1(X,Y), where
s1 denotes the control state. Observe that E1 can make an in(X,Z) action and
become E′1, where E′1 =pref(out(Z,Y), zero). The state corresponding to E′1
is a term of the form s2(Z,Y). The symbolic transition from E1 to E′1 becomes
the clause trans(s1(X,Y),in(X,Z),true,s2(Z,Y)).

If E is a parallel expression of the form par(E1,E2) then it is represented by
a term of the form prod(si,sj) where si and sj are the states corresponding to
E1 and E2, respectively. For example, let E2 =pref(out(U,V),pref(in(V,W),
zero)), and let s3(U,V) and s4(V) be the states corresponding to E2 and
pref(in(V,W), zero)), respectively. Letting E1 be defined as above, then the
state corresponding to E is prod(s1(X,Y),s3(U,V)).

Observe that E can perform a tau action and become process E′ =
par(pref(out(V,Y), zero),pref(in(V,W),zero)) whenever the free names
X of E1 and U of E2 are the same. Such a transition can then be represented by
a Horn clause or rule of the form:

trans(prod(s1(X,Y),s3(U,V)),tau,X=U,prod(s2(V,Y),s4(V)))

where the constraint X=U is the condition under which the transition is enabled.
Further observe that in E, subprocess E1 is capable of an autonomous (non-

synchronous) transition, taking E from par(E1,E2) to par(E′1,E2). Such a
transition can be represented by a rule of the form:

trans(prod(s1(X,Y),P),in(X,Z),true,prod(s2(Z,Y),P)).

where P is a variable that ranges over states; thus transition rules may specify a
set of states using state patterns rather than simply individual states.

One of the challenges we encountered in developing a compiler for MMC
concerned the handling of scope extrusion in the π-calculus. In MMC without
compilation [26], local names can be determined when computing transitions
and hence scope extrusion was implemented seamlessly using Prolog’s unification
mechanism. However, at compilation time, it may be impossible to determine
whether a name is local. For instance, it is not clear if y is a local name in process
x(y).xy before the process receives an input name. Intuitively, we can solve this
problem by carrying local names explicitly in the states of the trans rule. This
approach, however, introduces a significant amount of overhead when invoking
the trans to compute the synchronization between two processes. Further, if we
do not know for certain whether a name is local, we must also carry a constraint
within the rule.

In order to handle scope extrusion efficiently, we propose the following so-
lution. We present names in MMC in one of two forms: either as plain Prolog
variables (as in the above examples), or as terms of the form name(Z) where

6



Z is a Prolog variable. Names of the latter kind are used to represent local
names, generated by the restriction operator, whereas names of the former kind
represent all others. This distinction is essential since we expand the scope of
restricted names using the structural congruence rule (νx)P |Q ≡ (νx)(P |Q)
whenever x 6∈ fn(Q); this expansion process lets us consolidate the pairs of rules
Open and Prefix and Close and Com in the semantics of the π-calculus into
single rules. This distinction also enables us to quickly check whether a name is
restricted without explicitly keeping track of the environment.

3.1 Compilation Rules

Definition 1 (State Assignment) A state-assignment function σ maps pro-
cess expressions to positive integers such that for any two valid expressions E
and E′, σ(E) = σ(E′) if and only if E and E′ are variants of each other (i.e.
identical modulo names of variables).

Definition 2 (State Generation) Given a state-assignment function σ, the
state generation function Ψσ( ) maps a process expression E to a state as follows:

Ψσ(E) =

8>>>><>>>>:
state0 if E = zero

prod(Ψσ(E1), Ψσ(E2)) if E = par(E1, E2)
Ψσ(E1[name(V )/X]) if E = nu(X, E1)
where V 6∈ n(E1)
stateσ(E)(fn(E)) otherwise

For each process expression E, MMC’s compiler recursively generates a set
of transition rules; i.e., E’s transition rules are produced based on the transition
rules of its subexpressions. The following operation over sets of transition rules
is used in defining the compilation procedure:

Definition 3 (Source state substitution) Given a set of transition rules R,
a pair of states s and s′, and a constraint C, the source-state substitution of R,
denoted by R[s←s′;C], is the set of transition rules

{trans(s′, a, (c, C), d)|trans(s, a, c, d) ∈ R},

i.e. the set of rules obtained by first selecting rules whose source states unify
with s, replacing s by s′ in the source state, and adding constraint C to the
condition part of the selected rules. If C is empty (i.e. true) then we denote the
substitution simply by R[s←s′].

The transition rules generated for a process can be viewed as an automaton,
and source-state substitution can be viewed as an operation that replaces the
start state of a given automaton with a new state.

Definition 4 (Compilation Function) Given a state-assignment function σ,
the compilation function [[ · ]] maps MMC process expressions to sets of transition
rules such that for any process expression E, [[E]] is the smallest set that satisfies
the equations of Figure 1.
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Expression E Transition Rules [[E]]

zero ∅
pref(α, E1) [[E1]] ∪ {trans(Ψσ(E), α, true, Ψσ(E1))}
choice(E1, E2) [[E1]] ∪ [[E2]] ∪ [[E1]][Ψσ(E1)←Ψσ(E)] ∪ [[E2]][Ψσ(E2)←Ψσ(E)]

nu(X, E1) [[E1[name(V )/X]]] V /∈ n(E1)

match(C, E1) [[E1]] ∪ ([[E1]][Ψσ(E1)←Ψσ(E);C])

par(E1, E2) {trans(prod(s1, V2), a, c, prod(d1, V2))
| trans(s1, a, c, d1) ∈ [[E1]]}

∪ {trans(prod(V1, s2), a, c, prod(V1, d2))
| trans(s2, a, c, d2) ∈ [[E2]]}

∪ {trans(prod(s1, s2), tau, (c1, c2, c), prod(d1, d2)θ)
| trans(s1, a1, c1, d1) ∈ [[E1]]
∧ trans(s2, a2, c2, d2) ∈ [[E2]]
∧ vars(s1, a1, c1, d1) ∩ vars(s2, a2, c2, d2) = ∅
∧ c = (u1 == u2) ∧ θ = mgu(v1, v2) where
{a1, a2} = {in(u1, v1), out(u2, v2)}
∧ (c1, c2, c) is satisfiable}

proc(p(
→
v )) [[E1[

→
v /
→
X]]] ∪ [[E1[

→
v /
→
X]]]

[Ψσ(E1[
→
v /

→
X])←Ψσ(E)]

where def(p(
→
X), E1) is a variant of a definition s.t. bn(E1)∩

→
v = ∅.

Fig. 1. Compilation rules for MMC.

The salient points of the compilation rules are as follows:

– In contrast to the CCS compiler [9], control states entry and exit are not in-
cluded in the π-calculus compilation rules. Instead, these states are uniquely
determined by the process expressions. This also avoids the generation of
internal i-transitions in the compilation rules.

– The rules for pref, choice, match, and proc can be seen as direct encodings
of the corresponding inference rules in Lin’s symbolic semantics [15].

– The compilation rule for nu specifies that the transition rules of nu(X, E)
are identical to the transition rules of E where free occurrences of X have
been replaced with a fresh local name name(V ). Note that transitions of
nu(X, E) can be computed by discarding all transitions of E whose action
is over channel X. This effect is achieved by considering at model-checking
time only those transitions that are not over channels with local names.
Additionally, a local name becomes global if it is output along a global
channel using the Open rule. Thus the scope of names can only be completely
determined at model-checking time, when transitions are generated, and not
at compile time when transition rules are generated. Hence transition rules
assume that every local name can eventually become global, and we check
for locality of names when transitions are generated.

– The compilation rule for par precomputes, conservatively, all possible syn-
chronizations between the parallel components. In general, we can determine
whether two actions are complementary only when the binding of names is
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known; hence we generate rules for tau transitions guarded by constraints
that are evaluated at model-checking time.

3.2 Proof of the Compiler’s Correctness

We show that MMC’s interpreted transition relation (henceforth called INT)
given in [26] is sound and complete with respect to the transition relation pro-
duced by the compiler.

Definition 5 A transition from state s1 to s2 with action a under constraint
c is said to be derivable from a logic program P (denoted by s1

a,c−→P s2) if
trans(s1, X, Y, Z)

θ=⇒P2 (i.e. the query succeeds with answer θ) and there is
a renaming ρ such that Xθρ = a, Y θρ ≡ c and Zθρ = s2.

A transition from state s to state s′ where the action does not contain local
names is denoted by s 7−→P s′; a sequence of zero or more such transitions is
denoted by s

∗7−→P s′.

The soundness and completeness proofs make use of the following fact.

Lemma 1 (Extensionality) Let p and q be valid process expressions such that
p −→INT q. Then any transition from q derived using the rules compiled from
q can also be derived using the rules compiled from p and vice versa. That is,
Ψσ(q)

a,c−→[[q]] Ψσ(q′) iff Ψσ(q)
a,c−→[[p]] Ψσ(q′).

The proof is by induction on the number of steps needed to derive a transition
in Ψσ(q).

The following lemma asserts that the transitions from an initial state deriv-
able from the compiled transition relation can also be derived using INT.

Lemma 2 Let p be a valid process expression. Then p
a,c−→INT q (i.e. expression

p becomes q after action a according to INT) whenever Ψσ(p)
a,c−→[[p]] Ψσ(q) and

a does not contain local names of p.

The proof is by induction on the number of steps needed to derive the tran-
sition from p using [[p]].

Theorem 3 (Soundness) Let e be a valid process expression and e
∗7−→INT p.

Then p
a,c−→INT q whenever Ψσ(p)

a,c−→[[e]] Ψσ(q) and a does not contain local
names of p.

The soundness theorem follows from Lemmas 1 and 2.
The following lemma asserts that the transitions from an initial state deriv-

able from INT can be derived using the compiled transition relation.

Lemma 4 Let p be a valid process expression. If p
a,c−→INT q (i.e. expression p

become q after action a according to INT) then Ψσ(p)
a,c−→[[p]] Ψσ(q).
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The proof is by induction on the number of steps needed to derive the tran-
sition from p using INT.

Theorem 5 (Completeness) Let e be a valid process expression and
e
∗7−→INT p. If p

a,c−→INT q then Ψσ(p)
a,c−→[[e]] Ψσ(q).

The completeness theorem follows from Lemmas 1 and 4.

Implementation: The MMC compiler is implemented as a logic program that
directly encodes the compilation rules of Figure 1. The use of tabled resolution
makes such an implementation feasible, ensuring that each process expression in
the program is compiled only once. Furthermore, tabling ensures that recursive
process definitions can be compiled without extra control. More importantly,
the direct implementation means that the correctness of the implementation
follows from the correctness of the compilation rules. The implementation also
uses partial evaluation to optimize the set of transition rules generated. The
application of this optimization is straightforward, and is clearly reflected in the
compiler’s source code.

4 State-Space Reduction using AC Unification/Matching

One source of inefficiency in using the compiled transition relation (also in
the interpreter INT) is the treatment of the product operator prod. In par-
ticular, it does not exploit the fact that prod is associative and commuta-
tive (AC); i.e., prod(s1, s2) is semantically identical to (has the same tran-
sitions as) prod(s2,s1), and prod(s1,prod(s2,s3)) is semantically identical to
prod(prod(s1,s2),s3). Thus, treating prod as an AC operator and using AC
unification [22] during resolution will undoubtedly result in a reduction in the
number of states that need to be examined during model checking.

AC matching and unification algorithms are traditionally viewed as pro-
hibitively expensive in programming systems. Since, however, prod occurs only
at the top-most level in terms representing states, a particularly efficient proce-
dure for AC unification during clause selection can be attained. As is done in
extant AC unification procedures (see, e.g. [14]), state terms are kept in a canon-
ical form by defining an order among terms with non-AC symbols, and a term of
the form prod(s1,prod(s2,s3)) is represented as the term prod([s1,s2,s3])
where [s1,s2,s3] is a list whose component states occur in the order defined over
non-AC terms.

State-space reduction is achieved by treating prod as an AC symbol and this
can be seen as a form of symmetry reduction [10]. The state patterns generated
at compile time are kept in canonical form. At model-checking time, the states
derived from these patterns are rewritten (if necessary) to maintain canonical
forms. Apart from generating fewer states at model-checking time, the compiler
generates fewer transition rules when using AC unification. For example, con-
sider the term E =par(E1,E2). For E’s autonomous transitions, the non-AC
compiler generates rules of the form
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Fig. 2. Effect of compilation on chains of one-place buffers.

{trans(prod(s,V ),a,c,prod(d,V )) | {trans(s,a,c,d) ∈ [[E1]]}
∪ {trans(prod(V ,s),a,c,prod(V ,d)) | {trans(s,a,c,d) ∈ [[E2]]}

while the AC compiler generates [[E1]] ∪ [[E2]]. Since rules common to [[E1]] and
[[E2]] occur only once in [[E]], the number of transition rules for E is reduced.

The use of AC unification can lead to an exponential reduction in the size of
the state space. Even in examples that do not display explicit symmetry, state-
space reductions by factors of two or more can be seen (Section 5). The number
of transition rules generated is also reduced, by more than a factor of two in
most examples.

The AC unification operation itself is currently programmed in Prolog and is
considerably more expensive than Prolog’s in-built unification operation. As will
be seen in Section 5, the overhead due to AC unification can be reduced (by a
factor of five or more) through the use of AC matching and indexing techniques
based on discrimination nets [2].

5 Performance Results

We used several model-checking benchmarks to evaluate the performance of
the MMC compiler. All reported results were obtained on an Intel Xeon 1.7GHz
machine with 2GB RAM running Debian GNU/Linux 2.4.21 and XSB version 2.5
(with slg-wam and local scheduling and without garbage collection).

Benchmark 1: Chains of one-place buffers. This example was chosen for three
reasons. (1) We can use it to easily construct large state spaces: a chain of
size i has a state space of size O(2i). (2) The example is structured such that
any performance gains due to compilation are due strictly to the compact state
representation, thereby allowing us to isolate this optimization’s effect. (3) This
example does not involve channel passing, thereby enabling us to see how MMC
with compilation compares performance-wise to XMC.

The graphs of Figure 2 show the time and space requirements of the origi-
nal MMC model checker, MMC with compiled transition rules, and the XMC
system (with compiled transition rules) to verify deadlock freedom in chains of
varying length. As expected, MMC with compilation outperforms the original
MMC model checker both in terms of time and space. Moreover, MMC with
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Instance States Transitions
Orig Comp AC Orig Comp AC

1bsp 104 58 29 164 86 43
2bsp 607 408 76 1033 636 130
3bsp 3373 2304 224 5725 3600 416
2ms N/A 73344 5026 N/A 227712 15461

(a)

Instance Prop. Time (Sec.) Memory (MB)
Orig Comp AC AC-net Orig Comp AC AC-net

1bsp df 0.04 0.09 0.10 0.09 1.28 1.58 1.37 1.26
ndl 0.04 0.07 0.15 0.09 1.42 1.60 1.39 1.27

2bsp df 0.55 0.31 0.44 0.31 7.46 4.02 2.12 1.99
ndl 0.86 0.31 0.42 0.30 9.69 4.44 2.21 2.06

3bsp df 4.69 1.04 1.20 0.74 49.30 10.15 2.78 2.60
ndl 6.90 1.13 1.21 0.76 64.77 16.51 3.06 2.82

2ms df N/A 47.01 75.64 33.72 N/A 276.29 24.70 24.47
ndl N/A 54.45 80.17 31.93 N/A 340.31 30.69 24.85

(b)

Table 1. (a)Number of states and transitions for variants of Handover protocol. (b)
Performance of MMC for model checking variants of Handover protocol.

compilation approaches the time and space performance of XMC: the mecha-
nisms needed to handle channel passing in MMC appear to impose an overhead
of about 20% in time and 40% in space.

Benchmark 2: Handover procedure. Table 1(a) gives the number of states and
transitions generated by three versions of MMC for four variants of the handover
procedure of [18]; the four versions differ in the number of passive base stations
(bsp) and mobile stations (ms). The column headings “Orig”, “Comp”, and
“AC” refer to the original version of MMC, MMC with compilation, and MMC
with compilation and AC reduction, respectively. The results show that MMC
with compilation and AC reduction generates the fewest number of states and
transitions whereas MMC without compilation generates the most. This is due
to the fact that the performance of MMC with compilation is insensitive to the
placement of the ν operator.

Table 1(b) presents the time and memory needed to verify the deadlock-
freedom (df) and no-data-lost (ndl) properties of the handover protocol. Col-
umn heading “AC-net” refers to the version of MMC with AC discrimination
nets; the other column headings are as in Table 1(a). Observe that MMC with
compilation is more efficient and has superior scalability compared to MMC
without compilation. Also observe that the use of AC unification reduces the
number of states visited by up to a factor of 20 and space usage by a similar
factor, although a concomitant increase in CPU time can be seen. The use of
AC discrimination nets, however, mitigates this overhead by reducing the num-
ber of AC unification operations attempted, resulting in uniformly better time
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Fig. 3. Effect of AC-based symmetry reduction on chains of web-servers.

and space performance compared to all other schemes. Note that in the current
implementation, both the AC unification and indexing operations are written as
Prolog predicates while the non-AC unification and indexing operations use the
primitives provided in the Prolog engine. Engine-level support for AC unification
and indexing will result in further improvements in performance.

Benchmark 3: Variable-length chains of webservers (from [3]). This example
models a file reader of a webserver. The file is divided into several blocks and
each block is read and transmitted over the network by a separate process.
Blocks can be read in parallel but are required to be transmitted in sequential
order. Our AC-unification-based state-space reduction technique applied to this
benchmark results in a state space that grows quadratically with the length
of the chain, while non-AC techniques (compiled or original) result in a state
space that grows exponentially in size. Figure 3 shows the time and memory
requirements when the “order-preserved” property is verified on this example.
MMC with compilation and AC unification performs best in terms of time, space,
and scalability. Note that independent of the number of servers, the AC compiler
generates the same number of transition rules (65). The discrimination net-based
indexing improves the time and space performance even further.

Benchmark 4: Security protocols specified using the spi-calculus. Table 2(a)
gives the number of states and transitions generated by three versions of MMC
for three security protocols specified in the spi-calculus: Needham-Schroeder,
Needham-Schroeder-Lowe and BAN-Yahalom. Observe that MMC with compi-
lation and AC generates the fewest number (or the same as MMC with compi-
lation) of states and transitions, whereas MMC without compilation generates
the most. As mentioned above, this is because MMC without compilation is
sensitive to the placement of ν operator. Table 2(b) gives the time (as x + y
where x is the compilation time and y is the model-checking time) and memory
consumed when model checking these protocols. Compilation (with or without
AC discrimination nets) yields an order of magnitude of improvement in time
usage and a factor of 10-35% improvement in memory usage. The performance
of MMC with AC is similar to that of MMC with AC discrimination nets and
is not given in the table.
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Benchmark States Transitions
Orig Comp AC-net Orig Comp AC-net

Needham-Schroeder 167 164 164 287 282 282
Needham-Schroeder-Lowe 108 105 105 181 176 176
BAN-Yahalom 29133 6674 2011 107652 18106 5322

(a)

Benchmark Prop. Time (Sec.) Memory (MB)
Orig Comp AC-net Orig Comp AC-net

Needham-Schroeder attack 0.02 0.07+0.01 0.09+0.02 0.70 1.03 1.12
Needham-Schroeder
-Lowe no attack 0.22 0.08+0.01 0.11+0.02 1.93 1.16 1.23
BAN-Yahalom interleaving attack 0.11 0.16+0.01 0.18+0.01 2.15 1.89 1.67

replay attack 0.14 0.16+0.00 0.18+0.01 2.88 1.78 1.65

(b)

Table 2. (a) Number of states and transitions for the spi-calculus examples. (b) Per-
formance of MMC for model checking the spi-calculus examples.

6 Conclusions

We have shown that an optimizing compiler for the π- and spi-calculi can be
constructed using logic-programming technology and other algorithms developed
in the declarative-languages community. Extensive benchmarking data demon-
strate that the compiler significantly improves the performance and scalability
of the MMC model checker. The compiler is equipped with a number of opti-
mizations targeting the issues that arise in a modeling formalism where channels
can be passed as messages, and communication links can be dynamically cre-
ated and altered via scope extrusion and intrusion. Of particular interest is the
new symmetry-reduction technique that we have seamlessly integrated into the
compiler though the use of AC-unification in resolution.

We are currently investigating techniques that adaptively apply the expensive
AC operations only when necessary. We are also in the process of identifying
conditions under which channels can be statically named, reducing the overhead
incurred when most channels are fixed and only a few are mobile. This would
enable us to tightly integrate the XMC system with MMC, paying the price for
mobility only when channel names are dynamically created and communicated.
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