
Parameterized Verification ofπ-Calculus Systems?

Ping Yang1, Samik Basu2, and C.R. Ramakrishnan1

1 Dept. of Computer Science, Stony Brook Univ., Stony Brook, NY, 11794, USA
2 Dept. of Computer Science, Iowa State Univ., Ames, IA, 50014, USA

E-mail:{pyang,cram }@cs.sunysb.edu , sbasu@cs.iastate.edu

Abstract. In this paper we present an automatic verification technique for pa-
rameterized systems where the subsystem behavior is modeled using theπ-
calculus. At its core, our technique treats each process instance in a system as a
property transformer. Given a propertyϕ that we want to verify of anN -process
system, we use a partial model checker to infer the propertyϕ′ (stated as a for-
mula in a sufficiently rich logic) that must hold of an(N − 1)-process system.
If the sequence of formulasϕ, ϕ′, . . . thus constructed converges, and the limit is
satisfied by the deadlocked process, we can conclude that theN -process system
satisfiesϕ. To this end, we develop a partial model checker for theπ-calculus that
uses an expressive value-passing logic as the property language. We also develop
a number of optimizations to make the model checker efficient enough for routine
use, and a light-weight widening operator to accelerate convergence. We demon-
strate the effectiveness of our technique by using it to verify properties of a wide
variety of parameterized systems that are beyond the reach of existing techniques.

1 Introduction
A parameterized system consists of a number of instances of a component, the number
of such occurrences being the parameter to the system. Many safety-critical systems
are naturally parameterized: e.g. resource arbitration protocols, communication proto-
cols, etc. Traditional model checking techniques are limited to verifying properties of
a given instance of a parameterized system (i.e. for a specific value of the parameter).
Many novel techniques have been developed to verify such systems for all instances of
their parameters [12, 15, 16, 10]. These techniques vary in the classes of systems they
can handle and the degree of automation they provide. Automatic techniques typically
restrict the communication topology (e.g. rings or trees) or, at least, demand that the
communication patterns be fixed.

The Driving Problem. In many systems, e.g. mobile systems, the process interconnec-
tions can change dynamically. Existing techniques for verifying parameterized systems
do not readily extend to such systems. In this paper, we present an automatic technique
to address this problem.

Theπ-calculus [28] is a well-known process calculus where communication chan-
nels as well as values transmitted over them belong to the same domain ofnames;
names can be dynamically created, communicated to other processes, and can be used
as channels. Due to these features, it is widely used as the basis for modeling mobile

? This research was supported in part by NSF grants CCR-0205376, CCR-0311512, and CCR
0509340.

p(x)
def
= (νy)xy.p(x)

q(x)
def
= x(y).q(x)

sys(n)
def
= (νx)(p(x) | qn(x))

ϕ0 ≡ X =ν 〈τ〉tt ∧ [τ]X

ϕ1 ≡ X1(x) =ν νy′((〈xy′〉tt ∨ 〈τ〉tt) ∧ [xy′]X1(x) ∧ [τ]X1(x))

ϕ2 ≡ X2(x) =ν νy′([xy′]X2(x) ∧ [x{y}]X2(x) ∧ [τ]X2(x))

ϕ3 ≡ X3(x) =ν νy′([xy′]X3(x) ∧ [x{y}]X3(x) ∧ [τ]X3(x))

(a) (b)

Fig. 1.A simple example of a parameterized system.

systems. In a parameterized mobile system, we assume that each component is spec-
ified as a finite-controlπ-calculus process: i.e. specified without using the replication
operator of the calculus, and not containing a parallel composition within the scope of
a recursive definition. A simple example of a parameterized system based on theπ-
calculus is shown in Fig. 1(a). In the figure, the parameterized system is represented by
processsys(n), which consists of one instance of processp(x) andn instancesq(x).
The processp(x) creates a new namey and outputs it via channelx, while the process
q(x) receives a name viax. The property to be verified,ϕ0, is specified in the modal
µ-calculus [24, 8] and written in equational form (Fig. 1(b)). The property is a greatest
fixed point formula (specified by a=ν equation) and states thata τ action is possible
after everyτ action. An example of parameterized verification problem is to determine
whether∀n. sys(n) |= ϕ0.

Background. In [6], we developed a compositional model checker for the process
algebra CCS [27] and for properties specified in the modelµ-calculus [8]. We used the
compositional checker for the verification of parameterized CCS processes. The central
idea of our approach is to view processes as property transformers: given aµ-calculus
formulaϕ and a system containing a CCS processP , we compute the propertyϕ′ that
should hold inP ’s environment (say,Q) if ϕ holds inP |Q. The property transformer
of a processP , denoted byΠ(P), is such that:∀Q. (P |Q |= ϕ) ⇔ (Q |= Π(P)(ϕ)).

Consider a parameterized systemPn consisting ofn instances of a processP .
To verify whetherϕ holds inPn for all n, we construct the sequence of properties
ϕ0, ϕ1, . . . such thatϕ0 = ϕ andϕi+1 = Π(P)(ϕi) for all i ≥ 0. Let the sequence
converge afterk steps: i.e.ϕk+1 = ϕk. By definition ofΠ, note that forn ≥ k,
Pn |= ϕ if Pn−k |= ϕk. Let 0 denote the deadlocked process, the unit of the paral-
lel composition operator. Specifically,Pn is equivalent toPn|0. It then follows that
∀n ≥ k, Pn |= ϕ if 0 |= ϕk, i.e. the zero process has the property specified by limit of
the sequence of formulas.

Our Solution. Following the approach of [6], we develop a compositional model
checker for theπ-calculus and use that as the basis for verifying parameterized mo-
bile systems. Consider the example in Figure 1. In order to show thatsys(n) |= ϕ0 for
arbitraryn, we begin by determining a propertyϕ1 = Π(p(x))(ϕ0). By the definition
of Π, we knowqn(x) |= ϕ1 wheneversys(n) |= ϕ0.

In order to specifyϕ1 correctly, the property language needs to be expressive enough
to specify names and their scopes. We extend the modalµ-calculus to a logic called the
Cµ-calculus. In this logic, formula variables may be parameterized by names. More-
over, formulas may specify local names (denoted byνx) and may contain modalities
with new actions such as thefree inputactionxy (see Section 2).

In the above example, observe thatp(x)|Q (for any process Q) can do aτ -action if
(a)Q can do an input action onx to synchronize withp(x)’s bound output actionxνy, or

2

(b)Q itself can do aτ -action. Thus the term〈τ〉ϕ′ holds inp(x)|Q if (〈xy〉ϕ′′∨〈τ〉ϕ′′)
holds inQ. The other modalities and operations in the formula are derived along the
same lines using the property transformer forp(x). The resulting propertyϕ1, defined
in Cµ-calculus using the formula variableX1, is shown in Figure 1(b). It states that it is
always possible to input fromx or perform aτ action after any such action. Observe that
free namex is the parameter to the formula variableX1. We now check ifϕ1 holds in
qn(x), by checking ifϕ2 = Π(q(x))(ϕ1) holds inqn−1(x). Observe thatϕ2 does not
have the conjunct〈xy′〉tt ∨〈τ〉tt since a single instance ofq(x) can satisfy it. Using the
terminology of assume-guarantee proof techniques [19], we can say that the obligation
of 〈xy′〉tt ∨ 〈τ〉tt on qn(x) is satisfied by one instance ofq(x) and hence is not passed
on toqn−1(x). Continuing further, we can check ifϕ2 holds inqn−1(x) by checking if
ϕ3 = Π(q(x))(ϕ2) holds inqn−2(x).

Observe from the figure thatϕ3 andϕ2 differ only in the names of formula vari-
ables and hence represent the same property. We thus conclude that the sequenceϕi

converges toϕ2. Moreover, since0 satisfiesϕ2 we can conclude that the original for-
mulaϕ0 is satisfied bysys(n) for sufficiently largen. It should also be noted that since
ϕ2 is a greatest fixed point formula and involves a conjunction of universal modalities,
it is equivalent tott ; hence the last iteration (to computeϕ3) is redundant. Techniques
to simplify formulas and to find equivalences will in general enable us to detect con-
vergence earlier. A more careful analysis of the sequence of formulas reveals that it
converges afterone instance ofq(x) is considered, and hence we can conclude that
∀n ≥ 1 sys(n) |= ϕ0.

Contributions. The main contributions of this paper are as follows.

– A compositional model checker for theπ-calculus. The model checker works for
finite-controlπ-calculus processes, as well as value-passing calculus with equality
(=) and dis-equality (6=) constraints between names (see Section 3).

– Operations to efficiently check for convergence of formula sequences, and to accel-
erate convergence. The verification technique for parameterized systems is based
on computing the limit of a sequence ofCµ-calculus formulas. We describe effec-
tive techniques to check if twoCµ-calculus formulas are equivalent. We also de-
scribe a widening operator to extrapolate the sequence to estimate (approximately)
its limit (Section 4).

– Optimizations to compositional model checking. We develop a number of light-
weight optimization techniques to reduce the size of formulas generated in the in-
termediate steps of compositional model checking. We find that such optimizations
are necessary and effective. Without these, parameterized system verification based
on compositional model checking appears infeasible (see Section 5).

We also demonstrate the utility of our technique by applying it on a variety of param-
eterizedπ-calculus systems: ranging from simple ones that can also be expressed as
parameterized CCS systems, to those that exhibitπ-calculus-specific features of name
creation, link passing and scope extrusion (Section 6).

Related work. A number of model checking techniques for theπ-calculus have been
developed. Examples include the model checking technique for polyadicπ-calculus [11];
the Mobility Workbench (MWB) [33], a model checker and bisimulation checker for the
π-calculus; a system [32] to translate a subset ofπ-calculus specifications into Promela

3

for verification using Spin [20]; and MMC [35, 36] model checker for theπ-calculus
based on logic programming. All these techniques, however, apply only to finite-control
π-calculus, and cannot be used for verifying parameterized systems.

Type systems for the verification ofπ-calculus processes [9, 21] handle the repli-
cation operator and appear to be a promising alternative to the verification of param-
eterized mobile systems. The PIPER system [9] generates CCS processes as “types”
for π-calculus processes (based on user-supplied type signatures), and formulates the
verification problem in terms of these process types. In [21], a generic type system for
theπ-calculus is proposed as a framework for analyzing properties such as deadlock-
and race-freedom. The replication operator alone is insufficient to model many param-
eterized systems where the repeated instances may have different free variables.

The area of compositional verification has received considerable attention. Most
techniques for compositional verification are based on assume-guarantee reasoning [18,
1, 26, 7, 19], and need user guidance. An approach to learn assumptions using automata
learning techniques is proposed in [2]; but the technique is limited to the verification
of systems with a fixed number of finite-state components. The technique presented in
this paper is broadly based on our earlier technique [6] which is restricted to parameter-
ized CCS systems and does not support dynamic change of communication topology.
Other closely-related works include the compositional model checker for synchronous
CCS [4] and the partial model checker of [3]. The latter defines property transformers
for parallel composition of sequential automata, while we generalize the transformers
for arbitraryπ-calculus processes. These papers also proposed techniques to reduce the
size of formulas, but the optimizations are done after the formulas are generated in the
first place; in contrast, we apply our optimizations during the model checking process,
thereby reducing the size of formulas generated.

Verification of parameterized systems has been recognized as an important prob-
lem and significant progress has been made in the recent years [37, e.g.]. One popular
approach to the verification of a parameterized system of the formPn is to identify a
finite cut off k for a propertyϕ such that∀n.Pn |= ϕ ⇔ P k |= ϕ, thereby reduc-
ing it to a finite-state verification problem. Techniques following this approach range
from those that provide cutoffs for particular communication topologies [13, 14, e.g.],
to those based on symmetries and annotations in the system specification [22]. Later
works, such as [30, 5] have proposed automatic techniques, based on identification of
appropriate cut-off of the parameters, for verification of wide range of parameterized
systems using rich class of data objects and operations (inequalities, incrementations).
Another approach is to identify an appropriate representation technique for a given pa-
rameterized system; e.g. counting abstraction with arithmetic constraints [12], covering
graphs [15, 16], and context-free grammars [10], and regular languages [31]. The use of
abstractions to generate invariants of parameterized systems is explored in [23]. None of
these techniques, however, consider dynamically changing communication topologies.

2 A Logic for Compositional Analysis of π-calculus Processes

In this section, we present the fundamentals ofπ-calculus (Section 2.1) and property
specification logic, which we will refer to asCµ-calculus (Section 2.2), followed by our
technique of compositional analysis (Section 3).

4

2.1 Syntax and Semantics of theπ-Calculus

Process algebraπ-calculus [28] is used to represent behavior of systems whose in-
terconnection pattern changes dynamically. Letx, y, z, . . . range over names,p, q, r, . . .
range over process identifiers, and

→
x represent comma-separated list of namesx1, . . . , xn.

In the following, we recall the syntax of the calculus.

α ::= x(y) | xy | τ

P ::= 0 | α.P | (νx)P | P | P | P + P | [x = y]P | p(
→
y)

Dp ::= p(
→
x)

def
= P (wherei 6= j ⇒ xi 6= xj andfn(P) ⊆ {→x})

In the above,α denotes the set of actions wherex(y), xy andτ represent input, (free)
output and internal actions. Input actionx(y) has binding occurrence of variabley. All
other variables in every action arefree. The set of process expressions is represented
byP. Process0 represents a deadlocked process. Processα.P can perform anα action
and subsequently behave asP . Process(νx)P behaves asP with the scope ofx ini-
tially restricted toP ; x is called a local name. Process[x = y]P behaves asP if the
namesx andy are the same name, and as0 otherwise. The operators+ and| represent
non-deterministic choice and parallel composition, respectively. The expressionp(

→
y)

denotes aprocess invocationwherep is a process name (having a corresponding defini-
tion) and

→
y is the actual parameters of the invocation. Finally,Dp is the set of process

definitions where each definition is of the formp(
→
x) def= P . A definition associates a

process namep and a list of formal parameters
→
x with process expressionP .

The operational semantics of theπ-calculus is given in terms ofsymbolic transition
systemswhere each state denotes a process expression and each transition is labeled by
a boolean guard and action [25]. The operational semantics is standard and is omitted.

2.2 Syntax and Semantics of theCµ-calculus

For the purpose of compositional analysis, we extend value-passingµ-calculus in two
ways: (i) with explicit syntactic structures to specify and manipulate local names, and
(ii) with actions that are closed under complementation. We will refer to this logic as
Cµ-calculus. The set of formula expressionsF in theCµ-calculus is defined as follows:

F ::= tt | ff | x = y | x 6= y | loc(x) | nloc(x) | (νx)F | F ∨ F | F ∧ F
| 〈A〉F | [A]F | 〈x(y)〉∃y.F | 〈x(y)〉∀y.F | [x(y)]∀y.F | [x(y)]∃y.F
| X(

→
e) | (µX(

→
z).F)(

→
e) | (νX(

→
z).F)(

→
e)

A ::= xy | xy | x{y} | xνy | τ

In the above,tt andff stand for propositional constants true and false, respectively.
loc(x) is true iff x is a local name, andnloc(x) is true iff x is not a local name. The
scope of names can be specified by formulas of the form(νx)F which means thatx is a
local name in the formula. Formulas can be constructed using conjunction, disjunction,
diamond (existential) and box (universal) modalities and quantifiers. The modal actions
x(y), xy, andτ represent input, free input and internal actions, respectively.xy is a
free output action wherey is a free name andxy is an output action that has binding
occurrence of variabley. In input and output actionsx(y) andx{y}, x is free and
y is bound; in free input and free output actions, all names are free.xνy is a bound

5

1a: [[x = y]]ξδl =

{sδ | s ∈ S} if δ |= x = y
∅ otherwise. 1b: [[x 6= y]]ξδl =

{sδ | s ∈ S} if δ |= x 6= y
∅ otherwise.

2a: [[loc(x))]]ξδl =

{sδ | s ∈ S} if x ∈ l
∅ otherwise. 2b: [[nloc(x))]]ξδl =

{sδ | s ∈ S} if x 6∈ l
∅ otherwise.

3: [[ϕ1 ∨ ϕ2]]ξδl = [[ϕ1]]ξδl ∪ [[ϕ2]]ξδl 4: [[ϕ1 ∧ ϕ2]]ξδl = [[ϕ1]]ξδl ∩ [[ϕ2]]ξδl

5: [[(νx)ϕ]]ξδl = {s | s ∈ [[ϕ{x′/x}]]ξδ(l ∪ {x′}) where x′ 6∈ fn(s)}

6: [[〈τ〉ϕ]]ξδl = {s | ∃s′.s
b,τ−→ s′ ∧ (δ, l |= b) ∧ s′ ∈ [[ϕ]]ξδl}

7: [[〈x1v〉ϕ]]ξδl = {s | ∃s′.s
b,x2v
−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ s′ ∈ [[ϕ]]ξδl}

8: [[〈x1{y}〉ϕ]]ξδl = {s | ∃s′.s
b,x2v
−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ s′ ∈ [[ϕ{v/y}]]ξδl}

9: [[〈x1νy〉ϕ]]ξδl = {s | ∃s′.s
b,x2νv
−→ s′ ∧ v 6∈ fn(ϕ)− {y} ∧ (δ, l |= b ∧ (x1 = x2))

∧ s′ ∈ [[ϕ{v/y}]]ξδ(l ∪ {v})}

10: [[〈x1y〉ϕ]]ξδl = {s | ∃s′.s
b,x2(w)
−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ s′{y/w} ∈ [[ϕ]]ξδl}

11: [[〈x1(y)〉∃y.ϕ]]ξδl = {s | ∃s′.s
b,x2(w)
−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ ∃v.s′{v/w} ∈ [[ϕ{v/y}]]ξδl}

12: [[〈x1(y)〉∀y.ϕ]]ξδl = {s | ∃s′.s
b,x2(w)
−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ ∀v.s′{v/w} ∈ [[ϕ{v/y}]]ξδl}

13: [[X(
→
e)]]ξδl = ξ(X)(

→
e δ)

14: [[(µX(
→
z).ϕ)(

→
e)]]ξδl = (∩{f | [[ϕ]](ξ ◦ {X 7→ f}) ⊆ f})δ[

→
e /

→
z]l

15: [[(νX(
→
z).ϕ)(

→
e)]]ξδl = (∪{f | f ⊆ [[ϕ]](ξ ◦ {X 7→ f})})δ[

→
e /

→
z]l

Fig. 2.Semantics of theCµ-calculus

output action; in such an actionx is free andy is bound. Bound names of a formula are
either bound names in the modalities or names bound by theν operator.〈x(y)〉∃y.F
and 〈x(y)〉∀y.F represent basic and late diamond modalities for input actionx(y),
respectively.[x(y)]∀y.F and [x(y)]∃y.F represent the basic and late box modalities
for input actionx(y), respectively.

The least and greatest fixed point formulas are specified as(µX(
→
z).F)(

→
e) and

(νX(
→
z).F)(

→
e), respectively, where

→
z represents formal parameters and

→
e represents

actual parameters. For convenience, we often represent a formula as a sequence of fixed
point equations [17]. We assume that all formulas areclosed, i.e., all free names in a
formula appear in the parameters of the definition.

Semantics of theCµ-calculus. The semantics of formulas in theCµ-calculus is given
using four structures: (i) a symbolic transition systemS = 〈S,→〉 whereS represents
the set of symbolic states and ‘→’ is the symbolic transition relation; (ii) a substitu-
tion δ over which the equality (=) and disequality (6=) constraints between names are
interpreted; (iii) a functionξ that maps formula variables to sets of symbolic states of
S; and a set of local namesl used to assign meaning toloc andnloc predicates. The
semantic function is written as[[ϕ]]ξδl and maps each formula to a set of states inS. The
symbolic transition system is used as an implicit parameter in the definition: all rules
are evaluated w.r.t. the same transition system. The treatment of boolean connectives is
straightforward. The set of local names,l, is updated in Rules 5 and 9 to include names
bound byν operator. Similarly, the substitutionδ is updated to capture the mapping of
formal parameters (free names) to actual arguments in Rules 14 and 15. Constraints of
the formx = y andx 6= y are evaluated under this substitution. Rules 6–12 give the
semantics for the diamond modality. The semantics of the box modality can be easily
obtained by considering it as the dual of the diamond modality. For instance, the se-

6

1(a) Π(P)(tt) = tt 1(b) Π(P)(ff) = ff

2(a) Π(P)(x = y) =

tt if x = y
x = y otherwise

2(b) Π(P)(x 6= y) =

ff if x = y
x 6= y otherwise

3(a) Π(P)(loc(x)) = loc(x) 3(b) Π(P)(nloc(x)) = nloc(x)

4 Π(P)(ϕ1 ∨ ϕ2) = Π(P)(ϕ1) ∨ Π(P)(ϕ2)

5 Π(P)(ϕ1 ∧ ϕ2) = Π(P)(ϕ1) ∧ Π(P)(ϕ2)

6 Π(P)(X(
→
e)) = XP (

→
e1) where

→
e1 =

→
e + fn(P)

7 Π(P)(∃x.ϕ) = ∃x.Π(P)(ϕ) Π(P)(∀x.ϕ) = ∀x.Π(P)(ϕ)

8 Π(0)(ϕ) = ϕ

9 Π(p(
→
x))(ϕ) = Π(P)(ϕ) where p(

→
x)

def
= P

10 Π(P1 | P2)(ϕ) = Π(P2)(Π(P1)(ϕ))

11 Π((νx)P)(ϕ) = (νx′)Π(P{x′/x})(ϕ) where x′ ∩ n(ϕ) = ∅
12 Π(P)((νx)ϕ) = (νx′)(Π(P)(ϕ{x′/x})) where x′ 6∈ fn(P)

13 Π(a.P)(〈α〉ϕ) = 〈α〉Π(a.P)(ϕ) where bn(α) ∩ fn(a.P) = ∅

∨

8>>>>>>><>>>>>>>:

Π(P)(ϕ) if a = τ ∧ α = τ
x1 = x2 ∧ nloc(y1) ∧ Π(P)(ϕ) if a = x1y1 ∧ α = x2y1
x1 = x2 ∧ nloc(y1) ∧ Π(P)(ϕ{y1/y2}) if a = x1y1 ∧ α = x2{y2}
x1 = x2 ∧ loc(y1) ∧ Π(P)(ϕ{y1/y2}) if a = x1y1 ∧ α = x2νy2
x1 = x2 ∧ Π(P)(ϕ{y1/y2}) if a = x1(y1) ∧ α = x2(y2)
x1 = x2 ∧ Π(P{y2/y1})(ϕ) if a = x1(y1) ∧ α = x2y2
ff otherwise

9>>>>>>>=>>>>>>>;
∨

〈a〉Π(P)(ϕ), where bn(a) ∩ n(ϕ) = ∅ if α = τ
ff otherwise

ff
14 Π(P1 + P2)(〈α〉ϕ) = 〈α〉Π(P1 + P2)(ϕ) ∨ Π(P1)(〈α〉ϕ) ∨Π(P2)(〈α〉ϕ)

15 Π([x = y]P)(ϕ) = C ∧ Π(P)(ϕ) where C =

tt if x = y
x = y otherwise

A. Π(P)(X(
→
z) =σ ϕ ∪ E) = {XP (

→
z1) =σ Π(P)(ϕ) where (n(ϕ)−→

z) ∩ fn(P) = ∅) and →z1 =
→
z + fn(P)}

∪Π(P)(E) ∪
S
{Π(P ′)(X′(

→
z2) =σ′ ϕ′) s.t X′

P ′ (
→
z3)is a subformula of

Π(P)(ϕ),
→
z3 =

→
z2 + fn(P ′) and (n(ϕ′)− →

z2) ∩ fn(P ′) = ∅)}
B. Π(P)({}) = ({})

Fig. 3.Partial Model Checker forπ-Calculus.

mantics for[τ]ϕ is: [[[τ]ϕ]]ξδl = {s | ∀s′. if s b,τ−→ s′ ∧ δ, l |= b then s′ ∈ [[ϕ]]ξδl}. For
brevity, we will henceforth discuss only about the diamond modality. The details related
to the box modality are given in [34]. We will uses |=δ,l ϕ to denotes ∈ [[ϕ]]ξδl.

3 Compositional Model Checker for theπ-Calculus

In this section, we define the transformation functionΠ : P → F → F which is the
core of our technique. Given a processP ∈ P, a formulaϕ ∈ F , a set of substitutions
δ and a set of local namesl, we defineΠ such that

P | Q | 0 |=δ,l ϕ⇔ Q | 0 |=δ,l Π(P)(ϕ) ⇔ 0 |=δ,l Π(Q)(Π(P)(ϕ))

In words, the main objective ofΠ is to generate aCµ-calculus formula which represents
the temporal obligation of the environment of the process used for transformation. This
process of transforming formula iteratively by each process in the parallel composition
is similar to the one proposed in [3, 6], where the transformation operation is defined for
labeled transitions system or process algebra CCS and the technique of model checking
is referred to aspartial model checking.

7

The functionΠ for each formula expression is presented in Fig. 3. Here, we il-
lustrate only those rules that are not obvious. Rules 3(a) and 3(b) leave the formula
expressionsloc(x) andnloc(x) unchanged; evaluation of these formulas is performed
when all but the0 processes are used to transform the formula iteratively. Rule 6 trans-
forms a parameterized formula variableX(

→
e) into new formula variableXp(

→
e1) (the

definition is in Rule A) where
→
e1 is formed by concatenation of

→
e and free names of

P . Transformation using a process identifier is equivalent to transformation using its
definition (Rule 9).

Rule 10 captures the compositionality of property transformers; the order of trans-
formation usingP1 orP2 does not matter. Rule 11 presents the property transformer for
process(νx)P where(νx) is moved from the process side to the transformed formula.
In order to avoid name clash,x is renamed tox′ ({x′/x})that is different from any free
names inϕ. Note that,x′ is a local name in the context of the transformed formula.

Rule 12 deals with the formulas with local name restrictions (possibly generated
via Rule 11). Transformation usingP results in the extension of the scope ofx to the
transformed formula. Similar to Rule 11, namex in ϕ is renamed to a new namex′

(not present as a free name inP). Observe that, Rules 11 and 12 have a similar effect
as pulling theν out using thestructural congruencerule: (νx)P | Q ≡ (νx)(P | Q)
wherex does not appear inQ. Renamings in these two rules correspond to the side
condition of the congruence rule.

Rule 13 presents the transformation〈α〉ϕ using prefix process expressiona.P . The
rule relies on three different possibilities following whicha.P , when composed with an
environment, can satisfy〈α〉ϕ.

1. The environment makes a move onα satisfying the modal obligation (1st disjunct).
2. a.P satisfies the modal obligationα (2nd disjunct).
3. α = τ and the environment synchronizes witha.P (the 3rd disjunct), i.e., performs

ana action.

In Case 1, the side condition demands that the bindings in modal actionα does not
bind any free names of prefixed process expression. As such we apply alpha-conversion
to satisfy the side condition: alpha-conversion renames all the binding occurrences in
formula with new names that are disjoint from the free names of the process. In Case 2
there are multiple possibilities depending on the nature of modal actionα. Note that if
α is an output or a free output, then formula expressionnloc(y1) is generated meaning
thaty1 must not be a local name to satisfy the modal obligation. This is because at the
time of transformation, it is not known whethery1 is a local name or not. Similarly,
whenα is a bound output modal action, the formula expressionloc(y1) is generated.

In Rule 14, a diamond modal formula is transformed using choice process expres-
sion. The result is a disjunction where (a) the first disjunct corresponds to the case where
the environment is left with the obligation to satisfy the modal action and (b) the second
and the third disjunct, respectively, corresponds to the case where the first or the second
process is selected for subsequent transformation.

Finally, Rules A and B correspond to transformation of formula equations. Observe
that, we are using equational syntax of theCµ-calculus. Any property with formula ex-
pressions of the formσX(

→
z).ϕ can be converted in linear time to set of equations of the

formX(
→
z) =σ ϕ. Specifically, given aCµ-calculus formulaϕ where each fixed point

8

1. f l(tt) = tt 2. f l(ff) = ff

3. f l(x = y) =

8<: tt if x = y
ff if {x, y} ∩ l 6= ∅
x = y otherwise

9=; 4. f l(x 6= y) =

8<: ff if x = y
tt if {x, y} ∩ l 6= ∅
x 6= y otherwise

9=;
5. f l(∃x.ϕ) = ∃x.f l(ϕ) 6. f l(∀x.ϕ) = ∀x.f l(ϕ)

7. f l(loc(x)) =

ff if x 6∈ l
tt if x ∈ l

ff
8. f l(nloc(x)) =

tt if x 6∈ l
ff if x ∈ l

ff
9. f l(ϕ1 ∧ ϕ2) = f l(ϕ1) ∧ f l(ϕ2) 10.f l(ϕ1 ∨ ϕ2) = f l(ϕ1) ∨ f l(ϕ2)

11.f l(〈α〉ϕ) = ff 12.f l((νx)ϕ) = f l∪{x}(ϕ)

13.f l(X(
→
e)) = f l(ϕ{→e /

→
z }) whereX(

→
z) = ϕ

Fig. 4.Computingf l(ϕ).

variable has distinct names, the number of equations in the corresponding equational set
is equal to the number of fixed point sub-formulas ofϕ. Each such sub-formula of the
form σxX.ϕx is translated to a equationX =σx

ψx whereψx is obtained by replacing
every occurrences of its sub-formulaσyY.ϕy with Y . For example the formula expres-
sion:νX.(µY.([a1]X∧[a2]Y)) is translated toX =ν Y andY =µ [a1]X∧[a2]Y where
X is the outer-fixed point variable andY is the inner one. The use of equational form
is driven by the fact that transformation can be done in a per-equation basis, instead of
keeping track of all the sub-formula expressions of a formula if the transformation was
done for non-equational form.

Let E represent the sets of formula equations. Rules A and B define a function
Π : P → E → E that represents the transformer over a set ofCµ-calculus equations.
Rule A states that given a formula equation of the formX(

→
z) =σ ϕ, transformation

leads to the generation of a new equation of the formXP (
→
z1) =σ Π(P)(ϕ) where

→
z1

is formed by concatenation of
→
z and free names ofP . Moreover, if there is a formula

expressionX ′
P ′(

→
z3) present inΠ(P)(ϕ), then the corresponding formula equation for

X ′(
→
z2) is transformed usingP ′, where

→
z2 is formed by removing free names ofP ′ from

→
z3. Rule A also requires that names in the right-hand side of the equation that do not
appear in the parameters should be different from any free names ofP .

Theorem 1 LetP andQ be two process expressions,δ a set of substitutions, andl a
set of local names. Then for all formulasϕ, the following holds:

Q | P |=δ,l ϕ⇔ Q |=δ,l Π(P)(ϕ)

The proof is by induction on the size of the process expression and the formula.2

Computing Constraints.Given a processP |0 and a formulaϕ, let ψ = Π(P)(ϕ).
According to Theorem 1, given a set of constraintsδ and a set of local namesl, P |=δ,l

ϕ⇔ 0 |=δ,l ψ. In Figure 4, we present a functionf l(ψ) that, given a set of local names
l, computes a set of constraintsδ under which0 |=δ,l ψ.

Rules 1 and 2 in Figure 4 are straightforward. In Rules 3 and 4, if one ofx andy is
a local name, then since local names are different from any other names in the system,
x = y is false. In Rule 7, ifx occurs inl, thenloc(x) is true, otherwise false. Rule 11
evaluates〈α〉ϕ to ff because0 cannot perform any action. In Rule 12, the local name
x is added tol in order to evaluate theloc(x) andnloc(x) predicates. Note thatf l(ψ)
generates a formula over equality and disequality expressions and standard constraint
solving algorithms are applied to solve the constraints of the form∃x.ϕ and∀x.ϕ.

9

Following example illustrates the use ofloc andnloc formula expressions.

Example 1 Given a processp(x) def= (νy)xy.p(x) and a formulaϕ ≡ X(x) =ν

〈xνz〉tt :

Π(p(x))(ϕ) ≡ X1(x) =ν Π((νy)xy.p(x))(〈xνz〉tt)
=ν (νy)Π(xy.p(x))(〈xνz〉tt) =ν (νy)loc(y)

Asf∅((νy)loc(y)) = f{y}(loc(y)) = tt , therefore,0 |=tt,∅ Π(p(x))(ϕ) 2

In Example 1, when computingΠ(xy.p(x))(〈xνz〉tt), since(νy) is not in the scope
of transformation, the model checker cannot determine ify is a local name. Thus, we
generate the constraintloc(y). After the transformation is done, we verify if0 satisfies
the resulting formula(νy)loc(y). Sincey is a local name,(νy)loc(y) is evaluated tott .

4 Verification of Parameterizedπ-calculus Systems
We outline here the compositional analysis based technique for verification of param-
eterized systems where instances of subsystems are represented by finite controlπ-
calculus processes. LetPn be a system withn instances ofπ-calculus processP . Con-
sider verifying that theith instance of above system satisfies a propertyϕ. The result of
transformingϕ using theith instance isϕi = Π(P i)(ϕ). Therefore, from Theorem 1,
given a set of substitutionsδ and a set of local namesl, 0 |=δ,l ϕi ⇔ P i |=δ,l ϕ.

Now consider verifying whether∀i. P i |= ϕ. Letϕ′i be defined as:

ϕ′i =

ϕ1 if i = 1
ϕ′i−1 ∧ ϕi if i > 1

By definition ofϕ′i, (∀1 ≤ j ≤ i.0 |=δ,l ϕj) ⇔ 0 |=δ,l ϕ
′
i. Thus,0 |=δ,l ϕ

′
i means that

∀1 ≤ j ≤ i.P j |=δ,l ϕ. If ϕ′ω is the limit of sequenceϕ′1, ϕ
′
2 . . ., then,0 |=δ,l ϕ

′
ω ⇔

∀i ≥ 1.P i |=δ,l ϕ.
A dual technique is applied for the verification problem∃i.P i |= ϕ. Let ϕ′′i be

defined as:

ϕ′′i =

ϕ1 if i = 1
ϕ′′i−1 ∨ ϕi if i > 1

In this case, ifϕ′′ω, the limit of the sequenceϕ′′1 , ϕ
′′
2 , . . ., is satisfied by0 under

the substitutionδ, then∃n.Pn |= ϕ. We say that the series ofϕ′i is contractingsince
ϕ′i ⇒ ϕ′i−1 and the series ofϕ′′i is relaxingasϕ′′i−1 ⇒ ϕ′′i .

Before deploying the above technique for solving verification of parameterized sys-
tems, we need to solve the following problems:

1. Entailment: To detect whether a limit is reached requires developing the equiva-
lence relation betweenCµ-calculus formulas.

2. Convergence acceleration: The limit in the chain ofCµ-calculus formulas may not
be realized in general. As such, we need to identify a suitable abstraction to the
generated formulas to ensure termination of the iterative process.

Entailment. Equivalence checking of formula expressions in logic with explicit fixed
points is an EXPTIME-hard problem. Hence we use an approximate, conservative tech-
nique for equivalence detection which is safe and can be efficiently applied. First, we

10

check if two formulas are equivalent based on the algorithm in [3]. The algorithm
states that syntactically identical formula expressions are semantically equivalent. If the
equivalence between formula expressions is not readily understood from their structure,
we apply the technique developed in [6]. This technique relies on converting the formula
into a labeled transition system, calledformula graphs, where each state is annotated
by a formula expressions and transitions are labeled by various syntactic constructs of
Cµ-calculus, e.g., diamond modal action. The equivalence between two formula ex-
pressions are determined by checking whether the corresponding formula graphs refine
each other. Such graph-based equivalence detection algorithm is more powerful than
that relying on textual representation of syntax [3] as the former can effectively extract
dependencies between formula variables (see [6]).

Convergence acceleration.To ensure convergence and termination, we develop a
widening algorithm that over-approximates a relaxing sequence ofϕ′′i and under-
approximates the contracting sequence ofϕ′i. The core of the technique is to examine
two consecutive formula expressionsϕi andϕj in a sequence and determine their differ-
ences. For example, if the formulas are members of a relaxing sequence (ϕi ⇒ ϕj), the
difference is identified as a disjunct inϕj . Widening amounts to removing this disjunct
and generate a new formulaϕa such thatϕj ⇒ ϕa. Similarly, for contracting sequence,
we remove the divergence-causing conjuncts. Note that, this type of widening is only
applicable to safety and reachability properties where all the boolean connectives in the
formula are either∧ or∨, respectively.

Note that widening leads to an approximation of the limit of the sequence. As such,
given a parameterized systemPn and formulaϕ, if limit ϕω of a relaxing sequence
is realized via widening and0 |= ϕω, we cannot infer that∃n.Pn |= ϕ. However,
0 6|= ϕω ⇒ ∀n.Pn 6|= ϕ. Similarly, for contracting sequence, ifϕω is the limit reached
after widening, then0 |= ϕω ⇒ ∀n.Pn |= ϕ, while 0 6|= ϕω 6⇒ ∃n.Pn 6|= ϕ.

5 Optimizations
In general, the transformation rules may generate a number of redundant formulas, e.g.,
two sub-formulas that are equivalent. Redundancies result in formulas that are large and
virtually un-manageable. In order to apply the partial model checker to any practical
application, we need to develop techniques to remove such redundancies.

In this section, we propose several optimization techniques to reduce the number of
formulas generated by transformation. In [6], the redundancy removal technique was
solely focused on removing equivalent sub-formulas and used heavy-weight bisimu-
lation checking algorithm on graphical representation of formulas. Such a technique
was used off-line, after the formulas have been generated in the first place. In contrast,
here we present a number of light-weight techniques that are tightly-coupled with the
transformation rules and help to significantly reduce the size of the resulting formulas.

Symmetry Reduction.When the partial model checker generates new formula variables,
it names them based on the corresponding process expressions (see Rule 6 in Figure 3).
The number of formulas generated can be reduced considerably by exploiting a form
of symmetry reduction. For instance, letX be a formula variable, andP andQ be ar-
bitrary process expressions. Note thatΠ(P |Q)(X) = Π(P)(Π(Q)(X)) is a new for-
mula variable of the formXQ,P . On the other hand,Π(Q|P)(X) = Π(Q)(Π(P)(X))
isXP,Q. HenceXP,Q andXQ,P are semantically identical. We avoid creating the two

11

formula variables in the first place, by reducing the suffix process expression to a sym-
metrically equivalent canonical form. This is done by first reducing the expression to
a sequence of parallel-free process expressions (exploiting the associativity of paral-
lel composition), and sorting the sequence by imposing a global total order on the
elements (exploiting the commutativity of parallel composition). This optimization is
light-weight and may dramatically reduce the number of formulas generated even for
applications where symmetry is not obvious (see Section 6).

Optimizing the Choice Rule.The choice rule in Figure 3 may generate redundant for-

mulas. Consider the process definitionp(x, y) def= x(v).p(x, y)+ y(w).p(x, y) and the
formulaϕ =ν 〈τ〉tt.Π(p(x, y))(ϕ) generates the following formulas.

X1(x, y) =ν 〈τ〉tt ∨X2(x, y) ∨X3(x, y)
X2(x, y) =ν 〈τ〉tt ∨ 〈x{v}〉X1(x, y) X3(x, y) =ν 〈τ〉tt ∨ 〈y{w}〉X1(x, y)

From the above, we can infer thatX1(x, y) = 〈τ〉tt∨〈τ〉tt∨〈x{v}〉X1(x, y)∨〈τ〉tt∨
〈y{w}〉X1(x, y). We can, however, avoid generating the two redundant sub-formulas
〈τ〉tt using the following revised “+” rule.

Π(P1 + P2)(〈α〉ϕ) = 〈α〉Π(P1 + P2)(ϕ) ∨ Π ′(P1)(〈α〉ϕ) ∨ Π ′(P2)(〈α〉ϕ)

Π ′ differs fromΠ in Rule 13 where modal obligation〈α〉 is not imposed on the envi-
ronment.

Simplification Techniques.Apart from symmetry-based simplification, we also remove
redundant sub-formulas and use the simplifying equations originally proposed in [3].
The most frequently used simplification techniques are constant propagation (e.g.X =
〈α〉X1, X1 = tt ⇒ X = 〈α〉tt), and unguardedness removal(e.g.X = 〈α〉X1, X1 =
X2 ⇒ X = 〈α〉X2). These simplification techniques help to quickly detect if two
formulas are equivalent.

Environment-Based Reduction.Consider Rule 13 in Figure 3. Processa.P either leaves
the environment to perform anα action (1st disjunct) or ana action ifα = τ (3rd dis-
junct), ora.P itself performs anα action (2nd disjunct). However, if the environment
cannot perform anα or ana action, then the 1st and the 3rd disjuncts need not be gener-
ated. For instance, consider the example given in Figure 1. Given a formulaϕ, we first
usep(x) to transformϕ under the environmentq(x) | . . . | q(x). From the specifica-
tion, processq(x) cannot synchronize with itself, thus the model checker does not need
to leave the environment to perform aτ action. However, this optimization requires
the knowledge of the environment, thereby rendering the model checker of Figure 3 no
longer compositional. Moreover, the assertion(P |Q) |= ϕ ⇔ Q |= Π(P)(ϕ) now
holds only for thoseQ that are consistent with the knowledge of the environment used
to perform this optimization.

When usingP to transform a formula under the environmentQ, we check: 1) What
are the actions ofP with whichQ cannot synchronize? 2) CanQ perform aτ transition?
These can be easily determined for value-passing calculus by parsing the specification,
but are more difficult for theπ-calculus due to link passing. Thus we compute the set
of actions conservatively: if we do not know whether one process can synchronize with
another, then we conservatively assume that such synchronization exists between the
two processes. The environment information is propagated in the model checker. The

12

BenchmarkProperty Summary # Formulas Time (sec.)
Iter Widen (Y/N) Orig Sym Env All Conv Orig Sym Env All Conv

Token ring deadlock freedom 3 Y 86 45 – 45 40 1.93 0.56 – 0.56 0.37
Spin lock mutual exclusion 3 N 398 192 364 181 181 34.96 7.8 23.37 5.11 5.29

deadlock freedom 3 Y 160 80 160 80 64 6.89 1.49 4.62 0.99 1.35
Printer deadlock freedom 3 Y 55 29 – 29 22 1.03 0.29 – 0.29 0.20
Server order preservation 4 Y 1440 1270 241 239 172 361.58 280 10.17 10.07 5.24

Fig. 5.Experimental Results.

details are given in [34]. This optimization may reduce the size of each formula and
sometimes reduces the number of formulas generated (see Section 6).

Eliminating Constraints Based on the Types of Channels.This optimization is applied
to whenever the formulas generated are guarded by equality and disequality constraints.
Under certain conditions, we can determine whether a constraint generated is unsatis-
fiable. For instance, assume that we keep track of the set of all names that have been
extruded from their initial scope. Then ifx has never been extruded andy is a bound
name of an input action, thenx = y is never true. We use a simple type system to
determine whether a channel could have been extruded.

6 Preliminary Experimental Results
In this section, we show the effectiveness of our technique to verify parameterized ver-
sions of several small but non-trivial examples. The examples include those with a fixed
process interconnection, namely,Token ring, a ring ofn token-passing processes, and
Spin lock, a simple locking protocol wheren processes compete to acquire a single
common resource. We also include examples with dynamically changing interconnec-
tion between processes, namelyPrinter, wheren clients use a single print server to
mediate access to a printer, andServer[9], wheren file readers serve web page read
requests. We also evaluate the performance of our model checker on theHandover pro-
cedure[29] (which maintains the connectedness of a mobile station in a cellular network
when the station crosses cell boundaries) to verify a single instance of the system.

The experimental results are shown in Fig. 5. All reported performance data were
obtained on a 1.4GHz Pentium M machine with 512MB of memory running Red Hat
Linux 9.0. The figure is divided broadly into three parts. The verification results for the
different systems and properties are summarized in the first part (columns under “Sum-
mary”). In that part, the number of iterations for the sequence to converge, and whether
widening was needed appear in columns “# Iter”, and “Widen” respectively. For all the
cases listed in the figure, we can conclude that the property holds for all instances of
the parameterized system, even when widening was used to enforce convergence.

The second and third parts of the table, namely, columns under “# Formulas” and
“Time”, present the performance results (number of formulas processed and the CPU
time taken, resp.) for the examples. The columns “Conv” list the total number of for-
mulas and time to compute the formula sequence, including the time taken to perform
convergence check and widening (when needed). The other columns list the same statis-
tics to compute the formula sequence (length of the sequence is same as the number of
iterations) but without checking for convergence or applying widening. The columns
“Orig”, “Sym”, “Env” and “All” list the statistics when no optimizations, symmetry
reduction, environment-based reduction and all optimizations described in Section 5
(resp.) are applied. In the table “–” indicates that the optimization is inapplicable. The
performance results show the effectiveness of the optimizations: the overheads of per-

13

forming the optimizations are easily offset by the reductions enabled by the optimiza-
tions. Widening sometimes reduces formula sizes sufficiently (see Token Ring, Printer,
Server), consequently saving enough time to offset that needed to perform the opera-
tion. In all benchmarks, the memory requirement of the model checker without opti-
mizations is always higher than that with optimizations (all< 12MB), and hence the
corresponding results are not shown.

Finally, we applied the compositional model checker to verify a single instance of
the Handover protocol (1 mobile and 2 base stations). Even with all optimizations en-
abled, it takes 12s to verify the deadlock freedom property for this instance. In contrast,
the non-compositional model checker MMC can verify this instance in less than a sec-
ond. This indicates that the compositional checker is unsuitable for use, as it stands, for
routine verification of non-parameterized systems. When we attempted to verify another
instance of the protocol (with 2 mobile stations), the compositional checker generated
more formulas than can be handled by our prototype implementation.

7 Conclusion
In this paper, we presented an automatic technique for verifying parameterized systems
that consist of a number of instances of finite-controlπ-calculus processes. This tech-
nique uses a sufficiently expressive logic,Cµ-calculus, to represent properties, and is
based on a compositional model checker for theπ-calculus.

Since the technique is based on a compositional model checker, each process in-
stance is verified in an “open” (unknown) environment. Hence in this approach, we
consider a lot more potential system behaviors than any instance of the parameterized
system can exhibit. This leads to generation of large number of formulas at each step.
Optimization aim at reducing this potential blow-up. Among these, the environment-
based reduction attempts to construct an environment for each process that is signifi-
cantly more restricted than the open environment. This is based on the capabilities of
the other processes in the parameterized system (e.g. channels they can communicate
on). Even a relatively simple version of this optimization presented in this paper, which
is based on a very coarse notion of capabilities of processes, results in significant reduc-
tion in verification time (e.g. Server example in Fig. 5). We are currently investigating
heavier-weight but more effective optimizations that would make it possible to use our
technique on realistic parameterized systems such as the Handover protocol.

References
1. R. Alur and T. Henzinger. Reactive modules. InLICS, 1996.
2. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning

assumptions. InCAV, pages 548–562, 2005.
3. H.R. Andersen. Partial model checking (extended abstract). InLICS, 1995.
4. H.R. Andersen, C. Stirling, and G. Winskel. A compositional proof system for the modal

mu-calculus. InLICS, 1994.
5. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with automati-

cally computed inductive assertions. InComputer Aided Verification, 2001.
6. S. Basu and C. R. Ramakrishnan. Compositional analysis for verification of parameterized

systems. InProceedings of TACAS, pages 315–330, 2003.
7. S. Berezin and D. Gurov. A compositional proof system for the modal mu-calculus and CCS.

Technical Report CMU-CS-97-105, CMU, 1997.
8. J. Bradfield and C. Stirling.Modal logics and mu-calculi: an introduction (In the Handbook

of Process Algebra), pages 293–330. Elsevier, 2001.

14

9. S. Chaki, S.K.Rajamani, and J. Rehof. Types as models: model checking message-passing
programs. InProceedings of POPL, pages 45 – 57, 2002.

10. E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks.ACM Transac-
tions on Programming Languages and Systems, 1997.

11. M. Dam. Proof systems for pi-calculus logics.Logic for Concurrency and Synchronisation,
2001.

12. G. Delzanno. Automatic verification of parameterized cache coherence protocols. InCom-
puter Aided Verification, 2000.

13. E.A. Emerson and K.S. Namjoshi. Reasoning about rings. InPOPL, 1995.
14. E.A. Emerson and K.S. Namjoshi. Automated verification of parameterized synchronous

systems. InComputer Aided Verification. Lecture Notes in Computer Science, 1996.
15. E.A. Emerson and K.S. Namjoshi. On model checking for non-deterministic infinite state

systems. InLICS, 1998.
16. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. InLICS,

1999.
17. R. Cleaveland G. Bhat. Efficient model checking via the equationalµ-calculus. InLICS,

pages 304–312, 1996.
18. O. Grumberg and D.E. Long. Model checking and modular verification.ACM Transactions

on Programming Languages and Systems, 1994.
19. T. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, we guarantee. InCAV, 1998.
20. G. J. Holzmann. The model checker SPIN.IEEE Transactions on Software Engineering,

23(5):279–295, May 1997.
21. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus.Theoretical Com-

puter Science, 311(1–3):121–163, 2004.
22. C.N. Ip and D.L. Dill. Verifying systems with replicated components in murphi.Formal

Methods in System Design, 1999.
23. Y. Kesten and A. Pnueli. Control and data abstraction:the cornerstones of pratical formal

verification. International Journal on Software tools for Technology, 2000.
24. D. Kozen. Results on the propositionalµ-calculus.Theoretical Computer Science, 1983.
25. H. Lin. Symbolic bisimulation and proof systems for theπ-calculus. Technical report,

School of Cognitive and Computer Science, U. of Sussex, UK, 1994.
26. K.L. McMillan. Compositional rule for hardware design refinement. InCAV, 1997.
27. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
28. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and II.Infor-

mation and Computation, 100(1):1–77, 1992.
29. F. Orava and J. Parrow. An algebraic verification of a mobile network.Journal of Formal

Aspects of Computing, 4:497–543, 1992.
30. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invariants.

In Tools and Algorithms for the Construction and Analysis of Systems, 2001.
31. A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verification. InCom-

puter Aided Verification, 2000.
32. H. Song and K. J. Compton. Verifying pi-calculus processes by Promela translation. Tech-

nical Report CSE-TR-472-03, Univ. of Michigan, 2003.
33. B. Victor. The Mobility Workbench user’s guide. Technical report, Department of Computer

Systems, Uppsala University, Sweden, 1995.
34. P. Yang, S. Basu, and C. R. Ramakrishnan. Parameterized verification ofπ-calculus systems,

2006. Available athttp://www.lmc.cs.sunysb.edu/˜pyang/ptech.pdf .
35. P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A logical encoding of theπ-calculus:

Model checking mobile processes using tabled resolution. InProceedings of VMCAI, 2003.
Extended version inSoftware Tools for Technology Transfer, 6(1):38-66,2004.

36. P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A provably correct compiler for efficient
model checking of mobile processes. InProceedings of PADL, 2005.

37. L. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameterized systems
(a survey).Computer Languages, Systems & Structures, 30(3–4):139–169, 2004.

15

