Parameterized Verification of 7r-Calculus Systems

Ping Yand, Samik Bast, and C.R. Ramakrishnan

1 Dept. of Computer Science, Stony Brook Univ., Stony Brook, NY, 11794, USA
2 Dept. of Computer Science, lowa State Univ., Ames, IA, 50014, USA
E-mail: {pyang,cram }@cs.sunysb.edu ,sbasu@cs.iastate.edu

Abstract. In this paper we present an automatic verification technique for pa-
rameterized systems where the subsystem behavior is modeled using the
calculus. At its core, our technique treats each process instance in a system as a
property transformer. Given a propertythat we want to verify of ariV-process
system, we use a partial model checker to infer the propgr{gtated as a for-

mula in a sufficiently rich logic) that must hold of &V — 1)-process system.

If the sequence of formulas, ', . . . thus constructed converges, and the limit is
satisfied by the deadlocked process, we can conclude thafjhmcess system
satisfiesp. To this end, we develop a partial model checker forttmalculus that

uses an expressive value-passing logic as the property language. We also develop
a number of optimizations to make the model checker efficient enough for routine
use, and a light-weight widening operator to accelerate convergence. We demon-
strate the effectiveness of our technique by using it to verify properties of a wide
variety of parameterized systems that are beyond the reach of existing techniques.

1 Introduction

A parameterized system consists of a number of instances of a component, the number
of such occurrences being the parameter to the system. Many safety-critical systems
are naturally parameterized: e.g. resource arbitration protocols, communication proto-
cols, etc. Traditional model checking techniques are limited to verifying properties of

a given instance of a parameterized system (i.e. for a specific value of the parameter).
Many novel techniques have been developed to verify such systems for all instances of
their parameters [12, 15, 16, 10]. These techniques vary in the classes of systems they
can handle and the degree of automation they provide. Automatic techniques typically
restrict the communication topology (e.g. rings or trees) or, at least, demand that the
communication patterns be fixed.

The Driving Problem. In many systems, e.g. mobile systems, the process interconnec-
tions can change dynamically. Existing techniques for verifying parameterized systems
do not readily extend to such systems. In this paper, we present an automatic technique
to address this problem.

The w-calculus [28] is a well-known process calculus where communication chan-
nels as well as values transmitted over them belong to the same domaamefs
names can be dynamically created, communicated to other processes, and can be used
as channels. Due to these features, it is widely used as the basis for modeling mobile

* This research was supported in part by NSF grants CCR-0205376, CCR-0311512, and CCR
0509340.

p(z) = (vy)Ty.p(z) po =X =y (1)t " [T]X, /
def w1 = Xi(x) = vy Ty T Ty 1(x T X1 (x
| def i = Xi(x) ((zy")tt v (m)tt) A [zy'] X (2) A [T] X1 ()
a(x) —dea:(y).q(L) 02 = Xa(z) =0 vy’ ([oy'] Xa(2) A [F{y}] X2(2) A [7]Xa2(2))
sys(n) = (va)(p(z) | ¢"(2)) w3 = X3(x) =, vy’ ([2y'] X3(z) A [{y}] X3(z) A [T] X3())
@) (b)

Fig. 1. A simple example of a parameterized system.

def

systems. In a parameterized mobile system, we assume that each component is spec-
ified as a finite-controfr-calculus process: i.e. specified without using the replication
operator of the calculus, and not containing a parallel composition within the scope of
a recursive definition. A simple example of a parameterized system based an the
calculus is shown in Fig. 1(a). In the figure, the parameterized system is represented by
processsygn), which consists of one instance of proce$s) andn instances;(z).

The procesg(x) creates a new nameand outputs it via channel, while the process

q(x) receives a name via. The property to be verifiedy, is specified in the modal
p-calculus [24, 8] and written in equational form (Fig. 1(b)). The property is a greatest
fixed point formula (specified by &, equation) and states thatr action is possible

after everyr action An example of parameterized verification problem is to determine
whetheWn. sygn) = ¢o.

Background. In [6], we developed a compositional model checker for the process

algebra CCS [27] and for properties specified in the madehlculus [8]. We used the

compositional checker for the verification of parameterized CCS processes. The central

idea of our approach is to view processes as property transformers: givealaulus

formulay and a system containing a CCS proc€ssve compute the property’ that

should hold inP’s environment (say) if ¢ holds in P|@Q. The property transformer

of a processP, denoted byi1(P), is such thatv@. (P|Q = ¢) < (Q = I (P)(v)).
Consider a parameterized systdpft consisting ofn instances of a procesB.

To verify whethery holds in P™ for all n, we construct the sequence of properties

©o, 1, - - - such thatpy = ¢ andy;+1 = II(P)(p;) for all i > 0. Let the sequence

converge aftef: steps: i.eorr1 = k. By definition of I7, note that forn > k,

P" |= ¢ if P"7* |= ;. Let 0 denote the deadlocked process, the unit of the paral-

lel composition operator. Specificall?” is equivalent toP™|0. It then follows that

Vn >k, P" | ¢if 0 = ¢y, i.e. the zero process has the property specified by limit of

the sequence of formulas.

Our Solution. Following the approach of [6], we develop a compositional model
checker for ther-calculus and use that as the basis for verifying parameterized mo-
bile systems. Consider the example in Figure 1. In order to shoveyidat) = ¢, for
arbitraryn, we begin by determining a propery = I1(p(x)) (o). By the definition

of IT, we knowg" (x) = ¢1 whenevesygn) E ¢o.

In order to specifyp; correctly, the property language needs to be expressive enough
to specify names and their scopes. We extend the medalculus to a logic called the
Cu-calculus. In this logic, formula variables may be parameterized by names. More-
over, formulas may specify local names (denoted/by and may contain modalities
with new actions such as tlieee inputactionzy (see Section 2).

In the above example, observe thét)|Q (for any process Q) can doraaction if
(a) @ can do an input action anto synchronize wittp(z)’s bound output actiomvy, or

(b) Q itself can do ar-action. Thus the ternir)¢’ holds inp(z)|Q if ((zy)e” Vv (T)¢")

holds in@. The other modalities and operations in the formula are derived along the
same lines using the property transformeryjar). The resulting property,, defined

in Cu-calculus using the formula variablé,, is shown in Figure 1(b). It states that it is
always possible to input fromor perform ar action after any such action. Observe that
free namer is the parameter to the formula variabtg. We now check ifp; holds in
q"(x), by checking ifps = II(q(x))(¢1) holds ing"~1(x). Observe thap, does not
have the conjundry’) tt Vv (7)tt since a single instance gfx) can satisfy it. Using the
terminology of assume-guarantee proof techniques [19], we can say that the obligation
of (zy')tt Vv (r)tt ong™(z) is satisfied by one instance @fz) and hence is not passed
ontog"~!(x). Continuing further, we can checkgf, holds ing"~!(x) by checking if

3 = II(q(x))(p2) holds ing"~?(x).

Observe from the figure that; and - differ only in the names of formula vari-
ables and hence represent the same property. We thus conclude that the seguence
converges tg,. Moreover, sinc® satisfiesp, we can conclude that the original for-
mulay is satisfied bysygn) for sufficiently largen. It should also be noted that since
2 IS a greatest fixed point formula and involves a conjunction of universal modalities,
it is equivalent tott; hence the last iteration (to compugg) is redundant. Techniques
to simplify formulas and to find equivalences will in general enable us to detect con-
vergence earlier. A more careful analysis of the sequence of formulas reveals that it
converges afteoneinstance ofg(z) is considered, and hence we can conclude that
Vn > 1sygn) E ¢o.

Contributions. The main contributions of this paper are as follows.

— A compositional model checker for thecalculus The model checker works for
finite-controlr-calculus processes, as well as value-passing calculus with equality
(=) and dis-equality#£) constraints between names (see Section 3).

— Operations to efficiently check for convergence of formula sequences, and to accel-
erate convergencelhe verification technique for parameterized systems is based
on computing the limit of a sequence @fi-calculus formulas. We describe effec-
tive techniques to check if tw@u-calculus formulas are equivalent. We also de-
scribe a widening operator to extrapolate the sequence to estimate (approximately)
its limit (Section 4).

— Optimizations to compositional model checkivge develop a number of light-
weight optimization techniques to reduce the size of formulas generated in the in-
termediate steps of compositional model checking. We find that such optimizations
are necessary and effective. Without these, parameterized system verification based
on compositional model checking appears infeasible (see Section 5).

We also demonstrate the utility of our technique by applying it on a variety of param-
eterizedr-calculus systems: ranging from simple ones that can also be expressed as
parameterized CCS systems, to those that exhioidlculus-specific features of name
creation, link passing and scope extrusion (Section 6).

Related work. A number of model checking techniques for thealculus have been
developed. Examples include the model checking technique for polyachtculus [11];
the Mobility Workbench (MWB) [33], a model checker and bisimulation checker for the
m-calculus; a system [32] to translate a subset-gglculus specifications into Promela

for verification using Spin [20]; and MMC [35, 36] model checker for thealculus
based on logic programming. All these techniques, however, apply only to finite-control
mw-calculus, and cannot be used for verifying parameterized systems.

Type systems for the verification afcalculus processes [9, 21] handle the repli-
cation operator and appear to be a promising alternative to the verification of param-
eterized mobile systems. The PIPER system [9] generates CCS processes as “types”
for w-calculus processes (based on user-supplied type signatures), and formulates the
verification problem in terms of these process types. In [21], a generic type system for
the w-calculus is proposed as a framework for analyzing properties such as deadlock-
and race-freedom. The replication operator alone is insufficient to model many param-
eterized systems where the repeated instances may have different free variables.

The area of compositional verification has received considerable attention. Most
techniques for compositional verification are based on assume-guarantee reasoning [18,
1,26, 7,19], and need user guidance. An approach to learn assumptions using automata
learning techniques is proposed in [2]; but the technique is limited to the verification
of systems with a fixed number of finite-state components. The technique presented in
this paper is broadly based on our earlier technique [6] which is restricted to parameter-
ized CCS systems and does not support dynamic change of communication topology.
Other closely-related works include the compositional model checker for synchronous
CCS [4] and the partial model checker of [3]. The latter defines property transformers
for parallel composition of sequential automata, while we generalize the transformers
for arbitrarym-calculus processes. These papers also proposed techniques to reduce the
size of formulas, but the optimizations are done after the formulas are generated in the
first place; in contrast, we apply our optimizations during the model checking process,
thereby reducing the size of formulas generated.

Verification of parameterized systems has been recognized as an important prob-
lem and significant progress has been made in the recent years [37, e.g.]. One popular
approach to the verification of a parameterized system of the f&trs to identify a
finite cut off k for a propertyy such thatvn.P" | ¢ < P* |= ¢, thereby reduc-
ing it to a finite-state verification problem. Techniques following this approach range
from those that provide cutoffs for particular communication topologies [13, 14, e.g.],
to those based on symmetries and annotations in the system specification [22]. Later
works, such as [30, 5] have proposed automatic techniques, based on identification of
appropriate cut-off of the parameters, for verification of wide range of parameterized
systems using rich class of data objects and operations (inequalities, incrementations).
Another approach is to identify an appropriate representation technique for a given pa-
rameterized system; e.g. counting abstraction with arithmetic constraints [12], covering
graphs [15, 16], and context-free grammars [10], and regular languages [31]. The use of
abstractions to generate invariants of parameterized systems is explored in [23]. None of
these technigues, however, consider dynamically changing communication topologies.

2 A Logic for Compositional Analysis of r-calculus Processes

In this section, we present the fundamentalsrafalculus (Section 2.1) and property
specification logic, which we will refer to &u-calculus (Section 2.2), followed by our
technigue of compositional analysis (Section 3).

2.1 Syntax and Semantics of ther-Calculus

Process algebra-calculus [28] is used to represent behavior of systems whose in-
terconnection pattern changes dynamically.4t.@t, z, . . . range over namesp, q,r, . . .

range over process identifiers, andepresent comma-separated list of names. . , z.,.
In the following, we recall the syntax of the calculus.

o=y | Ty | 7
Pu=0|aP |)P |PIP|P+P | [x=yP | p(y)
D, == p(z) & P (wherei # j = z; # z; andfn(P) C {z})

In the aboveq denotes the set of actions whergy), Ty andr represent input, (free)
output and internal actions. Input actioty) has binding occurrence of variahjeAll
other variables in every action afee The set of process expressions is represented
by P. Proces® represents a deadlocked process. ProeeBsan perform amy action
and subsequently behave Bs Procesgvz) P behaves ag with the scope of: ini-
tially restricted toP; z is called a local name. Procelas = y] P behaves a® if the
namesr andy are the same name, and@stherwise. The operators and| represent
non-deterministic choice and parallel composition, respectively. The exprqz(ajc)n
denotes @rocess invocatiowherep is a process name (having a corresponding defini-

tion) andy is the actual parameters of the invocation. Findlly,is the set of process

definitions where each definition is of the foptiz) 4 p_ A definition associates a

process name and a list of formal parametets with process expressiaf.

The operational semantics of thecalculus is given in terms aymbolic transition
systemsvhere each state denotes a process expression and each transition is labeled by
a boolean guard and action [25]. The operational semantics is standard and is omitted.

2.2 Syntax and Semantics of theCu-calculus

For the purpose of compositional analysis, we extend value-pagsiadrulus in two
ways: (i) with explicit syntactic structures to specify and manipulate local names, and
(i) with actions that are closed under complementation. We will refer to this logic as
Cu-calculus. The set of formula expressighsn the Cu-calculus is defined as follows:

Fuo=tt | fflae=y | x#y | loc(z) | nloc(z) | (ve)F | FVF | FAF
| (AF [TAIF | (2)Ty-F | (x@)Vy.F | [z()]vy.F | [z(y)]Fy.F

— —

| X(e) | (uX(2).F)(e) | (wX(2).F)(e)
Av=wzy | zy | Ty} [Tvy | 7

In the abovet and ff stand for propositional constants true and false, respectively.
loc(z) is true iff 2 is a local name, andloc(x) is true iff 2 is not a local name. The
scope of names can be specified by formulas of the formF which means that is a

local name in the formula. Formulas can be constructed using conjunction, disjunction,
diamond (existential) and box (universal) modalities and quantifiers. The modal actions
z(y), xy, andr represent input, free input and internal actions, respectizglys a

free output action wherg is a free name andy is an output action that has binding
occurrence of variablg. In input and output actions(y) andz{y}, = is free and

y is bound; in free input and free output actions, all names are freg.is a bound

o _J{sé|seStifdFz=y s _ {sé|s€S}|f6\-z;ﬁy
1a: [z = y]¢ol = { otherwise 1b: [# y]&dl = otherwise

2 ocalest = { §°°1° € S Q0L 20: fntocteptest = { 012 € ST EL
3 [1 V 2] €01 = [p1]€01 U [p2]€0l 4 [o1 A p2]€01 = [p1]€0L N [w2]€61

5. [(va)elest = {s | s € [p{a’ /2}]€6(1 U {'}) where 2’ & fn(s)}

6: [r)yolesl = {s | 3s’.s 25 8" A (8,1 = b) A s € [p]€dl}

7: [(@Tv)lesl = {s | Ts'.s 22" ' A (8,1 = b A (z1 = @2)) A s € [@]€61)

8: [F{y}elest = {s | 35's 2" s' A (B, [=bA (21 =22)) A " € [p{v/y}]EdL}

9 [(@Tvy)elesl = {s | 3s".s 225" &' Ao g fr(e) — {y} A (5,1 EbA (21 = 2))

NS’ € [p{v/yEs(U {v})}
10: [z1y)eledl = {s | 3s'.s " 287 & A (B0 bA (@1 = 22)) A '{y/w} € []¢ol}
1 o) Tyelest = {s | 35’ 280 & A G, 1 b A (21 = 22)) A Tv.s' {v/w) € [p{v/}]E8)
120 [()Vy-elesl = {s | 3s'.s 280§ A (S, U b A (21 = 2)) A Vo.s'{v/w} € [o{v/y}]Ed0}
13 [X()lgsl = £(X)(€6)
14 [(uX (2))(€)I€sl = (N{J | [el(€ 0 {X — f}) C 1})8[€ /2]
15: [(X ()-0)(E)€dl = (ULF | £ C [el(€ 0 {X — F1})3[E/Z]t

Fig. 2. Semantics of th€u-calculus

s[e)z
e/ Z]

output action; in such an actianis free andy is bound. Bound names of a formula are
either bound names in the modalities or names bound by tyeerator.(z(y))3y.F
and (z(y))Vy.F represent basic and late diamond modalities for input actiay),
respectively[z(y)]Vy.F and [z(y)]3y.F represent the basic and late box modalities
for input actionz(y), respectively.

The least and greatest fixed point formulas are specifieghagz).F)(¢) and
(vX(Z).F)(€), respectively, where' represents formal parameters andepresents
actual parameters. For convenience, we often represent a formula as a sequence of fixed
point equations [17]. We assume that all formulas@osed i.e., all free names in a
formula appear in the parameters of the definition.

Semantics of th€u-calculus. The semantics of formulas in th&u-calculus is given

using four structures: (i) a symbolic transition systSm- (S, —) wheresS represents

the set of symbolic states and-’ is the symbolic transition relation; (ii) a substitu-

tion 6 over which the equality=£) and disequality#£) constraints between names are
interpreted; (iii) a functiorg that maps formula variables to sets of symbolic states of

S; and a set of local namdsused to assign meaning loc andnloc predicates. The
semantic function is written gdg]£d! and maps each formula to a set of stateS.ifihe
symbolic transition system is used as an implicit parameter in the definition: all rules
are evaluated w.r.t. the same transition system. The treatment of boolean connectives is
straightforward. The set of local namésis updated in Rules 5 and 9 to include names
bound byr operator. Similarly, the substitutianis updated to capture the mapping of
formal parameters (free names) to actual arguments in Rules 14 and 15. Constraints of
the formz = y andx # y are evaluated under this substitution. Rules 612 give the
semantics for the diamond modality. The semantics of the box modality can be easily
obtained by considering it as the dual of the diamond modality. For instance, the se-

1(a) II(P)(tt) = tt 1(6) H(P)(ff) = fF

2 mPe=u = {0 NrSr e meern={T, oy

3(a) II(P)(loc(x)) = loc(x) 3(b) II(P)(nloc(x)) = nloc(x)

4 I(P)(p1 V p2) = II(P)(p1) V II(P)(p2)

5 I(P)(p1 A p2) = II(P)(p1) A I(P)(p2)

6 H(P)(X(€)) = Xp(i) where & = € + fn(P)

7 (P)(@e.9) = 32.T(P)(g) T(P)(Yz.9) = Vo TI(P)()

8 I(0)(¢) =

9 H(p()(¢) = I(P)(¢) where p(z) = P

10 II(Py | P2)(p) = H(P2)(I1(P1)())

11 I((vz)P)(p) = (va')II(P{z'/x})(p) where ' N n(p) = 0

12 H(P)((va)p) = (va')II(P)(¢{a’/z})) where z’ & fn(P)

13 I(a.P)({a)p) = (a)I(a.P)(p) where bn(a) N fn(a.P) =0
II(P)(p) ifa=7Aa=r1
z1 = x2 A nloc(y1) AN IT(P) () ifa =T1y1 AN =Tz

@1 = x2 Anloc(yr) N IT(P)(e{y1/y2}) if a = Tiy1 A a = Ta{y2}
V < xp =22 Aloc(yr) ANIT(P)(p{y1/y2}) if a =Tiy1 Ao = Tavys
z1 = x2 AI(P)(p{y1/y2}) ifa=z1(y1) A a = z2(y2)
z1 = x2 AN II(P{y2/y1})(¥) ifa=x1(y1) AN a = zay2
otherwise

Ir
a)II(P , where bn(a) Nn =0 ifa=rT1
v {;ﬁ”> (P) () (a) N n(p) OtherWise}
14 II(Py + P2)({a)p) = ()T (P1 + P2) () V I (P1)({a)p) VII(P2)({a)¢)

tt ifex =y

15 I([z = y]P)(p) = C AN I(P)(p) where C = {f = y otherwise

A TI(P)(X(Z) =5 pUE) = {Xp(21) =5 I(P)(p) where (n(¢) — z) N fn(P) = 0) and z1 = z + fn(P)}
UII(P)(E) U U{IT(P')(X'(22) =,/ ¢') 5.t X}/ (23)is a subformula of
II(P)(p), 23 = 22 + fn(P’) and (n(¢’) — 22) N fn(P’) = 0)}

B. mP)({}H =«{hH

Fig. 3. Partial Model Checker for-Calculus.

mantics for{r|pis: [[T]p]&ol = {s | Vs'.if s 2T g A 0,1 = bthen s’ € [p]&ol}. For
brevity, we will henceforth discuss only about the diamond modality. The details related
to the box modality are given in [34]. We will use=;,; ¢ to denotes € [¢]£4l.

3 Compositional Model Checker for thew-Calculus

In this section, we define the transformation functidn P — F — F which is the
core of our technique. Given a proce3s= P, a formulap € F, a set of substitutions
¢ and a set of local naméswe definell such that

PlQ[0 519 Q0 s IT(P)(p) <0 =51 H(Q)UI(P)(p))

In words, the main objective df is to generate &u-calculus formula which represents

the temporal obligation of the environment of the process used for transformation. This
process of transforming formula iteratively by each process in the parallel composition
is similar to the one proposed in [3, 6], where the transformation operation is defined for
labeled transitions system or process algebra CCS and the technique of model checking
is referred to apartial model checking

The functionII for each formula expression is presented in Fig. 3. Here, we il-
lustrate only those rules that are not obvious. Rules 3(a) and 3(b) leave the formula
expressionsgoc(z) andnloc(x) unchanged; evaluation of these formulas is performed
when all but thed processes are used to transform the formula iteratively. Rule 6 trans-
forms a parameterized formula variabtg ¢) into new formula variableX,,(e;) (the

definition is in Rule A) where; is formed by concatenation of and free names of
P. Transformation using a process identifier is equivalent to transformation using its
definition (Rule 9).

Rule 10 captures the compositionality of property transformers; the order of trans-
formation usingP; or P, does not matter. Rule 11 presents the property transformer for
procesgvz)P where(vz) is moved from the process side to the transformed formula.
In order to avoid name clash,is renamed ta:’ ({«’/z})that is different from any free
names inp. Note thatz’ is a local name in the context of the transformed formula.

Rule 12 deals with the formulas with local name restrictions (possibly generated
via Rule 11). Transformation using results in the extension of the scopexofo the
transformed formula. Similar to Rule 11, nameén ¢ is renamed to a new nameé
(not present as a free nameit). Observe that, Rules 11 and 12 have a similar effect
as pulling thev out using thestructural congruenceule: (vz)P | Q = (vx)(P | Q)
wherez does not appear irf). Renamings in these two rules correspond to the side
condition of the congruence rule.

Rule 13 presents the transformati@r) ¢ using prefix process expressiorP. The
rule relies on three different possibilities following whieh?, when composed with an
environment, can satisfi) .

1. The environment makes a move arsatisfying the modal obligation (1st disjunct).

2. a.P satisfies the modal obligatian (2nd disjunct).

3. a = 7 and the environment synchronizes wittP (the 3rd disjunct), i.e., performs
ana action.

In Case 1, the side condition demands that the bindings in modal agctawes not

bind any free names of prefixed process expression. As such we apply alpha-conversion
to satisfy the side condition: alpha-conversion renames all the binding occurrences in
formula with new names that are disjoint from the free names of the process. In Case 2
there are multiple possibilities depending on the nature of modal actiblote that if

a is an output or a free output, then formula expressitire(y,) is generated meaning
thaty; must not be a local name to satisfy the modal obligation. This is because at the
time of transformation, it is not known whethgy is a local name or not. Similarly,
whena is a bound output modal action, the formula expreséiofy;) is generated.

In Rule 14, a diamond modal formula is transformed using choice process expres-
sion. The resultis a disjunction where (a) the first disjunct corresponds to the case where
the environment is left with the obligation to satisfy the modal action and (b) the second
and the third disjunct, respectively, corresponds to the case where the first or the second
process is selected for subsequent transformation.

Finally, Rules A and B correspond to transformation of formula equations. Observe
that, we are using equational syntax of @ecalculus. Any property with formula ex-
pressions of the form X (Z).¢ can be converted in linear time to set of equations of the

form X (z) =, ¢. Specifically, given &y-calculus formulap where each fixed point

Lrie) = 2.1 = f

tt ifx =y bii ifx =y
flz=y) =< # if {z,y}NI#£0 4flx#y) =4 tt if {z,y}NI#0

x = y otherwise r # y otherwise

5.f'(3z.0) = Jz.f (¢) 6. ' (Va.0) = Va.f' (¢)

! ffifx gl ! tt ifx €1
9. f (p1 Ap2) = (1) A F(p2) 10. 1 (@1 V @2) = f (1) V £ (02)
ll-fl(<0‘>§9) =ff lz.fl((ux)cp) = flU{T}(@)

3.1 (X(€)) = fip{e/Z}) whereX (Z) = ¢

Fig. 4. Computingf!(¢y).

variable has distinct names, the number of equations in the corresponding equational set
is equal to the number of fixed point sub-formulasgofEach such sub-formula of the
form o, X.p, is translated to a equatiokl =, 1, where,, is obtained by replacing
every occurrences of its sub-formutgY., with Y. For example the formula expres-
sion:vX.(nY.([a1] X Alag]Y)) is translated toX' =, Y andY =, [a1] X Alaz]Y where
X is the outer-fixed point variable arid is the inner one. The use of equational form
is driven by the fact that transformation can be done in a per-equation basis, instead of
keeping track of all the sub-formula expressions of a formula if the transformation was
done for non-equational form.

Let £ represent the sets of formula equations. Rules A and B define a function
I : P — & — & that represents the transformer over a sefofcalculus equations.
Rule A states that given a formula equation of the fakiz) =, ¢, transformation
leads to the generation of a new equation of the fofg(z1) =, I1(P)(¢) wherez;
is formed by concatenation of and free names aP. Moreover, if there is a formula
expressionX 4, (z3) present infl (P)(¢p), then the corresponding formula equation for
X’(,?g) is transformed using”’, wherez, is formed by removing free names Bf from

z3. Rule A also requires that names in the right-hand side of the equation that do not
appear in the parameters should be different from any free nanfes of

Theorem 1 Let P and Q be two process expressiomsa set of substitutions, anda
set of local names. Then for all formulasthe following holds:

QP sy o Qs II(P)(p)
The proof is by induction on the size of the process expression and the formulal

Computing ConstraintsGiven a proces$’|0 and a formulap, let ¢ = II(P)(y).
According to Theorem 1, given a set of constraintnd a set of local namésP =5
¢ < 0 =5, 1. In Figure 4, we present a functigif(¢) that, given a set of local names
1, computes a set of constraidtsinder which0 =5, 1.

Rules 1 and 2 in Figure 4 are straightforward. In Rules 3 and 4, if oneaoidy is
a local name, then since local names are different from any other names in the system,
x = y is false. In Rule 7, ift occurs inl, thenloc(z) is true, otherwise false. Rule 11
evaluatega)y to [f becausd cannot perform any action. In Rule 12, the local name
r is added td in order to evaluate thivc(z) andnloc(z) predicates. Note that! (1))
generates a formula over equality and disequality expressions and standard constraint
solving algorithms are applied to solve the constraints of the frm andVzx.p.

Following example illustrates the uselot: andnloc formula expressions.

Example 1 Given a procesp(x) 2 (vy)zy.p(z) and a formulay = X (z) =,
(Tvz)tt:

H(p(x))(p) = X1(x) = H((vy)Zy.p(x))((Tvz)tt)
=y (vy) 1l (@y.p(x))((@r2)it) =, (vy)loc(y)

As fO((vy)loc(y)) = f¥ (loc(y)) = tt, therefore f=y, 9 11(p(x))(p) O

In Example 1, when computing (Zy.p(x)) ((Zvz)tt), since(vy) is notin the scope
of transformation, the model checker cannot determingiéf a local name. Thus, we
generate the constraitic(y). After the transformation is done, we verifyGfsatisfies
the resulting formuldvy)loc(y). Sincey is a local name(vy)loc(y) is evaluated tat.

4 \Verification of Parameterized rr-calculus Systems

We outline here the compositional analysis based technique for verification of param-
eterized systems where instances of subsystems are represented by finite zcontrol
calculus processes. L&Y' be a system with instances ofr-calculus proces®. Con-
sider verifying that thé*” instance of above system satisfies a propertyhe result of
transformingy using thei'” instance isp; = IT1(P?)(ip). Therefore, from Theorem 1,
given a set of substitutionsand a set of local namés0 =5, p; < P’ =5, ¢.

Now consider verifying whetheti. P* = . Let ¢! be defined as:

1) e ifi=1
PiT Vo Apiifi>1

By definition of ¢}, (V1 < j <1i.0 =5 ;) © 0 |=s, ¢}. Thus,0 =5, ¢} means that
V1 < j <i.Pl sy . If @l is the limit of sequence,) .. ., then,0 =5, ¢, &
Vi Z l.Pi 'Z(;J @.

A dual technique is applied for the verification probléinP! | ». Let ¢! be

defined as:
n_ e ifi=1
PeT el v ifi>1
In this case, ife!’, the limit of the sequence!, ¢}, ..., is satisfied by0 under

the substitutiord, then3n.P™ = ¢. We say that the series @f, is contractingsince
©; = ¢;_, and the series @/ is relaxingasy | = ¢!.

Before deploying the above technique for solving verification of parameterized sys-
tems, we need to solve the following problems:

1. Entailment To detect whether a limit is reached requires developing the equiva-
lence relation betwee@u-calculus formulas.

2. Convergence acceleratiofihe limit in the chain ofCu-calculus formulas may not
be realized in general. As such, we need to identify a suitable abstraction to the
generated formulas to ensure termination of the iterative process.

Entailment. Equivalence checking of formula expressions in logic with explicit fixed
points is an EXPTIME-hard problem. Hence we use an approximate, conservative tech-
nigque for equivalence detection which is safe and can be efficiently applied. First, we

10

check if two formulas are equivalent based on the algorithm in [3]. The algorithm
states that syntactically identical formula expressions are semantically equivalent. If the
equivalence between formula expressions is not readily understood from their structure,
we apply the technique developed in [6]. This technique relies on converting the formula
into a labeled transition system, callamula graphs where each state is annotated

by a formula expressions and transitions are labeled by various syntactic constructs of
Cu-calculus, e.g., diamond modal action. The equivalence between two formula ex-
pressions are determined by checking whether the corresponding formula graphs refine
each other. Such graph-based equivalence detection algorithm is more powerful than
that relying on textual representation of syntax [3] as the former can effectively extract
dependencies between formula variables (see [6]).

Convergence accelerationTo ensure convergence and termination, we develop a
widening algorithm that over-approximates a relaxing sequencg;oand under-
approximates the contracting sequencepfThe core of the technique is to examine
two consecutive formula expressiopsandy; in a sequence and determine their differ-
ences. For example, if the formulas are members of a relaxing sequgnee;), the
difference is identified as a disjunctgsy. Widening amounts to removing this disjunct
and generate a new formulg, such thatp; = ¢,. Similarly, for contracting sequence,
we remove the divergence-causing conjuncts. Note that, this type of widening is only
applicable to safety and reachability properties where all the boolean connectives in the
formula are eithen or v, respectively.

Note that widening leads to an approximation of the limit of the sequence. As such,
given a parameterized systeR and formulayp, if limit ., of a relaxing sequence
is realized via widening an@ E ., we cannot infer thaBn.P™ | ¢. However,
0 £ v, = Yn.P™ [~ . Similarly, for contracting sequence f, is the limit reached
after widening, the® |= ¢, = Vn.P" = ¢, while 0 [~ o, # In.P" |~ .

5 Optimizations

In general, the transformation rules may generate a number of redundant formulas, e.g.,
two sub-formulas that are equivalent. Redundancies result in formulas that are large and
virtually un-manageable. In order to apply the partial model checker to any practical
application, we need to develop techniques to remove such redundancies.

In this section, we propose several optimization technigues to reduce the number of
formulas generated by transformation. In [6], the redundancy removal technique was
solely focused on removing equivalent sub-formulas and used heavy-weight bisimu-
lation checking algorithm on graphical representation of formulas. Such a technique
was used off-line, after the formulas have been generated in the first place. In contrast,
here we present a number of light-weight techniques that are tightly-coupled with the
transformation rules and help to significantly reduce the size of the resulting formulas.

Symmetry ReductioWhen the partial model checker generates new formula variables,

it names them based on the corresponding process expressions (see Rule 6 in Figure 3).
The number of formulas generated can be reduced considerably by exploiting a form
of symmetry reduction. For instance, I8tbe a formula variable, ang and@ be ar-

bitrary process expressions. Note thatP|Q)(X) = II(P)(I1(Q)(X)) is a new for-

mula variable of the fornX p. On the other hand/ (Q|P)(X) = I (Q)(II(P)(X))

is Xpg. HenceXp o and X p are semantically identical. We avoid creating the two

11

formula variables in the first place, by reducing the suffix process expression to a sym-
metrically equivalent canonical form. This is done by first reducing the expression to
a sequence of parallel-free process expressions (exploiting the associativity of paral-
lel composition), and sorting the sequence by imposing a global total order on the
elements (exploiting the commutativity of parallel composition). This optimization is
light-weight and may dramatically reduce the number of formulas generated even for
applications where symmetry is not obvious (see Section 6).

Optimizing the Choice RuleThe choice rule in Figure 3 may generate redundant for-

mulas. Consider the process definitig, y) def z(v).p(z,y) +y(w).p(z,y) and the
formulay =, (7)tt. II(p(x,y))(p) generates the following formulas.

X1(z,y) =0 (7))t V Xo(z,y) V Xs(z,y)
Xo(z,y) = (M)t V (@{v}h) X1(z,y) Xs(z,y) = (1)1t V (Y{w}) X1(z,y)

From the above, we can infer tha&t (z, y) = (7)tt vV (1)tt vV (T{v}) X1 (x, y) V (1)t V
(7{w}) X (x,y). We can, however, avoid generating the two redundant sub-formulas
(1)tt using the following revised “+” rule.

(P + Py)({a)g) = () II(Pr + P2) (@) V IT'(P)({e)p) vV IT'(P2)({a)ep)

IT’ differs from IT in Rule 13 where modal obligatiofa) is not imposed on the envi-
ronment.

Simplification Techniquesipart from symmetry-based simplification, we also remove
redundant sub-formulas and use the simplifying equations originally proposed in [3].
The most frequently used simplification techniques are constant propagatioX (e.g.

() X1, X1 = it = X = (a)tt), and unguardedness removal(e\g= (a) X1, X1 =

Xo = X = (a)X>). These simplification techniques help to quickly detect if two
formulas are equivalent.

Environment-Based Reductio@onsider Rule 13 in Figure 3. Proces® either leaves
the environment to perform amaction (1st disjunct) or afm action if « = 7 (3rd dis-
junct), ora.P itself performs arnv action (2nd disjunct). However, if the environment
cannot perform an or ang action, then the 1st and the 3rd disjuncts need not be gener-
ated. For instance, consider the example given in Figure 1. Given a fogmula first
usep(x) to transformy under the environmeng(x) | ... | g(z). From the specifica-
tion, procesg(z) cannot synchronize with itself, thus the model checker does not need
to leave the environment to performraaction. However, this optimization requires
the knowledge of the environment, thereby rendering the model checker of Figure 3 no
longer compositional. Moreover, the assertidfl@Q) = ¢ < Q = II(P)(¢) now
holds only for those&) that are consistent with the knowledge of the environment used
to perform this optimization.

When usingP to transform a formula under the environméntwe check: 1) What
are the actions aP with which @) cannot synchronize? 2) Cénhperform ar transition?
These can be easily determined for value-passing calculus by parsing the specification,
but are more difficult for ther-calculus due to link passing. Thus we compute the set
of actions conservatively: if we do not know whether one process can synchronize with
another, then we conservatively assume that such synchronization exists between the
two processes. The environment information is propagated in the model checker. The

12

BenchmarkProperty Summary # Formulas Time (sec.)
IterfWiden (Y/N)|| Orig] Sym[Env| All [Con Orig[Sym[Env] All[Con!
Token ring|deadlock freedom 3 Y|| 86] 45 -—| 45 40| 1.930.56 —| 0.56 0.37

Spin lock |mutual exclusion| 3 N|| 398 192/364/181 181|| 34.9¢ 7.8/23.37 5.11] 5.29

deadlock freedom 3 Y[| 160 80[160| 80] 64| 6.891.49 4.62 0.99 1.35
Printer deadlock freedom 3 Y|| 55 29 - 29] 22[| 1.030.29 —| 0.29 0.20
Server order preservation 4 Y|[|14401270 241239 172[[361.58 280[10.1710.07 5.24

Fig. 5. Experimental Results.

details are given in [34]. This optimization may reduce the size of each formula and
sometimes reduces the number of formulas generated (see Section 6).

Eliminating Constraints Based on the Types of Chann&lss optimization is applied

to whenever the formulas generated are guarded by equality and disequality constraints.
Under certain conditions, we can determine whether a constraint generated is unsatis-
fiable. For instance, assume that we keep track of the set of all names that have been
extruded from their initial scope. Then:ifhas never been extruded amds a bound

name of an input action, then = y is never true. We use a simple type system to
determine whether a channel could have been extruded.

6 Preliminary Experimental Results

In this section, we show the effectiveness of our technique to verify parameterized ver-
sions of several small but non-trivial examples. The examples include those with a fixed
process interconnection, namelypken ring a ring of n token-passing processes, and
Spin lock a simple locking protocol where processes compete to acquire a single
common resource. We also include examples with dynamically changing interconnec-
tion between processes, namélinter, wheren clients use a single print server to
mediate access to a printer, aBdrver[9], wheren file readers serve web page read
requests. We also evaluate the performance of our model checker idartdever pro-
cedure[29] (which maintains the connectedness of a mobile station in a cellular network
when the station crosses cell boundaries) to verify a single instance of the system.

The experimental results are shown in Fig. 5. All reported performance data were
obtained on a 1.4GHz Pentium M machine with 512MB of memory running Red Hat
Linux 9.0. The figure is divided broadly into three parts. The verification results for the
different systems and properties are summarized in the first part (columns under “Sum-
mary”). In that part, the number of iterations for the sequence to converge, and whether
widening was needed appear in columns “# Iter”, and “Widen” respectively. For all the
cases listed in the figure, we can conclude that the property holds for all instances of
the parameterized system, even when widening was used to enforce convergence.

The second and third parts of the table, namely, columns under “# Formulas” and
“Time”, present the performance results (number of formulas processed and the CPU
time taken, resp.) for the examples. The columns “Conv” list the total number of for-
mulas and time to compute the formula sequence, including the time taken to perform
convergence check and widening (when needed). The other columns list the same statis-
tics to compute the formula sequence (length of the sequence is same as the number of
iterations) but without checking for convergence or applying widening. The columns
“Orig”, “Sym”, “Env” and “All” list the statistics when no optimizations, symmetry
reduction, environment-based reduction and all optimizations described in Section 5
(resp.) are applied. In the table “~" indicates that the optimization is inapplicable. The
performance results show the effectiveness of the optimizations: the overheads of per-

13

forming the optimizations are easily offset by the reductions enabled by the optimiza-
tions. Widening sometimes reduces formula sizes sufficiently (see Token Ring, Printer,
Server), consequently saving enough time to offset that needed to perform the opera-
tion. In all benchmarks, the memory requirement of the model checker without opti-
mizations is always higher than that with optimizations llL2MB), and hence the
corresponding results are not shown.

Finally, we applied the compositional model checker to verify a single instance of
the Handover protocol (1 mobile and 2 base stations). Even with all optimizations en-
abled, it takes 12s to verify the deadlock freedom property for this instance. In contrast,
the non-compositional model checker MMC can verify this instance in less than a sec-
ond. This indicates that the compositional checker is unsuitable for use, as it stands, for
routine verification of non-parameterized systems. When we attempted to verify another
instance of the protocol (with 2 mobile stations), the compositional checker generated
more formulas than can be handled by our prototype implementation.

7 Conclusion

In this paper, we presented an automatic technique for verifying parameterized systems
that consist of a number of instances of finite-contradalculus processes. This tech-
nique uses a sufficiently expressive logB-calculus, to represent properties, and is
based on a compositional model checker forthealculus.

Since the technique is based on a compositional model checker, each process in-
stance is verified in an “open” (unknown) environment. Hence in this approach, we
consider a lot more potential system behaviors than any instance of the parameterized
system can exhibit. This leads to generation of large number of formulas at each step.
Optimization aim at reducing this potential blow-up. Among these, the environment-
based reduction attempts to construct an environment for each process that is signifi-
cantly more restricted than the open environment. This is based on the capabilities of
the other processes in the parameterized system (e.g. channels they can communicate
on). Even a relatively simple version of this optimization presented in this paper, which
is based on a very coarse notion of capabilities of processes, results in significant reduc-
tion in verification time (e.g. Server example in Fig. 5). We are currently investigating
heavier-weight but more effective optimizations that would make it possible to use our
technique on realistic parameterized systems such as the Handover protocol.

References

. R. Alur and T. Henzinger. Reactive modules.LIC€S, 1996.
. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning
assumptions. €AV, pages 548-562, 2005.

3. H.R. Andersen. Partial model checking (extended abstractlGg, 1995.

4. H.R. Andersen, C. Stirling, and G. Winskel. A compositional proof system for the modal
mu-calculus. IrLICS, 1994.

5. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with automati-
cally computed inductive assertions. @@mputer Aided Verificatiqr2001.

6. S. Basu and C. R. Ramakrishnan. Compositional analysis for verification of parameterized
systems. IProceedings of TACAPages 315-330, 2003.

7. S.Berezin and D. Gurov. A compositional proof system for the modal mu-calculus and CCS.
Technical Report CMU-CS-97-105, CMU, 1997.

8. J. Bradfield and C. StirlingModal logics and mu-calculi: an introduction (In the Handbook

of Process Algebrapages 293-330. Elsevier, 2001.

N =

14

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

30.

31.

32.

33.

34.

35.

36.

37.

. S. Chaki, S.K.Rajamani, and J. Rehof. Types as models: model checking message-passing

programs. IrProceedings of POPLlpages 45 — 57, 2002.

E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized netws®§ Transac-
tions on Programming Languages and Systel897.

M. Dam. Proof systems for pi-calculus logidsogic for Concurrency and Synchronisation
2001.

G. Delzanno. Automatic verification of parameterized cache coherence protoc@esmin
puter Aided Verification2000.

E.A. Emerson and K.S. Namjoshi. Reasoning about ringPQRL, 1995.

E.A. Emerson and K.S. Namjoshi. Automated verification of parameterized synchronous
systems. IrComputer Aided Verification.ecture Notes in Computer Science, 1996.

E.A. Emerson and K.S. Namjoshi. On model checking for non-deterministic infinite state
systems. IrLICS, 1998.

J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocol&ICI&
1999.

R. Cleaveland G. Bhat. Efficient model checking via the equatippedliculus. InLICS
pages 304-312, 1996.

O. Grumberg and D.E. Long. Model checking and modular verificatd®M Transactions

on Programming Languages and Systeh#94.

T. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, we guaran@aV, 1h998.

G. J. Holzmann. The model checker SPINEEE Transactions on Software Engineering
23(5):279-295, May 1997.

A. lgarashi and N. Kobayashi. A generic type system for the pi-calctlbheoretical Com-
puter Scienceg311(1-3):121-163, 2004.

C.N. Ip and D.L. Dill. Verifying systems with replicated components in murgfarmal
Methods in System Desigh999.

Y. Kesten and A. Pnueli. Control and data abstraction:the cornerstones of pratical formal
verification. International Journal on Software tools for Technolpg900.

. D. Kozen. Results on the propositionakalculus. Theoretical Computer SciencE983.
. H. Lin. Symbolic bisimulation and proof systems for thecalculus. Technical report,

School of Cognitive and Computer Science, U. of Sussex, UK, 1994.

. K.L. McMillan. Compositional rule for hardware design refinementCHhy, 1997.
. R. Milner. Communication and Concurrencirentice Hall, 1989.
. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts | afrfdr-

mation and Computatiqri00(1):1-77, 1992.

. F. Orava and J. Parrow. An algebraic verification of a mobile netwddurnal of Formal

Aspects of Computing:497-543, 1992.

A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invariants.
In Tools and Algorithms for the Construction and Analysis of Syst2atsl.

A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verificatiGomin
puter Aided Verification2000.

H. Song and K. J. Compton. Verifying pi-calculus processes by Promela translation. Tech-
nical Report CSE-TR-472-03, Univ. of Michigan, 2003.

B. Victor. The Mobility Workbench user’s guide. Technical report, Department of Computer
Systems, Uppsala University, Sweden, 1995.

P. Yang, S. Basu, and C. R. Ramakrishnan. Parameterized verificatiecadfulus systems,
2006. Available ahttp://www.Imc.cs.sunysb.edu/"pyang/ptech.pdf .

P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A logical encoding ofrtbalculus:
Model checking maobile processes using tabled resolutiofréceedings of VMCARO03.
Extended version isoftware Tools for Technology Transféf1):38-66,2004.

P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A provably correct compiler for efficient
model checking of mobile processes.RAroceedings of PADL2005.

L. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameterized systems
(a survey).Computer Languages, Systems & Structu8e$3—4):139-169, 2004.

15

