
1

Policy Analysis for Administrative Role Based
Access Control

Amit Sasturkar, Ping Yang, Scott D. Stoller, C.R. Ramakrishnan

Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA

E-mail: {amits,pyang,stoller,cram}@cs.sunysb.edu

Abstract—Role-Based Access Control (RBAC) is a widely
used model for expressing access control policies. In large
organizations, the RBAC policy may be collectively man-
aged by many administrators. Administrative RBAC (AR-
BAC) is a model for expressing the authority of administra-
tors, thereby specifying how an organization’s RBAC policy
may change. Changes by one administrator may interact
in unintended ways with changes by other administrators.
Consequently, the effect of an ARBAC policy is hard to un-
derstand by simple inspection. In this paper, we consider
the problem of analyzing ARBAC policies, in particular to
determine reachability (e.g., whether a user can eventually
be assigned to a role by a group of administrators) and
availability (e.g., whether a user cannot be removed from a
role by a group of administrators) properties implied by a
policy. We first establish the connection between security
policy analysis and planning in Artificial Intelligence. Based
partly on this connection, we show that reachability analysis
for ARBAC is PSPACE-complete. We also give algorithms
and complexity results for reachability and related analysis
problems for several categories of ARBAC policies, defined
by simple restrictions on the policy language.

I. Introduction

Background. Role-Based Access Control
(RBAC) [SCFY96] is a well known and widely used
model for expressing access control policies. At a high
level, an RBAC policy specifies the roles to which each
user has been assigned (the user-role assignment) and
the permissions that have been granted to each role (the
role-permission assignment). Users may perform multiple
roles in an organization. For instance, in a university
setting, a teaching assistant (TA) for a course may be
enrolled in other courses at the same time. That person
has at least two distinct roles in the university: TA and
student. Permissions are associated with these roles; for
example, a student can access only her assignments and
grades, while a TA can access assignments submitted by
students in the course. Expressing access control policy
using roles eases specification and management of policies,
especially in large organizations.

The RBAC policy in a large organization may be col-
lectively managed by many administrators. For instance,
a department manager may have authority to determine
who is a TA, while the registrar’s office determines who is
a student. Thus, there is a need to specify the authority
of each administrator. Administrative Role-Based Access
Control (ARBAC) [SBM99] is a model for expressing such
policies. At a high level, an ARBAC policy is specified by
sets of rules, including can assign rules that specify the
roles to which an administrator may assign an user, and
under what conditions, and can revoke rules that specify

the roles from which an administrator may remove an user,
and under what conditions. For instance, a can assign
rule can be used to specify that a department manager
may appoint as a TA only users who are already students.
In short, an ARBAC policy defines administrative roles,
and specifies how members of each administrative role can
modify the RBAC policy.

The Problem. It is often hard to understand the effect
of an ARBAC policy by simple inspection. For instance,
consider a can assign rule for a department manager that
specifies that (1) only students may be appointed as TAs,
and (2) a student in a class cannot be appointed as a TA
of the same class. Thus assignment of an user to the TA
role is governed by both a positive pre-condition (1), and
a negative pre-condition (2). At first glance it appears as
though this ensures that a student in a class cannot be the
TA for that class. However, this desired condition may not
hold: the registrar’s policy for assigning a student role in
a course might check only the student’s registration status
and not include conditions regarding TA-ship. This policy
would allow the registrar to add someone to a class after
that person’s appointment as a TA for that class by the de-
partment manager. This example illustrates that changes
to the RBAC policy by one administrator may interact
in unintended ways with changes by other administrators.
The ARBAC policy should be designed to prevent such
unexpected interactions. In large organizations with many
roles (e.g., [SMJ01] describes a European bank’s policy
with over 1000 roles) and many administrative domains,
understanding the ARBAC policy’s implications for such
interactions may be difficult.

Analysis of security policies has been long recognized
as an important problem, e.g., [HRU76], [LS77], [San88],
[San92], [SM02], [JR04], [LT04], [LMW05]. In a role-based
policy framework, a natural analysis problem is to check
potential role membership. The reachability (or safety
[HRU76]) problem asks whether a given user u is a member
of a given role r in any policy reachable from the initial
(i.e., current) policy by actions of a given set of adminis-
trators. The availability [LMW05] problem asks whether
a given user u is a member of a given role r in all poli-
cies reachable from the initial policy by actions of a given
set of administrators. Another natural analysis problem is
containment [LMW05]: whether every member of a given
role r1 is also a member of a given role r2 in some (or all)
reachable policies.

In this paper, we consider analysis of ARBAC policies.
We focus on reachability and availability analysis, which

2

are simpler than containment analysis but still difficult.
For general ARBAC policies, even reachability and
availability analyses are intractable (PSPACE-complete).

Contributions. We consider general ARBAC policies
that (i) control administrative operations that change user-
role as well as permission-role relationships; and (ii) allow
all administrative operations to have positive pre-requisite
conditions and negative pre-requisite conditions (e.g., not
a student in the same course).

Our main results are obtained by considering the role
reachability problem for ARBAC in terms of the planning
problem in Artificial Intelligence (AI): the RBAC policy is
the state of the system, the ARBAC policy determines the
allowed actions that can change the state, and the goal is
to add the given user to the given role. To the best of
our knowledge, this paper is the first to study the connec-
tion between security analysis and the well-studied area of
planning in AI. A few of our results are corollaries of ex-
isting results in the literature on planning, but most of our
results are new.

We show that reachability analysis (RE) for general AR-
BAC policies is PSPACE-complete. This motivates us to
consider restrictions on the policies and two variants of
the reachability problem. Our goals are to better under-
stand the intrinsic complexity of the problem and to iden-
tify tractable cases of practical interest.

We consider the following restrictions on policies:

1. N : no negative pre-requisite conditions.
2. EN : negative pre-requisite conditions for role assign-

ment are used only in the form of static mutually-
exclusive role (SMER) constraints [LBT04], each of
which specifies that a user cannot simultaneously be
a member of two given roles;

3. CR: every role can be revoked unconditionally; and
4. D: disjunction is not used in pre-requisite conditions

for role assignment.

We expect that most ARBAC policies satisfy one of these
restrictions on negation. Moreover, while role assignments
typically have preconditions, role revocations typically do
not, and considering unconditional revocation of all roles
is sufficient for analysis of policies designed primarily to
ensure safety (as opposed to availability). The restric-
tion on disjunction is motivated by results for AI plan-
ning that show that this restriction (called post-uniqueness
in the planning literature), in combination with other re-
strictions, can reduce the complexity of planning [BK91],
[BN95].

We also consider two variants of the reachability prob-
lem. One is bounded reachability (BRE): is the goal of
adding the given user to the given role reachable using at
most a given number of administrative operations? The
other is existence of a polynomial-size plan (PP) for a
class of policies: is every reachable goal reachable using
a sequence of operations whose length is polynomial in the
size of the policy?

We explore the complexity of reachability analysis, the
above variants of it (BRE and PP), and availability anal-

ysis under combinations of these restrictions on policies.
In many cases, the analysis problem still has high com-
putational complexity. Most revealing of these results is
the non-existence of polynomial-size plans for a number of
classes of ARBAC policies. This reflects the difficulty of
understanding the implications of ARBAC policies.

In summary, the main contributions of this paper are to:

• establish that reachability analysis for general AR-
BAC policies is PSPACE-complete;

• determine the computational complexity of reacha-
bility analysis, bounded reachability analysis, and
availability analysis, and determine existence of
polynomial-size plans, for several categories of AR-
BAC policies; and

• give algorithms for cases where the analysis problem
is solvable in polynomial time.

Sections II and III formally define the policy frameworks
and the analysis problems. Our algorithms and complexity
results for reachability analysis appear in Section IV. In
Section V, we extend those results to consider role hier-
archy, and we consider other analysis problems, including
availability analysis. Due to space limitations and the tech-
nical nature of the proofs, we present only selected proof
sketches in the main paper. For the convenience of the
reviewer, complete proofs have been attached as an ap-
pendix.

II. Role Based Access Control (RBAC)

The central notion of RBAC is that users are assigned to
appropriate roles and roles are assigned appropriate per-
missions. Thus a role serves as an intermediary in corre-
lating users with permissions. RBAC facilitates specifica-
tion and management of security policies in large systems.
In this paper, we study policy analysis only for models
of RBAC based on [FSG+01]. Since the policy analysis
queries we support are independent of sessions, we consider
simplified (“mini”) models that do not support sessions.

The miniRBAC model is based on the core RBAC
model [FSG+01].

Definition 1: A miniRBAC policy γ = 〈 U, R, P, UA,
PA 〉 where

• U , R and P are sets of users, roles and permissions re-
spectively. A permission represents approval to invoke
a particular operation on a particular resource.

• UA ⊆ U × R is the user-role assignment relation.
(u, r) ∈ UA means that user u is a member of role
r.

• PA ⊆ P×R is the permission-role assignment relation.
(p, r) ∈ PA means that members of role r are granted
the permission p.

Given γ = 〈U,P,R,UA,PA〉, define usersγ(r) = {u ∈
U : (u, r) ∈ UA} and permsγ(r) = {p ∈ P : (p, r) ∈ PA}

Our miniHRBAC model based on Hierarchical RBAC
[FSG+01] extends the miniRBAC model with role hier-
archies that are a natural means for structuring roles to
reflect an organization’s lines of authority and responsibil-
ity.

POLICY ANALYSIS FOR ADMINISTRATIVE ROLE BASED ACCESS CONTROL 3

MemberUniv

Univ employee
Student

Faculty
Teaching
AssistantEmployee

FullTimePartTime

Employee

Committee

Promotion

[Assign homework scores]

[Register for courses]

[Assign grades]

[Use gym]

[Receive health benefits]

[Grant tenure]

Fig. 1. Example of miniRBAC and miniHRBAC policy

Definition 2: A miniHRBAC policy γh = 〈 U, R, P,
UA, PA, RH 〉 where

• U , R, P , UA and PA are as in miniRBAC.
• RH ⊆ R × R is a partial order on the set R of roles.
r1 ºRH r2 means r1 is senior to r2; i.e., every member

of r1 is also a member of r2, and every permission assigned
to r2 is also available to members of r1.Thus, r2 inherits
all the users of r1 and r1 inherits all the permissions of r2.

Given γh = 〈U,P,R,UA, PA,RH〉, we extend the
usersγ and permsγ functions to account for role hierarchy
: usersγh

(r) = {u ∈ U : ∃r′ ∈ R, r′ º r ∧ (u, r′) ∈ UA},
and permsγh

(r) = {p ∈ P : ∃r′ ∈ R, r º r′∧ (p, r′) ∈ PA}.
We define Senior(r) = {r′ ∈ R : r′ ºRH r}.

Figure 1 gives a simple example of a miniRBAC and
a miniHRBAC policy with 8 roles. Consider the roles
Univ-Member, Univ-employee, and Student. The per-
missions for each role are shown below the role. Users in
the Univ-Member role are members of the University and
have permission to use University facilities like the Gym.
The roles Univ-Employee and Student are senior to the
Univ-Member role. Thus, members of these roles are also
implicitly members of the Univ-Member role, and inherit
the permission to use the Gym.

III. Administrative Role Based Access Control
(ARBAC)

Administration of (i.e., changes to) RBAC policies must
be carefully controlled. RBAC policies for large organiza-
tions may have over a thousand roles and tens of thousands
of users. For scalability, it is necessary to distribute the
task of administering such large policies, by giving each
administrator authority to make specified kinds of changes
to specified parts of the policy. This is an access control
policy that, for scalability and ease of administration, can
profitably be expressed in a role-based manner.

ARBAC97 (“Administrative RBAC”) is a model for de-
centralized administration of RBAC policies [SBM99]. In

ARBAC97, administrator roles are separate from normal
roles, and changes to the ARBAC policy (e.g., adding
users to administrative roles) are not considered in the AR-
BAC97 model. This is justified by assuming that only a
small group of fully trusted administrators are allowed to
modify the ARBAC policy.

In typical ARBAC policies, there is a single top level ad-
ministrator role, called the Senior Security Officer (SSO)
which is the principal administrator of the RBAC policy
and which establishes the ARBAC policy. The SSO parti-
tions the organization’s RBAC policy into different secu-
rity domains, each of which is administered by a different
Junior Security Officer (JSO). For example, there may be
a JSO role for each department. The ARBAC policy speci-
fies the permissions assigned to each JSO role; for example,
to which normal roles and under what conditions can mem-
bers of a JSO role assign users. SSOs can design ARBAC
policies that enforce global constraints on the RBAC policy
by allowing JSOs to only make changes that are consistent
with the constraints.

There are three main parts in a ARBAC97 policy : the
user-role administration (URA) policy, the permission-role
administration (PRA) policy, and the role-role adminis-
tration (RRA) policy that control changes to user-role
assignment UA, the permission-role assignment PA, and
the role hierarchy respectively. In this paper, we consider
slightly modified and simplified version of ARBAC97,
which we call miniARBAC. miniARBAC specifies the
URA and PRA policies, but does not specify a RRA
policy; it does not allow any changes to the role hierarchy.

URA Policy. The URA policy controls changes to
the user-role assignment UA. Its specification uses pre-
requisite conditions which are conjunctions of literals,
where each literal is either r or ¬r for some role r. Given a
miniRBAC state γ and a user u, u satisfies a pre-requisite
condition ∧ili, denoted u |=γ ∧ili, iff for all i, either li is
a role r and u ∈ usersγ(r), or li is a negated role ¬r and
u /∈ usersγ(r).

Permission to assign users to roles is specified by the
can assign ⊆ R × C × R relation, where C is the set of
all pre-requisite conditions on R. A UserAssign(ra, u, r)
action specifies that an administrator who is a member of
the administrative role ra adds a user u to a role r. This
action is enabled in state γ = 〈U,P,R,UA,PA〉 iff there
exists (ra, c, r) ∈ can assign and u |=γ c. Upon executing
the action, γ is transformed to the state γ ′ = 〈U,P,R,UA∪
{(u, r)},PA〉. Note that pre-requisite conditions are not
invariants; if (ra, r1, r2) ∈ can assign, then a user u in r1
and r2 remains a member of r2 even if u is removed from
r1.

Permission to revoke users from roles is specified by the
can revoke ⊆ R × C × R relation where C is the set of
all pre-requisite conditions on R. [SBM99] mentions the
option of including pre-requisite conditions in can revoke
but does not include them in the basic ARBAC97
model. A UserRevoke(ra, u, r) action specifies that an
administrator who is a member of the administrative role

4

ra removes a user u from the membership of a role r.
This action is enabled in state γ = 〈U,P,R,UA,PA〉 iff
there exists (ra, c, r) ∈ can revoke and u |=γ c. Upon
executing the action, γ is transformed to the state
γ′ = 〈U,P,R,UA \ {(u, r)},PA〉.

PRA Policy. The PRA policy controls changes to
the permission-role assignment PA. Assignment of a
permission p to a role r by an administrator in admin-
istrative role ra is achieved by the PermAssign(ra, p, r)
action and is controlled by the can assign p relation.
Similarly, revocation of a permission p from a role r by
an administrator in administrative role ra is achieved by
the PermRevoke(ra, p, r) action and is controlled by the
can revoke p relation. These relations are defined in the
same way as the can assign and can revoke relations
above, except that users are replaced with permissions.

Static Mutually Exclusive Roles (SMER) con-
straints. miniARBAC also includes a set of SMER con-
straints [LBT04] which are used to enforce separation of
duty [CW87]. A SMER constraint is an unordered pair of
roles s = {r1, r2} and is satisfied in the state γ, denoted by
γ ` s, iff users(r1) ∩ users(r2) = ∅; i.e., the roles r1 and
r2 do not have any users in common in the RBAC policy
γ. γ is said to be valid for a set of SMER constraints S iff
∀s ∈ S : γ ` s.

SMER constraints specifying disjointness of permissions
assigned to two roles could also be allowed, but it is
unclear whether such constraints would be useful in
practice. Note that a SMER constraint {r1, r2} can be
expressed by including ¬r1 in the pre-requisite condition
of all can assign rules for r2, and vice versa. We choose
to explicitly represent SMER constraints (and not specify
them in the URA model using negation) because this
allows us to develop specialized algorithms for analyzing
policies that use negation only to enforce SMER con-
straints; this is a common case.

miniARBAC policy. A miniARBAC policy is rep-
resented as ψ = 〈can assign, can revoke, can assign p,
can revoke p, SMER〉 where all the five relations are
as defined above. A miniARBAC policy specifies a
transition relation between miniRBAC policies. We

denote a transition by γ
act
→ψ γ′ where act is one of

the administrative actions UserAssign, UserRevoke,
PermAssign, and PermRevoke with semantics as speci-
fied above, and γ and γ′ satisfy the SMER constraints in ψ.

Examples. We present a few example policies that
illustrate features of miniARBAC. Consider the
miniHRBAC policy of Figure 1.

• Positive pre-requisites : A user can be made mem-
ber of the Teaching-Assistant role by an adminis-
trator in role ra only if she is already a member of the
Student role. This policy can be specified by the rule
(ra, Student, Teaching-Assistant) ∈ can assign.

• Conjunction in pre-requisite conditions:
A user who is a member of both Faculty

and FullTime-Employee roles can serve on the
Promotion-committee. This policy can be specified
by the rule (ra, Faculty ∧ FullTime-Employee,
Promotion-committee) ∈ can assign, where ra is an
appropriate administrative role.

• SMER constraints: A user can be a member of
at most one of the Faculty and Student roles. This
policy can be specified by the constraint set SMER =
{{Faculty, Student}}.

• Negative pre-requisites : Negative pre-requisites
in the can revoke relation can be used to force role
revocations to occur in a particular order. We might
have a policy that says that a user can be made
member of the Teaching-Assistant role only if
he is already a member of the Student role. The
policy also requires that when a user ceases to be a
Student he also ceases to be a Teaching-Assistant.
This policy can be enforced with the following rules
: (ra, Student, Teaching-Assistant) ∈ can assign,
and (ra,¬Teaching-Assistant, Student) ∈
can revoke. The second rule forces an adminis-
trator to revoke the user’s Teaching-Assistant role
before revoking his Student role.

• Conditional role revocation: Recall that
miniARBAC, unlike ARBAC97 [SBM99], allows pre-
requisite conditions in role revocation. The policy
with negative pre-requisites described above is also an
example of a policy that requires conditional role re-
vocation.

IV. Analysis of RBAC policies

As mentioned in Section I, policy analysis is useful for
policy understanding and maintenance, and can also help
in policy enforcement. A miniARBAC policy ψ defines a
transition relation between miniRBAC policies and there-
fore defines a transition graph. Each vertex of the tran-
sition graph is a miniRBAC policy and each edge is a

transition γ
act
→ψ γ

′. Usually we are interested in analyzing
or restricting the power of a given set A of administrative
roles, so we discard edges labeled with actions by adminis-
trative roles not in A (recall that the administrative role is
the first argument of every action), and ask the following
kinds of queries about the resulting graph. Note that A is
an implicit parameter of all these queries.

• User-Role Reachability Analysis: Given a role r
and a user u not in r, can u be added to r (by actions
of administrators in administrative roles in A) ?

• Permission-Role Reachability Analysis: Given
a role r and a permission p not granted to r, can p be
granted to r ?

• User-Permission Reachability Analysis: Given
a user u and a permission p, does there exist a role r
such that p can be granted to r and u can be added
to r (i.e., p is granted to u) ?

• User-Role Availability Analysis [LMW05]:
Given a role r and a member u of r, can u be removed
from r ?

POLICY ANALYSIS FOR ADMINISTRATIVE ROLE BASED ACCESS CONTROL 5

• Permission-Role Availability Analysis
[LMW05]: Given a role r and a permission p
granted to r, can p be revoked from r ?

In the next section, we consider the first kind of query
without role hierarchy. In Section V we consider the other
kinds of queries.

A. User-Role Reachability Analysis without Role Hierar-
chy

A query Q of this kind has the form: Given a user u,
a set goal of roles, an initial miniRBAC policy γ, and a
miniARBAC policy ψ, can administrators in administra-
tive roles in A transform γ to another miniRBAC policy
γ′ under the restrictions imposed by ψ such that u is a
member of all roles in goal in γ′ ? We can simplify the
problem as follows.

1. Ignoring permissions: The answer to Q is af-
fected only by the user-role assignment relation and
the can assign, can revoke and SMER components
of ψ, so we can ignore the other components of γ and
ψ when answering Q. This also implies that only the
UserAssign and UserRevoke actions are relevant.

2. Implicit administrative role: We can remove from
ψ all administrative roles not in A and their corre-
sponding can assign and can revoke rules. Then Q
asks about reachability under all the (remaining) ad-
ministrative roles. Thus, there is no need to distin-
guish these roles from each other, and so we can delete
their names. In other words, we can assume that there
is a single implicit administrative role, and we simplify
can assign and can revoke to have the type C×R (in-
stead of R×C ×R) where R is the set of roles and C
is the set of all pre-requisite conditions on R.

3. Single user: Note that the pre-requisite conditions
for UserAssign(a, u, r) and UserRevoke(a, u, r) de-
pend only on the current role memberships of user u.
Therefore when answering a query Q about user u, we
can remove all other users from the policy. Thus, we
can assume there is a single implicit user, and we can
simplify UA to be a subset of R, where r ∈ UA means
that the implicit user is a member of r.

With these simplifications, a miniRBAC policy γ
is a pair 〈R,UA〉 where UA ⊆ R, an action is
UserAssign(r) or UserRevoke(r), and a miniARBAC
policy ψ is a triple 〈can assign, can revoke, SMER〉
where can assign, can revoke ⊆ C × R. A reachability
query for the simplified policy can be represented by a set
goal of roles (since u and A are now implicit). A goal-
set goal is satisfied in a RBAC policy state γ = 〈R,UA〉,
denoted γ ` goal, iff goal ⊆ UA.

Definition 3: A user-role reachability analysis problem
instance is a 3-tuple Iur = (γ, goal, ψ) where γ is a
miniRBAC policy, ψ is a miniARBAC policy and goal ⊆
R is a query. A sequence of actions act1, act2, . . . , actn
where each acti ∈ {UserAssign(r), UserRevoke(r) : r ∈

R} is called a “plan” or “solution” for Iur if γ
act1→ψ . . .

actn→ψ

γ′ and γ′ ` goal.
We consider two variants of reachability analysis.

• Reachability (RE) : Given a problem instance I, does
there exist a plan for I ?

• Bounded Reachability (BRE) : Given a problem in-
stance I and an integer k, does there exist a plan for
I of length at most k ? Existence of bounded plans
is an interesting problem to consider in cases where
existence of general plans is difficult to determine.

• Polynomial-size plan (PP) : Given a set S of problem
instances, is there a polynomial f such that for all
problem instances I ∈ S, if I has a plan, then I has
a plan with length at most f(|I|) ? The size |I| of a
problem instance I is the sum of the sizes of all the
sets in it.

The Reachability problem is PSPACE-complete in gen-
eral. To understand the problem better and identify effi-
ciently solvable cases of practical interest, we impose vari-
ous structural restrictions on the miniARBAC policy and
the query, and for each restricted class of problems we ana-
lyze the complexity of RE and BRE and determine whether
PP holds.

We first define some auxiliary functions. Given a
miniRBAC policy γ = 〈R,UA〉, and a miniARBAC pol-
icy ψ = 〈can assign, can revoke, SMER〉, define for each
role r ∈ R

• Num-SMER(r) = |{r′ : {r, r′} ∈ SMER}|.
Num-SMER counts the number of SMER constraints
that a role r is involved in.

• Disjuncts(r) = |{c : (c, r) ∈ can assign}|; i.e.,
Disjuncts(r) counts the number of different rules in
ψ that allow an administrator to assign a user to the
role r. Similarly, Disjuncts(not(r)) = |{c : (c, r) ∈
can revoke|.

• Size(c) for a pre-requisite condition c is the number of
role literals in c; e.g., Size(r1 ∧ ¬r2) = 2.

• Size-Pos(c) for a pre-requisite condition c is the num-
ber of positive role literals in c; e.g., Size-Pos(r1∧r2∧
¬r3) = 2.

We consider four categories of restrictions on ψ.

• Restricting Negation : We say that ψ uses explicit
negation if a negative literal appears in can assign or
can revoke, and ψ uses implicit negation if ψ contains
a SMER constraint (i.e., SMER 6= ∅).

– No negation (N) : ψ satisfies the N restriction if
ψ does not use either explicit or implicit negation.

– No explicit negation (EN) : ψ satisfies the EN
restriction if ψ does not use explicit negation. This
restriction is interesting because SMER constraints
are more common than other uses of negation.

• No Disjunction (D) : ψ satisfies the D re-
striction if for all roles r, Disjuncts(r) ≤ 1 and
Disjuncts(not(r)) ≤ 1; i.e., there is at most one rule
in ψ for assigning/revoking every role in R.

• Restricting Revocation:
– No revocation (R) : ψ satisfies the R restriction

if can revoke = ∅. This implies that once a user is
assigned to a role, the user cannot be revoked from
the role.

6

– No conditional revocation (CR) : ψ satisfies the
CR restriction if for every role r ∈ R, (true, r) ∈
can revoke. In other words, every role in R can be
unconditionally revoked. When considering power-
ful administrative roles, this restriction is reason-
able because pre-requisite conditions on revocation
are relatively rare; recall that ARBAC97 does not
support conditional revocation.

• Size restrictions: ψ satisfies |pre| ≤ k if
∀(c, r) ∈ can revoke : Size(c) ≤ k and ∀(c, r) ∈
can assign : Size(c) + Num-SMER(r) ≤ k (if {r1, r2}
is a SMER constraint, then ¬r1 is counted as part
of every pre-requisite condition for r2 in can assign,
and vice versa). ψ satisfies |ppre| ≤ k if ∀(c, r) ∈
can assign∪ can revoke : Size-Pos(c) ≤ k. ψ satisfies
|SMER(r)| ≤ k if ∀r ∈ R : Num-SMER(r) ≤ k. ψ
satisfies |goal| ≤ k if the size of the goal set is at most
k. As we show below, enforcing one or more of these
restrictions greatly simplifies the reachability analysis
problem.

We also consider a restriction EI (empty initial state) on
problem instances. A problem instance (γ, goal, ψ) satisfies
EI if the user assignment in γ is the empty set.

A set of restrictions defines a class of reachability anal-
ysis problems. For example, the class [R,D, |pre| ≤ 1]
includes all problems (γ, goal, ψ) where ψ satisfies the R,
D and |pre| ≤ 1 restrictions. When a class has the EN
restriction (allow SMER constraints, but not explicit nega-
tion), the |ppre| ≤ k restriction is used instead of the
|pre| ≤ k restriction, since pre-requisite conditions con-
tains only positive literals. For each class we consider the
RE and BRE problems and check whether PP is true for
every problem instance in the class. When PP is false

for a problem instance in a class C, reachability analysis is
said to be intractable for C since the worst case running-
time of any algorithm that generates plans for C is at least
exponential in the size of the problem instance.

Figure 2 summarizes our results. The problem classes
are divided into four groups, separated by double lines,
based on the complexity of RE and BRE. The problem
classes are arranged in a hierarchy. An edge from class
C1 to C2 indicates that C2 is a specialization of C1. Thus,
every hardness result for C2 also applies to C1, and ev-
ery algorithm for C1 can be used to solve C2. The bib-
liographic reference to [LT04] means that the result was
proved there. A reference to [Byl94] or [BN95] means that
we proved complexity results for that problem class by re-
duction from complexity results for planning given in that
reference. Some observations are

1. If Polynomial-size plan (PP) for a problem class C, is
true, then Reachability (RE) for C is in the complexity
class NP, because a non-deterministic Turing machine
can guess the plan, and verify it in polynomial time.

2. The restriction |goal| ≤ k is relevant only in classes
that also have the restriction |pre| ≤ 1. If a prob-
lem class C has the former restriction but not the lat-
ter, then given a problem instance I = (γ, goal, ψ)
with |goal| > k, we can re-write I to an instance

I ′ = (γ′, goal′, ψ′) with |goal′| = 1, by introducing
new roles in γ and adding rules to ψ for modifying
them. For example, if goal = {r1, r2} and C has the
restriction |goal| ≤ 1 but not the restriction |pre| ≤ 1,
then introduce a new role rg, add the rule (r1 ∧ r2, rg)
to can assign and take goal′ = {rg}. The new prob-
lem instance is equivalent to the old instance but sat-
isfies |goal| ≤ 1 and is still in C.

3. The restriction D (no disjunction) makes the
Reachability problem easier; Reachability for [R] is
NP-complete whereas for [D,R] it is polynomial-time
solvable. Not allowing disjunction in pre-requisite
conditions reduces the number of possible plans for
a problem instance, thereby reducing the complexity
of the Reachability problem.

4. The restriction CR (only unconditional revocation)
makes the Polynomial-size plan problem easier; PP
for [D,EN, |ppre| ≤ 1, |G| ≤ k] and hence for
[EN, |ppre| ≤ 1, |G| ≤ k] is false, implying that
a polynomial time algorithm for generating a plan
for this problem class does not exist. PP for
[CR,EN, |ppre| ≤ 1, |G| ≤ k] is true. In Appendix,
we give a polynomial-time plan generation algorithm
(Algorithm 3) for this problem class.

5. The restriction R (no revocation) ensures that the
answer to the Polynomial-size plan problem is true.
When role revocation is not allowed, the implicit user
can be assigned to a role at most once in any plan.
Thus, the length of a plan is at most the number of
roles.

6. For most problem classes (i.e., sets of restrictions) we
considered, adding the EN restriction (allow SMER
constraints but not explicit negation) neither low-
ered the worst-case complexity of RE or BRE nor
changed PP from false to true. Thus, in general,
SMER constraints do not seem to be easier to an-
alyze than explicit use of negation. However, there
are problem classes for which the effect of adding or
removing the EN restriction remains unknown. For
example, we showed that RE is solvable in polyno-
mial time for the class [CR,EN, |ppre| ≤ 1, |G| ≤ k],
but the worse-case complexity of RE for the class
[CR, |ppre| ≤ 1, |G| ≤ k] is unknown.

B. Complexity Results for User-Role Reachability Analysis

In this section we give proof sketches for three repre-
sentative results from Figure 2. Detailed proofs of all
the complexity results appear in the Appendix. The first
theorem shows that solving the Reachability problem in
the general case is PSPACE-complete. The second theorem
and proof provide a polynomial time algorithm for solving
Reachability (RE) for a problem class that is still general
enough to be interesting in practice. The fourth and fifth
theorems show that even when three or four restrictions
are applied simultaneously, reachability may remain a
hard problem, not solvable in polynomial time.

POLICY ANALYSIS FOR ADMINISTRATIVE ROLE BASED ACCESS CONTROL 7

EN D CR

PP : Polynomial size plan

conjunct of a pre−condition

in a conjunct of a pre−condition

R

|G| <= k
D, EN, |ppre| <= 1

D, EN, |ppre| <= 1

|G| = 1

|SMER(r)| <= 1
CR, EN, |ppre| <= 1

CR, |pre| <= 2

BRE : NP− hard

BRE : NP−hard

BRE : NP−hard

|pre| <= 1

N
|G| <= k
CR, EN, |ppre| <= 1

CR, D, |pre| <= 1 D, R|pre| <= 1, |G| <= k

RE : Reachability

BRE : Bounded reachability

CR : Unconditional role

|pre| = number of literals in a

|ppre| = number of +ve literals

|G| = number of roles in the

R, EN

RE : PSPACE−complete

D, CR, EN, |ppre| <= 2

D, EN, |ppre| <= 1

BRE : NP−hard

|SMER(r)| <= 1
D, CR, EN

revocation (all roles)
N : No negation in pre−conditions

EN : Negation only as SMER

R : No role revocation

[BN95]

[Byl94]

[Byl94]

RE : NP−complete

R, EN, |pre| <= 1

|SMER(r)| <= 1

[Byl94]

No restrictions

[Byl94]

RE : PSPACE−complete PP : False

PP : False

PP : False

PP : False

RE : NP−complete PP : True

RE : NP−complete PP : True

RE : NP−complete PP : True

RE : P PP : TrueRE : P PP : TrueRE : P PP : TrueRE : P PP : TrueRE : P PP : True

RE : NP−hard or unknown
BRE : NP−hard or unknown

RE : NP−hard

RE : ??

BRE : ?? PP: ??

RE : polynomial
D : No disjunction; one can_assign

goal set

 and can_revoke rule per role

 constraints in pre−conditions

SMER constraints a role is in
|SMER(r)| = max number of

[LT04]

Fig. 2. Complexity of Reachability Analysis

Theorem 1: Reachability (RE) for the problem class
without any restrictions is PSPACE-complete (Theorem 24
in Appendix).

Proof Sketch: [BN95] shows that Plan-Existence for a
SAS+ planning problem under the U and B restrictions is
PSPACE-complete. Informally, the U restriction requires
actions to have a single effect and the B restriction re-
quires the effects of every action to be binary. The actions
that we consider in policy analysis - UserAssign(r) and
UserRevoke(r) - are binary actions that also have a sin-
gle effect, since they either add the implicit user to r or
revoke the user from r. We can encode Plan-Existence for
a SAS+ planning problem that satisfies the U and B re-
strictions as a Reachability problem for a problem instance
with an unrestricted miniARBAC policy. This establishes
that solving Reachability for general miniARBAC poli-
cies is PSPACE-hard. Reachability for unrestricted ARBAC

policies is in PSPACE because a Turing Machine can guess
and execute the plan, storing at each step only the current
state whose size is polynomial in the size of the problem in-
stance. Thus Reachability of unrestricted ARBAC policies
is PSPACE-complete.

Theorem 2: Reachability (RE) for the problem class
[CR,D, |pre| ≤ 1, EI] (only unconditional role revoca-
tion, no disjunction, at most one pre-requisite precondi-
tion, empty initial state) is solvable in polynomial time
(Theorem 12 in Appendix).

Proof Sketch: Let I = (γ, goal, ψ) be a problem in-
stance in the problem class [CR,D, |pre| ≤ 1], where
γ = 〈R,UA〉, ψ = 〈can assign, can revoke, SMER〉, and
goal is a set of roles. Then, for every role r ∈ R, (1) there
is at most one state change rule (ra, c, r) ∈ can assign, (2)
|c| ≤ 1, and (3) (ra, true, r) ∈ can revoke. Also, since neg-
ative pre-requisite conditions are allowed, we can assume

8

without loss of generality that SMER = ∅.

Construct the graph Gψ = (Vψ, Eψ) as follows. The set
of vertices is the set of roles Vψ = R. There are two kinds
of edges in Eψ, positive and negative. For each (ra, r

′, r) ∈
can assign, e = (r′, r) ∈ Eψ, and label(e) = pos. For each
(ra,¬r

′, r) ∈ can assign, e = (r, r′) ∈ Eψ and label(e) =
neg. Note that neg edges have reverse direction as the pos
edges. Intuitively, the edges in Eψ indicate the order in
which roles must be assigned and revoked; if (r, r′) ∈ Eψ,
then UserAssign(r) must occur before UserAssign(r′).
A cycle is called a pos cycle if it is composed of only pos

edges; neg cycles are defined similarly.

Lemma 3: Let C be a cycle in Gψ. Then C is either a
pos cycle or a neg cycle. (Lemma 13 in Appendix)

Proof: Suppose C contains a pos edge e = (r, r′)
and a neg edge e = (s, s′). Then, there is a path
P1 = 〈e1, e2, . . . , em〉 in C such that e1 = (r′, s1), ∀2 ≤ i ≤
m − 1 : ei = (si, si+1) and em = (sm, s). From the defini-
tion of pos and neg edges we have (ra, r, r

′) ∈ can assign
and (ra,¬s

′, s) ∈ can assign. If label(em) = pos then
(ra, s1, s) ∈ can assign contradicting that ψ satisfies the
D restriction. Thus, label(em) = neg and (ra,¬s, s1) ∈
can assign. Continuing the argument, we can show that
e1, . . . , em are all neg labeled edges. Thus, (ra,¬s1, r

′) ∈
can assign and ψ violates the D restriction. Thus, C does
not contain both pos and neg edges, and is either a pos

cycle or a neg cycle.

Lemma 4: Reachability (RE) for I = (γ, goal, ψ), where
γ = 〈R, ∅〉, is false if and only if either (C1) Gψ contains a
pos cycle C such that C ∩ goal 6= ∅, or (C2) Gψ contains a
neg cycle C such that C ⊆ goal. (Lemma 14 in Appendix)

Proof Sketch: Suppose C1 is true. Let r ∈ C ∩
goal. Since we start from the empty state γ, the ac-
tion UserAssign(r) can never be enabled; thus, r (and
hence goal) is not reachable. Suppose C2 is true; let
C = (r1, r2, . . . , rk, r1) be a neg cycle such that r1, . . . , rk ∈
goal. Let P be a plan for I, and assume without loss
of generality that UserAssign(rk) is the last action in P .
Then, since the pre-requisite condition for UserAssign(rk)
is ¬r1, it follows that UserAssign(rk) is not the last action
in P which is a contradiction. Thus, goal is not reachable.
If both C1 and C2 are false, then either (1) G is acyclic,
in which case the topological-sort ordering of G gives the
order in which roles must be assigned to reach goal, or
(2) all cycles in G are neg cycles C such that there exists
s ∈ C and s /∈ goal. We break such cycles by deleting
every neg edge e = (r, s) such that r ∈ goal and s /∈ goal.
Since e is a neg edge, we know that (¬s, r) ∈ can assign.
Thus, in a plan for I, either (1) UserAssign(r) occurs be-
fore UserAssign(s) (if there is a path of pos edges from r
to s) or (2) UserRevoke(s) occurs between UserAssign(s)
and UserAssign(r). In the latter case, we need to ensure
that every UserAssign(s′) that has a pre-requisite con-
dition s occurs before UserRevoke(s) and hence before
UserAssign(r) in the plan. We add edge (s′, r) to G to
ensure this. With the above transformations, the resulting
graph G′

ψ is acyclic, and we can generate a plan for I by
assigning roles (to the user) in the topological-sort order

of G′
ψ.

Constructing graph G takes polynomial time, and |G| =
|I|. Validity of C1 can be checked by restricting G to only
pos edges. Since ψ satisfies the D (no disjunction) restric-
tion, in this restricted graph each vertex has at most one
incoming edge. This implies that all cycles in the graph are
disjoint and we can use a simple Depth-First Search to find
all cycles and check if any cycle contains a role not in goal.
Validity of condition C2 can be checked by restricting G to
only vertices in goal and neg edges, and checking whether
the restricted graph contains a cycle; a simple Depth-First
Search can accomplish this. Hence both C1 and C2 can be
checked in polynomial time. Transforming G to an acyclic
graph G′ takes polynomial time, and |G′| is O(|G|2) since
for each neg edge in G, at most |G| new edges may be
added. Topologically sorting G′ takes polynomial time.
Thus, Reachability for this problem class can be solved in
polynomial time.

The problem class to which Theorem 2 applies can be
expanded by reducing problem instances that do not sat-
isfy the EI (empty initial state) restriction to problem in-
stances that satisfy EI. The next two lemmas express such
reductions.

Lemma 5: RE for I = (〈R,UA〉, goal, ψ) is true if RE
for I1 = (〈R, ∅〉, goal, ψ) is true.
Proof: Since ψ allows unconditional revocation of all
roles, we can revoke all roles r ∈ UA to transform the ini-
tial RBAC state to the empty state 〈R, ∅〉. We then check if
〈R, goal〉 is reachable from 〈R, ∅〉. Thus, if a state 〈R,UA1〉
is reachable from the empty state, then it is reachable from
any state.

Lemma 6: RE for I = (〈R,UA〉, goal, ψ) is false if I1 =
(〈R, ∅〉, UA, ψ) is true and I2 = (〈R, ∅〉, goal, ψ) is false.
Proof: Since I1 is true there is a path P1 from the
empty state to 〈R,UA〉. Since I2 is false, there is no
path from the empty state to 〈R, goal〉. Thus, if there was
a path from 〈R,UA〉 to 〈R, goal〉, I2 would be true which
is a contradiction. Thus, there is no path from 〈R,UA〉 to
〈R, goal〉 and I is false.

Theorem 7: Bounded Reachability (BRE) for the prob-
lem class [D,EN, |ppre| ≤ 1] (no disjunction, SMER con-
straints allowed but no explicit negation, at most one pos-
itive literal in pre-requisites) is NP-hard (Theorem 23 in
Appendix).
Proof Sketch: The proof is by reduction from the
CLIQUE problem which is known to be NP-complete

[Kar72]. Given a graph G = (V,E) and an integer k, the
CLIQUE problem asks whether G has a clique of size k;i.e.,
a completely connected subgraph of size k. We construct
a problem instance I = (γ, goal, ψ) in the problem class
[D,EN, |ppre| ≤ 1] such that G has a clique of size k if
and only if I has a plan of size at most 15n − 2k where
|V | = n.

The proof of Theorem 8 in [BN95] establishes
NP-hardness of Bounded-Plan-Existence for a planning
problem, which is equivalent to our Bounded Reachabil-
ity problem for the problem class D, by reduction from
the CLIQUE problem. Our reduction and proof is simi-

POLICY ANALYSIS FOR ADMINISTRATIVE ROLE BASED ACCESS CONTROL 9

lar to theirs in structure, but since our aim is to show
NP-hardness of Bounded Reachability for a more restricted
problem class [D,EN, |ppre| ≤ 1], our construction and
proof is significantly more involved.

Theorem 8: Polynomial-size plan (PP) for the problem
class [D,CR,EN, |SMER(r)| ≤ 1] (no disjunction, only
unconditional role revocation, at most one SMER con-
straint per role, no explicit negation) is false. (Theo-
rem 20 in Appendix)
Proof Sketch: Consider the problem instance I =
(γ, goal, ψ) where:

• the set of roles R = {u1, u2, . . . , un, v1, v2, . . . , vn},
• γ = 〈R, ∅〉
• goal = {un}
• ψ = 〈can assign, can revoke, SMER〉 where
– SMER = {{ui, vi} : 1 ≤ i ≤ n}
– ∀ 1 ≤ i ≤ n : (ra, true, vi) ∈ can revoke
– ∀ 1 ≤ i ≤ n : (ra, true, vi) ∈ can assign
– ∀ 1 ≤ i ≤ n : (ra, true, ui) ∈ can revoke
– (ra, true, u1) ∈ can assign, (ra, u1, u2) ∈

can assign and ∀ 3 ≤ i ≤ n if i = 2k + 1 then
(ra, v1 ∧ v2 . . . vi−2 ∧ ui−1, ui) ∈ can assign, else if
i = 2k then (ra, u1 ∧u2 ∧ . . . ui−1, ui) ∈ can assign.

The can revoke relation specifies that for every role
r ∈ R, UserRevoke(r) has a true pre-requisite condition.
Thus, I satisfies the CR restriction (every role can be un-
conditionally revoked). For every role r ∈ R, there is a
unique state-change rule (ra, c, r) in both can assign and
can revoke. Thus I satisfies the D restriction. ψ does not
use explicit negation; only SMER constraints. Thus I sat-
isfies EN restriction. Each role ui appears only with vi in
SMER. Thus I satisfies the |SMER(r)| ≤ 1 restriction.

We claim that the minimum plan for I has size expo-
nential in |I|. Note that reachability of a role ui depends
only on roles uj where j < i. Intuitively, in order to
reach u2k for some integer k, we must reach a state γ
in which the goal set {u1, . . . , u2k−1} is satisfied. u2k−1

can only be reached from a state γ′ in which the goal
set {v1, v2, . . . , v2k−3, u2k−2} is satisfied. Since for all i,
{vi, ui} ∈ SMER, it follows that u1, u2, . . . , u2k−3 are
all false in γ′. Therefore, to go from γ′ to γ, the roles
v1, v2, . . . , v2k−3 must first be revoked, and then the goal
set g = {u1, u2, . . . , u2k−3} must be proved. But, to prove
goal u2k−2 (while reaching state γ′) starting from the ini-
tial empty state γ′′, the same goal set g must be proved.
Therefore, the length of the plan γ′ →∗γ is greater than
the length of γ′′ →∗γ′, implying that the length of γ′′ →∗γ
is at least twice the length of γ′′ →∗γ′. Thus, the length
of the plan to reach u2k is at least twice the length of the
plan to reach u2k−2; it follows that the length of the plan to
reach un is exponential in n. Since |I| is O(n), the length
of the plan to reach un is exponential in |I|.

V. Other Analysis problems

A. User-Role Reachability Analysis in Hierarchical RBAC

Our approach is to transform analysis problems for hier-
archical policies into analysis problems for non-hierarchical
policies. The transformation makes the effects of inherited

membership explicit; in the original problem, the effects
of inherited membership are implicit in the semantics of
pre-requisite conditions.

Let Ih = (γh, goalh, ψh) be a reachability problem in-
stance for hierarchical RBAC with γh = 〈R,UA,RH〉,
ψh = 〈can assignh, can revokeh, SMERh〉, and goalh =
{r1, r2, . . . , rk}. Define a set of reachability problem in-
stances for non-hierarchical RBAC as follows.

• Let γ = 〈R,UA〉.
• The can assign and can revoke relations are gener-

ated in two steps from can assignh and can revokeh.
1. For each (c, r) ∈ can assignh, and for each ¬t ∈ c,

replace ¬t with
∧

s∈Senior(t) ¬s. Transform the
can revokeh relation in a similar manner. Let
can assign′ and can revoke′ denote the trans-
formed relations.

2. For each (c+ ∧ c−, r) ∈ can assign′, where c+ is a
conjunction r1 ∧ . . . ∧ rk of positive roles, and c− is
a conjunction of negative roles, generate the Carte-
sian product PosConjunct = Senior(r1) × . . . ×
Senior(rk). For each (r′1, . . . , r

′
k) ∈ PosConjunct

add the rule (r′1 ∧ . . . ∧ r′k ∧ c−, r) to can assign.
Generate can revoke from the can revoke′ in the
same manner.

• Let SMER = {(r, s) : (r′, s′) ∈ SMERh ∧ r ºRH
r′ ∧ s ºRH s′}.

• Goals = Senior(g1) × Senior(g2) × . . .× Senior(gn).

Then, the answer to Ih is true if and only if there exists
a goal ∈ Goals such that the answer to I = (γ, goal, ψ) is
true. Moreover, it is easy to show that any plan for Ih is
also a plan for I, and vice versa.

Starting from our results in Section IV for analysis of
non-hierarchical policies, we can derive results for analy-
sis of a class of hierarchical policies, defined by some re-
strictions on the policies, by determining (1) the restric-
tions satisfied by the transformed policies, (2) the size of
a transformed policy relative to the size of the original
(hierarchical) policy, and (3) the number of transformed
problem instances, i.e., the number of transformed goals.
We consider these issues in turn.

The restrictions N , EN , R, CR, |ppre| ≤ 1, and
|G| ≤ k are preserved by the transformation; the proofs
are straightforward. The transformation may invalidate
other restrictions. Specifically, steps 1 and 2 in the trans-
formation may invalidate the restrictions |pre| ≤ 1 and
D, respectively, and the transformation from SMERh to
SMER may invalidate the |SMER(r)| ≤ 1 restriction.

The size of the transformed policy might not be polyno-
mial in the size of the original policy because, in the worst
case, the Cartesian product Senior(r1)× . . .× Senior(rk)
in step 2 may result in addition of O(h|ppre|) rules, where h
is a bound on the number of senior roles for each role, and
|ppre| is a bound on the number of positive pre-requisite
conditions in each can assign rule. Therefore, in general,
the transformation may increase the size of the policy by
a factor exponential in |ppre|. This implies, for exam-
ple, that results giving polynomial-time algorithms for a
problem class do not carry over to analysis of hierarchical

10

policies, unless |ppre| is bounded. We do expect that in
practice, the number of positive pre-requisite conditions in
each can assign rule is bounded by a small constant.

The transformed goals are defined by a Cartesian prod-
uct Senior(g1)×Senior(g2)×. . .×Senior(gn). In the worst
case, the number of transformed goals is O(h|G|), where h
is as in the previous paragraph. For problem classes with
the restriction |G| ≤ k, the number of transformed goals is
polynomial in the size of the original policy.

For example, recall that reachability analysis for the
problem class [EN,CR, |ppre| ≤ 1, |G| ≤ k] for non-
hierarchical policies can be solved polynomial time. Based
on the above observations, we conclude that reachability
analysis for the problem class [EN,CR, |ppre| ≤ 1, |G| ≤
k] for hierarchical policies can also be solved in polynomial
time.

Analysis for some classes of hierarchical policies can be
solved more efficiently by a direct algorithm than by the
above transformation. In particular, reachability analysis
for hierarchical policies that satisfy the N restriction can
always be solved in polynomial time, using a fixed-point
algorithm similar to the algorithm for reachability analy-
sis for non-hierarchical policies satisfying this restriction.
It might be possible to find an algorithm whose running
time is exponential in the number of negative pre-requisite
conditions in the policy; this is a topic for future work.

B. Permission-Role Reachability Analysis

Consider queries of the form “Can administrators in ad-
ministrative roles in A assign a permission p to all roles in
a set goal ? ”.

Since miniRBAC and miniARBAC specifications for the
user-role and permission-role assignment relations are sym-
metrical, permission-role reachability analysis can be per-
formed in exactly the same manner as user-role reachability
with SMER = ∅. Thus, the results of Section IV apply
directly.

C. User-Permission Reachability Analysis

Consider queries of the form “Can administrators in ad-
ministrative roles in A give a user u a permission p ?”.
Such a query can be answered by checking whether there
exists a role r such that (1) user u is already a member of
r or the administrators can add u to r, and (2) permission
p is already granted to r or administrators can grant p to
r. Thus, the problem can be transformed into a polyno-
mial number of user-role and permission-role reachability
analysis problems that satisfy the same structural restric-
tions (N , D, etc.) as the original problem. Furthermore,
a plan for the original problem can be obtained by simply
concatenating the plans for the two sub-problems (i.e., a
plan for adding user u to r, and a plan for granting per-
mission p to r). These observations imply that the results
in Section IV can easily be used to obtain algorithms and
complexity results for the Reachability, Bounded Reachabil-
ity and Polynomial-size plan problems for user-permission
problem classes.

D. Availability Analysis

Recall from Section IV that User-Role Availability anal-
ysis checks whether a given member of a given role always
remains in the role. As we did for user-role reachability
analysis, we simplify miniRBAC and miniARBAC poli-
cies by ignoring permissions and the permission-role as-
signment, and assuming a single implicit user u and a sin-
gle implicit administrative role ra. Formally, a user-role
availability analysis problem instance has the form I =
(γ, goal, ψ) where γ = 〈R,UA〉 is a simplified miniRBAC
policy, ψ = 〈can assign, can revoke, SMER〉 is a simpli-
fied miniARBAC policy and goal is a set of roles. The
answer to I is true iff in every state γ ′ reachable from γ
via ψ (i.e., γ →ψ ∗ γ′), user u is member of at least one
role in goal in the state γ′. I can be solved as follows.

1. Suppose goal ∩ UA = ∅; i.e., no role in goal is in the
initial state. Then the answer is false.

2. Suppose ψ satisfies the CR restriction (every role can
be unconditionally revoked). The answer is false be-
cause u’s membership in every role in goal can be
revoked.

3. Otherwise we transform the user-role availability
analysis problem instance I to a user-role reachability
analysis problem I ′ = (γ′, goal′, ψ′) as follows.

• goal′ = {r̄ : r ∈ goal} where each r̄ is a new role.
• Let γ′ = 〈R′, UA〉 where R′ = R ∪ goal′.
• ψ′ = 〈can assign′, can revoke′, SMER′〉 where (1)

∀r̄ ∈ goal′ : (true, r̄) ∈ can assign′, (2) ∀r̄ ∈
goal′ : (true, r̄) ∈ can revoke′, and (3) SMER′ =
SMER ∪ {(r, r̄) : r ∈ goal}.

We show that I and I ′ has opposite answers. Suppose
I ′ has the answer true, then there exists a state γ ′ =
〈R,UA′〉 such that γ →ψ′ ∗ γ′ and goal′ ⊆ UA′. For
each r ∈ goal, (r̄, r) ∈ SMER′, so r /∈ γ′. Thus, goal∩
γ′ = ∅. This implies that the answer to I is false.
Conversely, it is easy to show that if I ′ has the answer
false, then I the answer true. Thus, availability
analysis can be reduced to reachability analysis, and
we can apply the complexity results and algorithms in
Section IV.

VI. Related Work

We classify related work on security policy analysis into
three categories, which focus on different and complemen-
tary analysis problems.

The first category is analysis (including enforcement) of
a fixed policy. We mention some representative papers
in this category. Jajodia, Samarati, and Subrahmanian
[JSS97] propose a policy language that can express pos-
itive and negative authorizations and derived authoriza-
tions (similar to delegation), and they give polynomial-
time algorithms to check consistency and completeness of
a given policy. Cholvy and Cuppens [CC97] use SOL-
deduction to check consistency of a security policy that ex-
presses positive and negative permissions and obligations.
Bandara, Lupu, and Russo [BLR03] use abductive logic
programming to detect conflicts in a policy expressed in a
language based on Event Calculus that can express positive

POLICY ANALYSIS FOR ADMINISTRATIVE ROLE BASED ACCESS CONTROL 11

and negative authorizations, obligations, and refrain con-
ditions. Jaeger et al. [JEZ03], [JSZ03] give algorithms to
check integrity and completeness of a Security-Enhanced
Linux (SELinux) policy. Guttman et al. [GHR03] describe
a technique to analyze information flow in a SELinux pol-
icy.

The second category is analysis of a single change to
a fixed policy or, similarly, analysis of the differences be-
tween two fixed policies. Jha and Reps [JR04] present
analysis algorithms, based on push-down model checking,
to check properties of a given SPKI/SDSI policy and to an-
alyze the effects of a given change to a given policy. Fisler
et al. [FKMT05] consider policy analysis for a subset of
XACML. They give decision-diagram-based algorithms to
check properties of a given policy and to compute the se-
mantic difference of two given policies and check properties
of the difference.

Work in the first two categories differs significantly from
our work (and other work in the third category) by not
considering the effect of sequences of changes to the policy.

The third category is analysis that considers the effect
of sequences of changes to a policy; the allowed changes
are determined by parts of the policy that we call “admin-
istrative policy”. Harrison, Ruzzo, and Ullman [HRU76]
present an access control model based on access matrices,
which can express administrative policy, and show that
the safety analysis problem is undecidable for that model.
Following this, a number of access control systems were
designed in which safety analysis is more tractable, e.g.,
[LS77], [San88], [San92]. While each of these papers pro-
poses a specific model designed with tractable analysis in
mind, we start with the ARBAC97 model [SBM99] and
explore the difficulty of policy analysis in a range of mod-
els obtained by combinations of simple restrictions on the
policy language. Also, we consider features not considered
in those papers, such as negative pre-requisite conditions,
and we consider availability as well as safety (i.e., reach-
ability). Guelev, Ryan, and Schobbens [GRS04] present a
low-level access control model and an algorithm to check
properties of the policies; they note that the worst-case
complexity of their algorithm is high and non-optimal, and
they leave identification of problem classes for which it has
lower complexity as future work.

Li and Tripunitara [LT04] introduce two restricted
versions of ARBAC97, called AATU and AAR, and
give algorithms and complexity results for various
analysis problems—primarily safety, availability, and
containment—for those two models. The results are based
on Li, Mitchell, and Winsborough’s results for analysis
of trust management policies [LMW05]. Our work goes
significantly beyond theirs by considering negative pre-
requisite conditions and SMER (static mutually exclusive
roles) constraints. They do not consider these features.
Indeed, they write: “Many other more sophisticated cases
of security analysis in RBAC remain open. For example,
it is not clear how to deal with negative preconditions in
role assignment, and how to deal with constraints such as
mutually exclusive roles” [LT04]. Since we consider these

features, we are driven to consider other restrictions, such
as bounds on the size of pre-requisite conditions, that they
do not consider.

Schaad and Moffett [SM02] express RBAC and AR-
BAC97 in Alloy, a relational modeling language, and use
the Alloy analyzer [JSS00] to check separation of duty
properties. They do not consider pre-requisite conditions
for any operations; this greatly simplifies the analysis prob-
lem. They do not present any analysis algorithms or com-
plexity results. The Alloy analyzer translates bounded-
size problem instances into SAT problems, and solves them
with a SAT solver.

VII. Conclusion

We considered the problem of analyzing the conse-
quences of sequences of changes to RBAC policies that are
allowed by ARBAC policies. We found that the general
analysis problem is intractable, and remains so even when
a number of fairly strong syntactic restrictions are imposed
on the ARBAC policies. For example, safety (reachability)
analysis remains NP-hard even when revocation of roles is
not allowed. It also remains NP-hard even when each role
assignment has at most one pre-requisite condition. We
identified a few combinations of syntactic restrictions un-
der which safety analysis can be done in polynomial time.
More experience is needed to determine how often these
restrictions are satisfied in practice. We expect that the
restrictions CR (all roles can be unconditionally revoked)
and EN (negation is used only for specifying mutual ex-
clusion of roles, i.e., separation of duty) are satisfied rea-
sonably often in practice. Other restrictions, such as the
absence of disjunction and restrictions on the number of
pre-requisite conditions, may be harder to satisfy in prac-
tice. We also expect that in many cases, when one of these
restrictions is violated, the policy mostly satisfies the re-
striction; for example, when only a few role assignment
rules have more than one pre-requisite condition.

This work is a step towards a deeper understanding of
policy analysis for ARBAC. An important direction for fu-
ture work is to develop analysis algorithms that perform
well for policies that mostly satisfy combinations of the
syntactic restrictions. The complexity of such algorithms
would be polynomial in policy size parameters expected
to be large in practice and exponential in parameters ex-
pected to be relatively small, e.g., the number of roles that
are involved in mutual exclusion constraints and have more
than one positive pre-requisite condition that governs their
assignment.

Another important direction for future work is to study
the effect of more global properties of the policy (as op-
posed to syntactic restrictions), for instance, to determine
whether the analysis problem becomes tractable when de-
pendencies between roles are acyclic.

We also plan to extend our results to apply to con-
tainment analysis [LT04] and trust management policies
[BFL96], [LM03].

12

References

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentral-
ized trust management. In Proc. 1996 IEEE Symposium
on Security and Privacy, pages 164–173, May 1996.

[BK91] Christer Bäckström and Inger Klein. Parallel non-binary
planning in polynomial time. In IJCAI, pages 268–273,
1991.

[BLR03] Arosha K. Bandara, Emil C. Lupu, and Alessandra
Russo. Using event calculus to formalise policy speci-
fication and analysis. In Proc. 4th IEEE Workshop on
Policies for Distributed Systems and Networks, 2003.

[BN95] Christer Bäckström and Bernhard Nebel. Complexity
results for SAS+ planning. Computational Intelligence,
11(4):625–656, 1995.

[Byl94] Tom Bylander. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence, 69(1-
2):165–204, 1994.

[CC97] Laurence Cholvy and Frédéric Cuppens. Analysing con-
sistency of security policies. In Proc. IEEE Symposium
on Security and Privacy, 1997.

[CW87] David D. Clark and David R. Wilson. A comparison of
commercial and military security policies. In Proc. 1987
IEEE Symposium on Security and Privacy, pages 184–
194. IEEE Computer Society Press, 1987.

[FKMT05] Kathi Fisler, Shriram Krishnamurthi, Leo A.
Meyerovich, and Michael Carl Tschantz. Verifica-
tion and change-impact analysis of access-control
policies. In Proc. 22nd International Conference on
Software Engineering (ICSE), pages 196–205, 2005.

[FSG+01] David F. Ferraiolo, Ravi Sandhu, Serban I. Gavrila,
D. Richard Kuhn, and Ramaswamy Chandramouli. Pro-
posed nist standard for role-based access control. ACM
Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

[GHR03] Joshua D. Guttman, Amy L. Herzog, and John D. Rams-
dell. Information flow in operating systems: Eager formal
methods. In Proc. 2003 Workshop on Issues in the The-
ory of Security (WITS), 2003.

[GRS04] Dimitar P. Guelev, Mark Ryan, and Pierre-Yves
Schobbens. Model-checking access control policies. In
Proc. 7th Information Security Conference (ISC), vol-
ume 3225 of Lecture Notes in Computer Science, pages
219–230. Springer-Verlag, 2004.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ull-
man. Protection in operating systems. Communications
of the ACM, 19(8):461–471, 1976.

[JEZ03] Trent Jaeger, Antony Edwards, and Xiaolan Zhang. Pol-
icy management using access control spaces. In ACM
Transactions on Information Systems Security, August
2003.

[JR04] Somesh Jha and Tom Reps. Model-checking SPKI-SDSI.
Journal of Computer Security, 12:317–353, 2004.

[JSS97] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A
logical language for expressing authorizations. In Proc.
1997 IEEE Symposium on Security and Privacy, pages
31–42, 1997.

[JSS00] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Al-
coa: the alloy constraint analyzer. In Proc. 22nd Inter-
national Conference on Software Engineering (ICSE),
pages 730–733, 2000.

[JSZ03] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. Analyz-
ing integrity protection in the SELinux example policy.
In Proc. USENIX Security Symposium, August 2003.

[Kar72] Richard M. Karp. Reducibility among combinatorial
problems. In Complexity of Computer Computations,
pages 85–103. Plenum, 1972.

[LBT04] Ninghui Li, Ziad Bizri, and Mahesh V. Tripunitara. On
mutually-exclusive roles and separation of duty. In In
Proc. ACM Conference on Computer and Communica-
tions Security (CCS), pages 42–51, October 2004.

[LM03] Ninghui Li and John C. Mitchell. RT: A role-based trust-
management framework. In Proc. Third DARPA Infor-
mation Survivability Conference and Exposition (DIS-
CEX III), pages 201–212. IEEE Computer Society Press,
2003.

[LMW05] Ninghui Li, John C. Mitchell, and William H. Winsbor-
ough. Beyond proof-of-compliance: Security analysis in
trust management. Journal of the ACM, 2005. To ap-
pear.

[LS77] R. J. Lipton and L. Snyder. A linear time algorithm for
deciding subject security. J. ACM, 24(3):455–464, 1977.

[LT04] Ninghui Li and Mahesh V. Tripunitara. Security analysis
in role-based access control. In Proc. 9th ACM Sympo-
sium on Access Control Models and Techniques (SAC-
MAT), June 2004.

[San88] Ravi Sandhu. The schematic protection model: its defini-
tion and analysis for acyclic attenuating schemes. Jour-
nal of the ACM, 35(2):404–432, 1988.

[San92] Ravi Sandhu. The typed access matrix model. In Pro-
ceedings of the IEEE Symposium on Security and Pri-
vacy, pages 122–136, 1992.

[SBM99] Ravi Sandhu, Venkata Bhamidipati, and Qamar Mu-
nawer. The ARBAC97 model for role-based administra-
tion of roles. ACM Trans. Inf. Syst. Secur., 2(1):105–135,
1999.

[SCFY96] Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles
Youman. Role-based access control models. IEEE Com-
puter, 29(2):38–47, February 1996.

[SM02] Andreas Schaad and Jonathan D. Moffett. A lightweight
approach to specification and analysis of role-based ac-
cess control extensions. In Proc. 7th ACM Symposium
on Access Control Models and Technologies (SACMAT),
pages 13–22. ACM Press, 2002.

[SMJ01] Andreas Schaad, Jonathan Moffett, and Jeremy Jacob.
The role-based access control system of a European bank:
A case study and discussion. In Proc. 6th ACM Sympo-
sium on Access Control Models and Technologies (SAC-
MAT). ACM Press, 2001.

POLICY ANALYSIS FOR ADMINISTRATIVE ROLE BASED ACCESS CONTROL 13

Appendices

In this section, we shall present detailed proofs of the
complexity results for User-Role reachability analysis with-
out role hierarchy stated in Section IV.

A. Polynomial-time Reachability analysis

Lemma 9: Let I = (γ, ψ, goal) be a reachability anal-
ysis problem instance where γ = 〈R,UA〉 and ψ =
〈can assign, can revoke, SMER〉. If can revoke = ∅ then
if I has a plan, then I has a plan of length at most |R|.

Proof: Let P = 〈a1, a2, . . . , an〉 be a plan for I.
Since can revoke = ∅, for each 1 ≤ i ≤ n, action
ai = UserAssign(ri) for some ri ∈ R. Construct P ′ from
P by eliminating all duplicate actions; ∀1 ≤ i ≤ n, if @ j ≤
i : aj = ai, then ai ∈ P ′, else ai /∈ P ′. Then, |P ′| ≤ |R|.
It is easy to see that P ′ is also a plan for I. Suppose
P = P1.〈UserAssign(r)〉.P2.〈UserAssign(r)〉.P3, Let

γ
P1.〈UserAssign(r)〉

→ γ1, γ1
P2→ γ2, and γ2

〈UserAssign(r)〉.P3

→ γ3

where γ1 = 〈R,UA1〉, γ2 = 〈R,UA2〉 and γ3 = 〈R,UA3〉.
Since P2 does not contain any UserRevoke action and

r ∈ UA1, we have r ∈ UA2. Thus, γ2
P3→ γ3 and it follows

that P1.〈UserAssign(r)〉.P2.P3 is a plan for I. Continuing
in this manner, we can remove multiple occurrences of the
same UserAssign action from P (transforming P to P ′)
while retaining the property that it is a plan for I. Thus,
P ′ is a plan for I.

Theorem 10: RE for the problem class [N] can be solved
in polynomial time. In addition, PP for [N] is true [LT04].

Proof: Let I = (γ, ψ, goal) be a reachability anal-
ysis problem instance in the problem class [N] where
γ = 〈R,UA〉 and ψ = 〈can assign, can revoke, SMER〉.
Then, SMER = ∅. Since the pre-requisite conditions in
can assign do not contain ¬, revoking a role (from the
implicit user) does not satisfy any pre-requisite condition;
we can assume can revoke = ∅ for reachability analysis.
From Lemma 9 it follows that if I has a plan then I has a
plan of length at most |R|. Thus, PP for the problem class
[N] is true.

RE for [N] can be reduced to simple safety analysis for
the Assignment and Trusted Users (AATU) class of secu-
rity analysis problems [LT04]. Construct an AATU prob-
lem instance I ′ = (γ, ψ′, q,∃) where ψ′ = 〈can assign, ∅〉
(set of trusted users is ∅), and q = goal w {u} (the implicit
user u is a member of every role in goal). It is easy to see
that a plan for I is also a plan for I ′ and vice versa. Since
q is a semi-static query, it follows from [LT04] that I ′ can
be solved in time polynomial in |I ′|. Since |I| = |I ′|, RE
for I can be solved in time polynomial in |I|.

The proofs of Theorems 11, 16, and 18 are based on
the complexity results for propositional STRIPS planning
described in [Byl94]. Next, we describe the propositional
STRIPS planning model of [Byl94].

Definition 4: An instance of propositional STRIPS plan-
ning is specified by a tuple 〈P,O, I,G〉 where:

• P is a finite set of ground atomic formulas, called con-
ditions.

• O is a finite set of operators, where each operator o
has the form Pre⇒ Post

– Pre is a satisfiable conjunction of positive and nega-
tive conditions, respectively called the positive pre-
conditions o+ and the negative pre-conditions o− of
the operator.

– Post is a satisfiable conjunction of positive and nega-
tive conditions, respectively called the positive post-
conditions o+ and the negative post-conditions o−
of the operator.

• I ∈ P is the initial state.
• G is a satisfiable conjunction of positive and negative

goals, respectively called the positive goals G+ and the
negative goals G−.

The PLANSAT problem is the decision problem for
determining whether there exists a plan for a given a
propositional STRIPS planning problem φ = 〈P,O, I,G〉.
PLANSATαβ is the decision problem for plan existence
under the restriction that the pre-conditions of φ satisfy
α and the post-conditions of φ satisfy β. For exam-
ple, PLANSAT 1

+ indicates that all the post-conditions
of φ are positive, and all pre-conditions have size at most 1.

Theorem 11: For the problem class [|pre| ≤ 1, |G| ≤ k]
RE can be solved in polynomial time and PP is true.
Proof: From Theorem 3.8 in [Byl94] we know that the
PLANSAT 1 problem limited to constant number of goals
is solvable in polynomial time. Given a problem instance
I in the problem class [|pre| ≤ 1, |G| ≤ k], we show that I
can be translated to a PLANSAT 1 problem φ limited to k
goals such that |φ| = O(|I|), thus proving that RE for I can
be solved in polynomial time. The proof of Theorem 3.8
in [Byl94] also constructs a plan for I as it checks for plan
existence. Thus, if a plan for I exists, it can be constructed
in time polynomial in |I| implying that the length of the
plan is polynomial in |I|. Thus, PP for the problem class
[|pre| ≤ 1, |G| ≤ k] is true.

Let I = (γ, goal, ψ) be in the problem class
[|pre| ≤ 1, |G| ≤ k] where γ = 〈R,UA〉 and ψ =
〈can assign, can revoke, SMER〉. Without loss of gen-
erality, we can assume SMER = ∅, since if SMER 6=
∅, then for each (ri, rj) ∈ SMER, add ¬ri to pre-
requisite conditions for rj in can assign and can revoke,
and vice versa. Then, |goal| ≤ k, and for each (ra, c, r) ∈
can assign ∪ can revoke, |c| ≤ 1. Construct an instance
φ = 〈P,O, I,G〉 of the PLANSAT 1 problem as follows.

• P = R.
• G = goal. Thus |G| ≤ k.
• I = UA.
• O = O+ ∪ O−.
• O+ = {UserAssign(r) : (ra, c, r) ∈ can assign.
– pre(UserAssign(r)) = c.
– post(UserAssign(r)) = r.

• O− = {UserRevoke(r) : (ra, c, r) ∈ can revoke.
– pre(UserRevoke(r)) = c.
– post(UserRevoke(r)) = ¬r.

For every operator o ∈ O, pre(o) ≤ 1 since for each
(ra, c, r) ∈ can assign ∪ can revoke, |c| ≤ 1. Thus φ is in

14

PLANSAT 1 and the number of goals in φ is limited to a
constant k. In addition, |φ| = O(|I|). It is easy to see that
a plan for I is also a plan for φ and vice versa.

Theorem 12: Reachability (RE) for the problem class
[CR,D, |pre| ≤ 1, EI] (only unconditional role revoca-
tion, no disjunction, at most one pre-requisite precondi-
tion, empty initial state) is solvable in polynomial time.
Proof: Let I = (γ, goal, ψ) be a problem instance in
the problem class [CR,D, |pre| ≤ 1], where γ = 〈R,UA〉,
ψ = 〈can assign, can revoke, SMER〉, and goal is a set of
roles. Then, for every role r ∈ R, (1) there is at most one
state change rule (ra, c, r) ∈ can assign, (2) |c| ≤ 1, and
(3) (ra, true, r) ∈ can revoke. Also, since negative pre-
requisite conditions are allowed, we can assume without
loss of generality that SMER = ∅.

Construct the graph Gψ = (Vψ, Eψ) as follows. The set
of vertices is the set of roles Vψ = R. There are two kinds
of edges in Eψ, positive and negative. For each (ra, r

′, r) ∈
can assign, e = (r′, r) ∈ Eψ, and label(e) = pos. For each
(ra,¬r

′, r) ∈ can assign, e = (r, r′) ∈ Eψ and label(e) =
neg. Note that neg edges have reverse direction as the pos
edges. Intuitively, the edges in Eψ indicate the order in
which roles must be assigned and revoked; if (r, r′) ∈ Eψ,
then UserAssign(r) must occur before UserAssign(r′).
A cycle is called a pos cycle if it is composed of only pos

edges; neg cycles are defined similarly.
Lemma 13: Let C be a cycle in Gψ. Then C is either a

pos cycle or a neg cycle.
Proof: Suppose C contains a pos edge e = (r, r′)
and a neg edge e = (s, s′). Then, there is a path
P1 = 〈e1, e2, . . . , em〉 in C such that e1 = (r′, s1), ∀2 ≤ i ≤
m − 1 : ei = (si, si+1) and em = (sm, s). From the defini-
tion of pos and neg edges we have (ra, r, r

′) ∈ can assign
and (ra,¬s

′, s) ∈ can assign. If label(em) = pos then
(ra, s1, s) ∈ can assign contradicting that ψ satisfies the
D restriction. Thus, label(em) = neg and (ra,¬s, s1) ∈
can assign. Continuing the argument, we can show that
e1, . . . , em are all neg labeled edges. Thus, (ra,¬s1, r

′) ∈
can assign and ψ violates the D restriction. Thus, C does
not contain both pos and neg edges, and is either a pos

cycle or a neg cycle.
The next lemma makes use of the hypothesis EI, by

assuming γ has the form 〈R, ∅〉.
Lemma 14: RE for I = (γ, goal, ψ) where γ = 〈R, ∅〉 is

false if and only if either (C1) Gψ contains a pos cycle C
such that C ∩ goal 6= ∅, or (C2) Gψ contains a neg cycle C
such that C ⊆ goal.
Proof:
Case 1: We show that condition C1 implies RE for I is
false. Suppose C1 is true; i.e., Gψ contains a pos cycle C
and r ∈ C ∩ goal. Then, since we start in the empty state
γ and since ψ satisfies the D restriction, the only way to
derive the goal r is to first derive all roles in the cycle C,
including r itself. Thus, deriving role r entails deriving
itself first, and hence no plan for deriving r exists. Thus
RE for I is false.
C
¯
ase 2: We show that condition C2 implies RE for I is

false. Suppose C2 is true; i.e., Gψ contains a neg cy-

cle and C ⊆ goal (every role in C is also in the goal
set). Let C = (r1 → r2 → . . . → rk → r1). Then,
(ra,¬r1, rk) ∈ can assign, and for 1 ≤ i ≤ k − 1,
(ra,¬ri+1, ri) ∈ can assign. Let P be a plan for I; i.e.,

γ
P
→ γ′ and ∀1 ≤ i ≤ k : ri ∈ gamma′. Since we start

in the empty state γ, ∀1 ≤ i ≤ k : UserAssign(ri) ∈ P .
Without loss of generality assume that UserAssign(rk) is
the last action in P . Since the pre-requisite condition for
UserAssign(rk) is ¬r1, it follows that r1 /∈ γ′ which con-
tradicts the assumption that P is a plan for I. Thus, RE
for I is false.
Case 3: We show that if RE for I is false, then C1 or
C2 is true. We prove the contrapositive, i.e., we assume
conditions C1 and C2 are false, and we show that RE for
I is true, by giving an algorithm that constructs a plan
for I. That algorithm consists of lines 4–27 of Algorithm
1 (that fragment of the overall algorithm corresponds to
this case in the proof). The main idea of the algorithm is
to construct a plan for I by topologically sorting Gψ and
assigning roles in the topologically sorted order. For this
to work, we first need to break cycles in Gψ, if any. From
Lemma 3 and the hypothesis that conditions C1 and C2

are false, it follows that if C is a cycle in Gψ, then C is a
neg cycle, and there exists a role r ∈ C such that r /∈ goal.
To break the cycles in Gψ, construct a graph G′

ψ from G
by (1) deleting all cycles C ′ where C′ ∩ goal = ∅ and (2)
for each edge e = (r, s) where label(e) = neg, r ∈ goal
and s /∈ goal, delete e and (3) if there is no longer any
path from r to s then add edges (s1, r), (s2, r), . . . , (sm, r)
where (s, si) ∈ Eψ (i.e., add edges from every child of s
to r). It is clear that G′

ψ is acyclic. We delete from G′
ψ

all the components that do not contain any goal role by
defining G′′

ψ = comp(G′
ψ, goal). Intuitively, only the roles

in G′′
ψ are relevant for deriving the goal roles. The graph

comp(G,S) = (S′, E′) given a graph G and a set of ver-
tices S is defined as: set of vertices S ′ = S ∪ {v ∈ V : ∃s ∈
S,∃ a path v →∗s ∈ E or a path s →∗v ∈ E}, and set of
edges E′ = {(s, t) ∈ E : s, t ∈ S′ (restriction of edges in E
to vertices in S′). The algorithm constructs a plan for I by
topologically sorting G′′

ψ and assigning roles in the order
in which they are visited. The generated plan satisfies the
properties that for each role r ∈ goal, (1) UserAssign(r)
is executed at most once, and UserRevoke(r) is never ex-
ecuted, and for each role s /∈ goal, UserAssign(s) and
UserRevoke(s) are executed at most once, and (2) if a role
r ∈ goal has a pre-requisite condition ¬s where s /∈ goal
(note that such edges are not present in G′

ψ), then for ev-
ery child s′ of s ((s, s′) ∈ E′

ψ, UserAssign(s′) precedes
UserRevoke(s) which precedes UserAssign(r).

To prove the theorem, it remains to show that the run-
ning time of Algorithm 1 is polynomial in |I|. Constructing
graph Gψ takes polynomial time, and |Gψ| = |I|. Check-
ing the validity of conditions C1 and C2 reduces to finding
the existence of a cycle in a graph; hence this check can
be performed in polynomial time. Constructing G′

ψ and

G′′
ψ takes polynomial time, and |G′′

ψ| = O(|Gψ|
2). Topo-

logically sorting a graph takes polynomial time. The loop
body is executed at most |G′′

ψ| times, and each iteration

POLICY ANALYSIS FOR ADMINISTRATIVE ROLE BASED ACCESS CONTROL 15

Algorithm 1 Plan generation for problem class
[CR,D, |pre| ≤ 1]

Input: Problem instance I = (γ, goal, ψ)
Output: Returns the plan if a plan exists for I, else re-
turns false

1: if C1 or C2 are true for Gψ then
2: return false

3: end if
4: Construct graph G′

ψ = (V ′
ψ, E

′
ψ)

5: Construct graph G′′
ψ = comp(G′

ψ, goal)
6: Topologically sort G′′

ψ.
7: Plan P = 〈〉
8: (R,UA) = γ
9: UAnew = UA
10: for all r ∈ V ′′

ψ in topologically sorted order do
11: (ra, c, r) ∈ can assign
12: if c = false then
13: return false

14: else if c = ¬s ∧ s ∈ UAnew then
15: P = P.〈UserRevoke(s)〉
16: UAnew = UAnew \ {s}
17: else if c = s ∧ s /∈ UAnew then
18: return false

19: end if
20: P = P.〈UserAssign(r)〉
21: UAnew = UAnew ∪ {r}
22: end for
23: if goal ⊆ UAnew then
24: return P
25: else
26: return false

27: end if

takes at most linear time in I, so execution of the entire
loop takes polynomial time. Thus, the algorithm executes
in polynomial time. Each loop iteration adds at most two
steps to the plan, so the size of the plan is polynomial in
I. Thus, RE for the problem class [CR,D, |pre| ≤ 1] can
be solved in polynomial time, and PP for the class is true.

Thus, RE for the problem class [CR,D, |pre| ≤ 1] can
be solved in polynomial time, and PP for the class is true.

Theorem 15: For the problem class [D,R], RE is solv-
able in polynomial time and PP is true.
Proof: Let I = (γ, goal, ψ) be a problem instance
that satisfies the [D,R] restriction where γ = 〈R,UA〉,
ψ = 〈can assign, ∅, ∅〉. Simplify can assign by replac-
ing every occurrence of ¬r in any pre-requisite condition
with false for each assigned role r in the initial state
γ. Formally, can assign′ = {(ra, c, r) ∈ can assign :
c does not contain ¬r′ for some r′ ∈ UA}, and ψ′ =
〈can assign′, ∅, emptyset〉.

Following the proof of Theorem 12, construct the graph
Gψ′ and G′

ψ′ = comp(Gψ′ , goal). Topologically sort G′
ψ′

and assign roles in the sorted order. The algorithm is sim-
ilar to and a simplified version of Algorithm 1 and is given

below.

Algorithm 2 Plan generation for problem class [D,R]

Input: Problem instance I = (γ, goal, ψ)
Output: Returns the plan if a plan exists for I, else re-
turns false

1: Construct the graph G′
ψ′ .

2: if G′
ψ′ has a cycle then

3: return false

4: end if
5: Topologically sort G′

ψ′ .
6: Plan P = 〈〉
7: (R,UA) = γ
8: UAnew = UA
9: for all r ∈ V ′

ψ′ in topologically sorted order do
10: (ra, c, r) ∈ can assign
11: if UAnew 0 c then
12: return false

13: else
14: P = P.〈UserAssign(r)〉
15: UAnew = UAnew ∪ {r}
16: end if
17: end for
18: if goal ⊆ UAnew then
19: return P
20: else
21: return false

22: end if

Constructing the graph G′
ψ′ and checking if it has a cycle

takes polynomial time in |I|. Topologically sorting G′
ψ′

takes polynomial time. The for-loop iterates at most |R
times (where R is the set of roles), and hence executes in
polynomial time. Thus, RE for the problem class [D,R]
can be solved in polynomial time. The size of the plan is at
most |R| = O(|I|). Thus, PP for the problem class [D,R]
is true.

Theorem 16: RE for the problem class
[CR,EN, |ppre| ≤ 1, |G| ≤ k] (where k is a con-
stant) is solvable in polynomial time. In addition, PP for
the class is true.

Proof: The proof is similar to the proof in The-
orem 3.8 in [Byl94]. Let I = (γ, goal, ψ) be a
problem instance that satisfies the [CR,EN, |ppre| ≤
1, |G| ≤ k] restriction where γ = 〈R,UA〉, ψ =
〈can assign, can revoke, SMER〉. Then, for each r ∈ R
(1) (ra, true, r) ∈ can revoke (i.e., every role can be un-
conditionally revoked, (2) if (ra, c, r) ∈ can assign then
|c| ≤ 1, and (3) |goal| ≤ k.

Algorithm 3 checks plan-existence for the above problem
class. If a plan exists, the algorithm returns a directed
graph Gψ = (Vψ, Eψ) and a set Init of vertices (Init ⊆ Vψ)
called initial states. Every vertex in the graph is a set of at
most k roles; S ⊆ R where |S| ≤ k. Thus, |Vψ| ≤

(

|R|
k

)

2k.

The algorithm starts with the state ν = goal. At each
step it picks an unexplored node and explores it. Dur-
ing the process of exploration, new states are generated

16

Algorithm 3 Reachability for the problem
[CR,EN, |ppre| ≤ 1, |G| ≤ k]

Input: Problem instance I = (γ, goal, ψ)
Output: Returns a directed graph and a non-empty
set of initial states if a plan exists for I, else returns
false.

1: Vertex set Vψ = {goal}.
2: Set of initial states Init = ∅
3: while There exists an unexplored node in Vψ do
4: Pick an unexplored node ν from Vψ.
5: Mark ν as explored
6: (R,UA) = γ
7: UAnew = UA
8: if ν ⊆ UAnew then
9: Init = Init ∪ ν
10: else
11: for all r ∈ ν do
12: for all (ra, s, r) ∈ can assign do
13: if s == true then
14: νnew = ν \ {r}
15: else
16: νnew = (ν ∪ {s}) \ {r}
17: end if
18: Let S = {r′ ∈ R : (r, r′) ∈ SMER}
19: if νnew ∩ S 6= ∅ then
20: Init = ∅
21: return false

22: end if
23: if νnew /∈ Vψ then
24: Add νnew to Vψ and mark it unexplored
25: end if
26: Add edge e = (νnew, ν) to Eψ and set

label(e) = UserAssign(r)
27: end for
28: end for
29: end if
30: end while
31: return (Vψ, Eψ) and Init

that are then recursively explored. In this way all states
that can reach the goal state are explored. Only those
states ν ⊆ γ (γ is the initial state) are not explored since

there is a trivial path from γ to such states: γ
P
→ ν where

P = {UserRevoke(r) : r ∈ gamma ∧ r /∈ ν} (note: when
the order of steps in a plan doesn’t matter, we sometimes
represent it as a set instead of a sequence). All such states
are marked as initial states, and are used to start plan gen-
eration in the second part of the algorithm. If the set of
initial states is ∅ then there does not exist a plan for I.

If plan-existence for I is true, then a plan can be gener-
ated from Gψ and Init as follows. Let P = 〈e1, e2, . . . , en〉
be a path in Gψ from an initial state νinit ∈ Init to the
final state νfinal = goal. We know that such a path exists,
since otherwise Init = ∅ in which case plan-existence for I
would be false. Let π = A1.A2.An where label(ei) =
UserAssign(ri), Si = {r′ ∈ R : (ri, r

′) ∈ SMER, and

Ai = {UserRevoke(s) : s ∈ Si}.UserAssign(ri). Note
that Ai consists of the indicated UserRevoke actions in
arbitrary order, followed by the indicated UserAssign ac-
tion. It can easily be seen that π is a plan for I.

|Gψ| = O(|I|2k) since |Vψ| = O(2k).
(

|R|
k

)

. Thus, Gψ can
be constructed in polynomial time. Thus, Algorithm 3 for
Reachability runs in time polynomial in |I|. Thus RE for
the problem class [CR,EN, |ppre| ≤ 1, |G| ≤ k] can be
solved in polynomial time. A plan for I is at most the size
of the longest path in Gψ which is |Vψ| = O(|I|k). Thus,
PP for the problem class [CR,EN, |ppre| ≤ 1, |G| ≤ k] is
true.

B. NP-complete Reachability analysis

Theorem 17: For the problem class [R], RE is in NP and
PP is true.

Proof: Let I = (γ, goal, ψ) be a reachability analysis
problem in the problem class [R] where γ = 〈R,UA〉 and
ψ = 〈can assign, can revoke, SMER〉. Since ψ satisfies
the R restriction, can revoke = ∅. From Lemma 9, it
follows that if I has a plan, then I has a plan of length
at most |R|, and the plan consists entirely of UserAssign
actions. Thus PP for the problem class [R] is true.

Given a sequence P of UserAssign(ri) actions (ri ∈ R)
with |P | ≤ |R|, a Turing Machine can verify whether P is
a plan for I by (1) executing P on γ and transforming it

to a state γ′ = 〈R,UA′〉, γ
P
→ γ′, and (2) checking that

goal ⊆ UA′. Both these operations take time polynomial
in |I|. Thus, RE for the problem class R is in NP.

Theorem 18: RE for the problem class [R,EN, |pre| ≤
1, |SMER| ≤ 1] is NP-hard [Byl94].

Proof: The proof follows the proof of NP-hardness of
the PLANSAT+ problem (Theorem 3.5 [Byl94]) and is
reproduced here for easy readability. We reduce 3-SAT to
RE for the above problem class. Consider a 3-SAT formula
φ = C1 ∧ C2 ∧ . . . Cn where each Ci = li1 ∨ li2 ∨ li3 and
each lij ∈ V (set of literals). Construct a problem instance
I = (γ, goal, ψ) as follows.

1. The set of roles R is defined as follows. For each
literal xi ∈ V there are two roles ti and fi in R. For
each clause Ci, there is a role ci in R.

2. γ = 〈R, ∅〉. goal = {c1, c2, . . . , cn}.
3. ψ = 〈can assign, can revoke, SMER〉 is defined as

follows. ra is the single administrator.
(a) For 1 ≤ i ≤ n : (ra, true, ti) ∈ can assign.
(b) For 1 ≤ i ≤ n : (ra, true, fi) ∈ can assign.
(c) For each clause Ci = li1 ∨ li2 ∨ li3, for 1 ≤ j ≤ 3, if

lij is the literal xi then (ra, ti, ci) ∈ can assign, else
if lij is the literal ¬xi then (ra, fi, ci) ∈ can assign.

(d) can revoke = ∅.
(e) SMER = {(ti, fi) : xi ∈ V }.

can revoke = ∅ - I satisfies the R restriction.
can assign does not contain ¬ and ti appears only with
fi in SMER (and vice versa) - I satisfies the EN and
|SMER| ≤ 1 restrictions. can assign also satisfies the
|pre| ≤ 1 restriction. Thus, I is in the problem class
[R,EN, |pre| ≤ 1, |SMER| ≤ 1].

POLICY ANALYSIS FOR ADMINISTRATIVE ROLE BASED ACCESS CONTROL 17

Claim 1: If RE for I is true then φ = C1 ∧ C2 . . . Cn is
satisfiable.
Proof: From Theorem 17 we know that I has a plan
P = (a1, a2, . . . , am) where each ai is a UserAssign action
and m ≤ |R|. Construct an assignment π to literals in V
as follows.

1. If UserAssign(ti) ∈ P then π(xi) = true.
2. If UserAssign(fi) ∈ P then π(xi) = false.
Note that only one of UserAssign(ti) or UserAssign(fi)

can occur in P ; (ti, fi) ∈ SMER and since can revoke =
∅, once either of UserAssign(ti) or UserAssign(fi) occurs
in P , the other action cannot occur in P . Thus π is a well-
formed assignment.

Let γ
a1→ γ1

a2→ γ2 . . .
am→ γm, where ∀1 ≤ i ≤ m : γi =

〈R,UAi〉. Since P is a plan, ∀ 1 ≤ i ≤ n : ci ∈ UAm.
Thus, for each ci, ∃ j ≤ m : aj = UserAssign(ci). Since
UserAssign(ci) is enabled in γj−1, there exists a state
change rule (ra, X, ci) ∈ can assign such that X ∈ UAj−1.
Thus, ∃ k < j − 1 : ak = UserAssign(X). From the
construction of I it follows that if X = ti then xi ∈ Ci
and π(xi) = true, and if X = fi then ¬xi ∈ Ci and
π(xi) = false. Thus, π(Ci) = true. Since this is true for
every 1 ≤ i ≤ n, π(φ) = true. Thus, φ is satisfiable.

Claim 2: If φ is satisfiable then RE for I is true.
Proof: Consider a satisfiable assignment π of φ. Con-
struct a sequence of actions P = P ′.P ′′ as follows. For all
literals xi ∈ V , if π(xi) = true then UserAssign(ti) ∈ P ′,
and if π(xi) = false then UserAssign(fi) ∈ P ′. P ′′ =
{UserAssign(ci) : 1 ≤ i ≤ n}. We show that P is a plan
for I.

Note that every action a ∈ P ′ is enabled in γ. Let γ
P ′

→
γ′. For every clause Ci = li1 ∨ li2 ∨ li3, since π(Ci) = true,
∃ 1 ≤ j ≤ 3 : π(lij) = true. If lij = xk then π(xk) =
true and hence UserAssign(tk) ∈ P ′. Also, (ra, tk, ci) ∈
can assign. Similarly, if lij = ¬xk then π(xk) = false

and UserAssign(fk) ∈ P ′, and (ra, fk, ci) ∈ can assign.
Thus all actions UserAssign(ci) ∈ P ′′ are enabled in γ′.

Thus γ′
P ′′

→ γ′′ where γ′′ = 〈R,UA′′〉 and ∀1 ≤ i ≤ n : ci ∈
UA′′. Thus P = P ′.P ′′ is a plan for I.

From Claims 1 and 2 it follows that RE for the problem
class [R,EN, |pre| ≤ 1, |SMER| ≤ 1] is NP-hard.

Theorem 19: For the problem classes [R], [R,EN], and
[R,EN, |pre| ≤ 1, |SMER| ≤ 1], RE is NP-complete and
PP is true.
Proof: Follows immediately from Theorems 17 and 18.

C. NP-hard Reachability analysis

Theorem 20: PP for the complexity class
[D,CR,EN, |SMER| ≤ 1] is false.
Proof: Consider the problem instance I = (γ, goal, ψ)
where:

• the set of roles R = {u1, u2, . . . , un, v1, v2, . . . , vn},
• γ = 〈R, ∅〉
• goal = {un}
• ψ = 〈can assign, can revoke, SMER〉 where
– SMER = {(ui, vi) : 1 ≤ i ≤ n}

– ∀ 1 ≤ i ≤ n : (ra, true, vi) ∈ can revoke
– ∀ 1 ≤ i ≤ n : (ra, true, vi) ∈ can assign
– ∀ 1 ≤ i ≤ n : (ra, true, ui) ∈ can revoke
– (ra, true, u1) ∈ can assign, (ra, u1, u2) ∈

can assign and ∀ 3 ≤ i ≤ n if i = 2k + 1 then
(ra, v1 ∧ v2 . . . vi−2 ∧ ui−1, ui) ∈ can assign, else if
i = 2k then (ra, u1 ∧u2 ∧ . . . ui−1, ui) ∈ can assign.

The can revoke relation specifies that for every role
r ∈ R, UserRevoke(r) has a true pre-requisite condition.
Thus, I satisfies the CR restriction (every role can be un-
conditionally revoked). For every role r ∈ R, there is a
unique state-change rule (ra, c, r) in both can assign and
can revoke. Thus I satisfies the D restriction. The pre-
requisite conditions in can assign and can revoke do not
contain negation, and each role ui appears only with vi
in SMER. Thus I satisfies the EN and |SMER| ≤ 1
restrictions.

Define the following sequences.
• ∀ 1 ≤ i ≤ n : Vi = 〈 UserAssign(v1),
UserAssign(v2), . . . , UserAssign(vn) 〉. Given any

state γ, γ
Vi→ γ ∪ {v1...i}

• V ′
i = 〈UserRevoke(v1), UserRevoke(v2), . . . ,

UserRevoke(vn)〉. Given any state γ, γ
V ′

i→ γ \ {v1...i}
• U ′

i = 〈UserRevoke(u1), UserRevoke(u2), . . . ,

UserRevoke(un)〉. Given any state γ, γ
U ′

i→ γ \ {u1...i}
• U2i = U2i−1.〈UserAssign(u2i)〉, and U2i+1 =
U2i.U

′
2i−1.V2i−1.〈UserAssign(u2i+1)〉.V

′
2i−1.U2i−1

• α2i = U2i and α2i+1 =
U2i.U

′
2i−1.V2i−1.〈UserAssign(u2i+1)〉

Claim 3: αn is the minimum size plan for I
Proof: First we show that αn is a plan for I. Define
γi = 〈R, {u1, u2, . . . , ui}〉. Then γ = γ0. It is easy to see

that γ0
Ui→ γi; γ0

U1→ γ1 is true, and applying induction, if

γ0
Ui−1

→ γi−1, then

1. if i = 2k then γ2k−1
UserAssign(u2k)

→ γ2k, thus γ0
U2k→

γ2k

2. if i = 2k + 1 then

γ2k

U ′

2k−1.V2k−1,〈UserAssign(u2k+1)〉.V
′

2k−1

→ γ′ where

γ′ = 〈R, {u2k, u2k+1}〉. Thus, γ′
U2k−1

→ γ2k+1, and

γ0
U2k+1

→ γ2k+1.
Also note that un ∈ γn. Thus, Un is a plan for I. αn
is a prefix of Un, thus αn is a feasible sequence of actions.
Since the last action in αn is UserAssign(un), αn is a plan
for I.

Next we argue that αn is the minimum plan
for reaching the goal un. The proof is by in-
duction. α1 = 〈UserAssign(u1)〉 and α2 =
〈UserAssign(u1), UserAssign(u2)〉 are trivially the min-
imal plans for reaching the goals u1 and u2 respectively.
Suppose for k < n, 1 ≤ i ≤ k, αi is the minimum plan for
reaching goal ui. We show that αk+1 is the minimum plan
for achieving the goal uk+1.
Observation: If i = 2j (i.e., i is even), then since the
pre-condition of UserAssign(u2j) is u1, u2, . . . , u2j−1, it
follows that any path to goal u2j must go through the

18

state
ν2j = 〈R, {u1, u2, . . . , u2j−1, u2j}〉. Similarly, if i = 2j + 1
(i.e., i is odd), then since the pre-condition of
UserAssign(u2j+1) is v1, v2, . . . , v2j−1, u2j , it follows
that any path to goal u2j+1 must go through the state
ν2j+1 = 〈R, {v1, v2, . . . , v2j−1, u2j , u2j+1}〉. Thus, if
ν0 = 〈R, ∅〉, then since αi is the shortest path to ui, it

follows that ν0
αi→ νi; i.e., αi transforms the initial state

ν0 to νi.

Case 1 : k = 2j for some j, i.e., k is even.
Any path to the goal u2j+1 must go through the state
ν2j+1. Thus, the shortest path to u2j+1 ends in state ν2j+1.
Let P be the shortest path to u2j+1, and P ends in ν2j+1.
Since u2j ∈ ν2j+1, it follows from the above observation
that P goes through the state ν2j . Thus, P = 〈P1, P2〉
where P1 is the shortest path from ν0 to ν2j , and P2 is the
shortest path from ν2j to ν2j+1. Thus, P1 = α2j , and it is
clear that P2 = U ′

2j−1.V2j−1.〈UserAssign(u2j+1)〉. Thus,
P = α2j .U

′
2j−1.V2j−1.〈UserAssign(u2j+1)〉 = α2j+1.

Thus, αk+1 is the minimum plan for achieving the goal
uk+1.

Case 2 : k = 2j − 1 for some j, i.e., k is odd.
Any path to goal u2j must go through the state ν2j .
Thus, the shortest path to u2j ends in state ν2j . Let
P be the shortest path to u2j , and P ends in ν2j .
Since u2j−1 ∈ ν2j , it follows from the above obser-
vation that P goes through the state ν2j−1. Thus,
P = P1.P2 where P1 is the shortest path from ν0 to
ν2j−1, and P2 is the shortest path from ν2j−1 to ν2j .
Thus, P1 = α2j−1. It is clear that P2 should first
revoke all the v1, v2, . . . , v2j−3 roles before assigning the
u1, u2, . . . , u2j−3 roles. But when all the v1, v2, . . . , v2j−3

roles are revoked, P2 must transform the state ν0 to the
state ν2j−2. But since u2j−2 ∈ ν2j−1, P2 includes α2j−2

except the last action UserAssign(u2j−2). Therefore P2 =
V ′

2j−3.〈α2j−2 \ {UserAssign(u2j−2)}, UserAssign(u2j)〉.
Thus, P = α2j−1.V

′
2j−3.U2j−3.〈UserAssign(u2j)〉 =

U2j−1.〈UserAssign(u2j)〉 = α2j . Therefore αk+1 is the
minimum plan for achieving the goal uk+1.

From Cases 1 and 2 it follows that αn is the minimum plan
for achieving the goal un.

Claim 4: |αn| = Ω(2p(n)) where p(n) is a polynomial in
n.
Proof: We first show that |Un| = Ω(2n). Note that
|U2i+1| = |U2i| + |U2i−1| + ci where c is a constant. Also,
|U2i| = |U2i−1| + 1. Thus, it follows that |U2i+1| =
2|U2i−1|+ci. Thus, |U2i+1| = 2i|U1|+cΣ

i
j=02

i−j .j = Ω(2i).

Thus, |Un| = Ω(2n/2). Since |αn| > |Un| we have |αn| =
Ω(2n/2).

Note that |I| is polynomial in n. Thus, from Claims
3 and 4, it follows that the minimum size plan for I
is exponential in |I|. Thus, PP for the problem class
[D,CR,EN, |SMER| ≤ 1] is false.

Theorem 21: PP for the complexity class

[D,EN, |ppre| ≤ 1, |G| ≤ 1] is false.

Proof: Consider the problem instance I = (γ, goal, ψ)
where:

• the set of roles R = {r1, r2, . . . , rn}.
• γ = 〈R, ∅〉
• = {rn}
• ψ = 〈can assign, can revoke, SMER〉 where
– ∀1 ≤ i ≤ n− 2, i+ 2 ≤ j ≤ n : (ri, rj) ∈ SMER
– (ra, true, r1) ∈ can assign and ∀ 2 ≤ i ≤ n :

(ra, ri−1, ri) ∈ can assign
– (ra, true, r1) ∈ can revoke and ∀ 2 ≤ i ≤ n :

(ra, ri−1, ri) ∈ can revoke

For each role ri, the can assign and can revoke relations
have pre-requisite condition ri−1.

Define the following sequences.

• ∀ 1 ≤ i ≤ n : Si = R′
i.R

′
i−1...R

′
1

• R′
1 = 〈UserRevoke(r1)〉 and ∀ 2 ≤ i ≤ n : R′

i =
Ri−1.〈UserRevoke(ri)〉

• R1 = 〈UserAssign(r1)〉, R2 =
〈UserAssign(r1), UserAssign(r2)〉, and ∀ 2 ≤
i ≤ n : Ri = Ri−1.Si−2.〈UserAssign(ri)〉

It is easy to see that Rn is a plan for I. We can show
that Rn is the minimum plan for I similar to proof of
Theorem 20. In addition, |Rk| = |Rk−1| + |Sk−2| + 1 =
|Rk−1|+ 1 + Σk−2

i=1 |R
′
i| = k− 1 + Σk−1

i=1 |Ri|. Since |R1| = 1,
it follows that |Rn| = Ω(2n). Thus, the minimum plan for
I has size exponential in |I|. Thus, PP for the problem
class [D,EN, |ppre| ≤ 1] is false

Theorem 22: Bounded Reachability (BRE) for the prob-
lem class [D,CR,EN, |ppre| ≤ 2, |SMER| ≤ 1] is
NP-hard.

Proof: The proof is by reduction from the CLIQUE prob-
lem that is known to be NP-complete [Kar72]. Given a
graph G = (V,E) and an integer k, the CLIQUE prob-
lem asks whether G has a clique of size k. We construct
a problem instance I = (γ, goal, ψ) in the problem class
[D,CR,EN, |ppre| ≤ 2, |SMER| ≤ 1] such that G has a
clique of size k if and only if I has a plan of size at most
n2 + 13n − 2k where |V | = n. The construction and the
proof is based on the proof of Theorem 8 in [BN95].

Define I = (γ, goal, ψ) where

1. γ = 〈R,UA〉. Corresponding to each vertex vi ∈
V there is a role vi ∈ R, and for each such
role vi there are additional roles ai, bi, ci, c̄i, di, d̄i, ei,
gi,1, gi,2, . . . , gi,n, and hi,1, hi,2, . . . , hi,n. Thus R =
{vi, ai, bi, ci, c̄i, di, d̄i, ei, gi,j , hi,j : 1 ≤ i ≤ n, 1 ≤ j ≤
n}, and UA = {ci, di : 1 ≤ i ≤ n}.

2. ψ = 〈can assign, can revoke, SMER〉 where
• can assign is defined as

(a) ∀1 ≤ i ≤ n : (ra, true, vi) ∈ can assign
(b) ∀1 ≤ i ≤ n : (ra, c̄i ∧ di, ai) ∈ can assign
(c) ∀1 ≤ i ≤ n : (ra, ci ∧ d̄i, bi) ∈ can assign
(d) ∀1 ≤ i ≤ n : (ra, true, c̄i) ∈ can assign
(e) ∀1 ≤ i ≤ n : (ra, true, d̄i) ∈ can assign
(f) ∀1 ≤ i ≤ n, : (ra, true, gi,1) ∈ can assign, and

∀1 ≤ i ≤ n,∀1 ≤ j ≤ n − 1 : (ra, gi,j , gi,j+1) ∈
can assign.

POLICY ANALYSIS FOR ADMINISTRATIVE ROLE BASED ACCESS CONTROL 19

(g) ∀1 ≤ i ≤ n, : (ra, Ni,1, hi,1) ∈ can assign, and
∀1 ≤ i ≤ n,∀1 ≤ j ≤ n − 1 : (ra, hi,j ∧
Ni,j+1, hi,j+1) ∈ can assign, where Ni = {v ∈
V : (v, vi) /∈ E} andNi,j denotes the jth element
of the set Ni.

(h) ∀1 ≤ i ≤ n : (ra, true, ei) ∈ can assign
• can revoke is defined as

(a) ∀1 ≤ i ≤ n : (ra, true, ai) ∈ can revoke
(b) ∀1 ≤ i ≤ n : (ra, true, bi) ∈ can revoke
(c) ∀1 ≤ i ≤ n : (ra, true, ci) ∈ can revoke
(d) ∀1 ≤ i ≤ n : (ra, true, c̄i) ∈ can revoke
(e) ∀1 ≤ i ≤ n : (ra, true, di) ∈ can revoke
(f) ∀1 ≤ i ≤ n : (ra, true, d̄i) ∈ can revoke

• SMER is defined as
(a) ∀1 ≤ i ≤ n : (ci, c̄i) ∈ SMER
(b) ∀1 ≤ i ≤ n : (di, d̄i) ∈ SMER
(c) ∀1 ≤ i ≤ n : (vi, ēi) ∈ SMER

3. goal = {ai, bi, c̄i, d̄i, ei : 1 ≤ i ≤ n}.

Note that all the roles have pre-requisite conditions of
size at most 2 - I satisfies the |ppre| ≤ 2 restriction. Each
role r ∈ R has at most one state change rule in can assign
and can revoke - I satisfies the D restriction, each role
is allowed to be unconditionally revoked - I satisfies the
CR restriction, and negation is specified only as SMER
constraints, and each role appears at most once in a SMER
constraint - ci with c̄i, di with d̄i and vi with ei - I satisfies
the EN and |SMER| ≤ 1 restrictions. Thus, I is in the
problem class [D,CR,EN, |ppre| ≤ 2, |SMER| ≤ 1].

Claim 5: Suppose G = (V,E) has a clique of size k.
Then I has a plan of size n2 + 13n− 2k.
Proof: Let C be a clique in G of size k. Consider the se-
quence of actions P = P1.P2.P3.P4.P5.P6.P7.P8.P9 where
UA and UR abbreviate UserAssign and UserRevoke re-
spectively.

1. P1 = . . . UR(ci), UA(c̄i), UA(ai) . . . where vi ∈ V−C.
Note: |P1| = 3n− 3k.

2. P2 = . . . UR(di), UA(d̄i), UA(bi) . . . where vi ∈ C.
Note: |P2| = 3k.

3. P3 = . . . vi . . . where vi ∈ V −C. Note: |P3| = n− k.
4. P4 = . . . Hi . . . where Hi = 〈hi,1, hi,2, . . . , hi,n〉 and
vi ∈ C. Note : |Hi| = n, thus, |P4| = n.k.

5. P5 = . . . UR(d̄i), UA(di), UR(ci), UA(c̄i), UA(ai),
UR(di), UA(d̄i) . . . where vi ∈ C. Note: |P5| = 7k.

6. P6 = . . . Gi . . . where Gi = 〈gi,1, gi,2, . . . , gi,n〉 and
vi ∈ V − C. Note : |Gi| = n, thus, |P6| = n.(n− k).

7. P7 = . . . UR(c̄i), UA(ci), UR(di), UA(d̄i), UA(bi),
UR(ci), UA(c̄i) . . . where vi ∈ V − C. Note: |P7| =
7n− 7k.

8. P8 = . . . UR(vi) . . . where vi ∈ V − C. Note: |P8| =
n− k.

9. P9 = . . . UA(ei) . . . where 1 ≤ i ≤ n. Note: |P9| = n.

From the definition of can assign for the roles hi,j , it
follows that for every vi ∈ C, the sequence of actions Hi

can be executed in a state where every vi ∈ V −C is true.
Thus, P4 is a feasible subsequence of P . Also, the sequence
of actions Gi can be executed from any state. Thus, P5

is also a feasible subsequence of P . Now, it is easy to see
that P is indeed a plan for I and |P | = n2 + 13n− 2k.

Claim 6: Suppose there exists a plan for I of length n2+
13n− 2k or less. Then G has a clique of size k.
Proof: Let P be a plan for I and let |P | = p ≤ n2 +
13n− 2k be the length of P .

Since for each 1 ≤ i ≤ n, ¬vi ∈ γ and ei ∈ goal, a
UA(vi) must be followed by a UR(vi). Let P contain

UA(vi), . . . , UR(vi), . . .

for all vi ∈W where W ⊆ V .
For each 1 ≤ i ≤ n, P must contain UA(ei) for all

1 ≤ i ≤ n and either

UR(ci), ..., UA(c̄i), ..., UA(ai), ..., UR(c̄i), ..., Gi, UA(ci), ...,
UR(di), ..., UA(d̄i), ..., UA(bi), ..., UR(ci), ..., UA(c̄i)

or

UR(di), ..., UA(d̄i), ..., UA(bi), ..., UR(d̄i), ..., Hi, UA(di), ...,
UR(ci), ..., UA(c̄i), ..., UA(ai), ..., UR(di), ..., UA(d̄i)

Suppose vt ∈ V −W . Then, since UserAssign(vt) /∈ P ,
and the pre-requisite condition for UserAssign(ct) is vt,
it follows that P contains

UR(dt), ..., UA(d̄t), ..., UA(bt), ..., UR(d̄t), ..., Ht, UA(dt), ...,
UR(ct), ..., UA(c̄t), ..., UA(at), ..., UR(dt), ...UA(d̄t)

Consider a vertex vs ∈ V − W . Then, if there is no
edge between vs and vt (i.e., (vs, vt) /∈ E), then from
the definition of can assign it follows that vs is in the
pre-requisite condition of UserAssign(dt). Thus, since
UserAssign(dt) ∈ P , it follows that UserAssign(vs) ∈ P
conttradicting that vs ∈ V −W . Thus, there is an edge
(vs, vt) ∈ E. Since this is true for any vertex in V −W , it
follows that V −W is a clique.

The size of the plan containing the above sequences is
p′ = |V | + 2|W | + (10 + |V |)|V −W | + (10 + |V |)|W | =
n2 + 11n + 2|W | = n2 + 13n − 2|V −W |. Since p′ ≤ p =
n2+13n−2k, it follows that |V −W | ≥ k. Thus, G contains
a clique of size k.

From Claims 5 and 6 it follows that BRE for the class
[D,CR,EN, |ppre| ≤ 2, |SMER| ≤ 1] is NP-hard.

Theorem 23: Bounded Reachability (BRE) for the prob-
lem class [D,EN, |ppre| ≤ 1] is NP-hard.
Proof: The proof is similar to that of Theorem 22.
Given a graph G = (V,E) and an integer k, we construct
a reachability problem instance I that is in the problem
class [D,EN, |ppre| ≤ 1] and show that G has a clique of
size k if and only if I has a plan of size at most 15n− 2k.

Define I = (γ, goal, ψ) where
1. γ = 〈R,UA〉. Corresponding to each vertex vi ∈ V

there is a role vi ∈ R, and for each such role vi there
are additional roles ai, bi, ci, di, ei, fi, gi, hi. Thus R =
{vi, ai, bi, ci, di, ei, fi, gi, hi : 1 ≤ i ≤ n}, and UA =
{ci, di : 1 ≤ i ≤ n}.

2. ψ = 〈can assign, can revoke, SMER〉 where
• can assign is defined as

(a) ∀1 ≤ i ≤ n : (ra, true, vi) ∈ can assign
(b) ∀1 ≤ i ≤ n : (ra, di, ai) ∈ can assign

20

(c) ∀1 ≤ i ≤ n : (ra, ci, bi) ∈ can assign
(d) ∀1 ≤ i ≤ n : (ra, true, ci) ∈ can assign
(e) ∀1 ≤ i ≤ n : (ra, true, di) ∈ can assign
(f) ∀1 ≤ i ≤ n : (ra, ai, ei) ∈ can assign
(g) ∀1 ≤ i ≤ n : (ra, bi, fi) ∈ can assign
(h) ∀1 ≤ i ≤ n : (ra, true, gi) ∈ can assign
(i) ∀1 ≤ i ≤ n : (ra, true, hi) ∈ can assign

• can revoke is defined as
(a) ∀1 ≤ i ≤ n : (ra, true, vi) ∈ can revoke
(b) ∀1 ≤ i ≤ n : (ra, vi, ai) ∈ can revoke
(c) ∀1 ≤ i ≤ n : (ra, vi, bi) ∈ can revoke
(d) ∀1 ≤ i ≤ n : (ra, true, ci) ∈ can revoke
(e) ∀1 ≤ i ≤ n : (ra, true, di) ∈ can revoke

• SMER is defined as
(a) ∀1 ≤ i ≤ n : (di, bi) ∈ SMER
(b) ∀1 ≤ i ≤ n : (ai, ci), (vi, ci) ∈ SMER
(c) ∀1 ≤ i ≤ n,∀(w, vi) /∈ E : (di, w) ∈ SMER
(d) ∀1 ≤ i ≤ n, (ai, gi) ∈ SMER
(e) ∀1 ≤ i ≤ n, (bi, hi) ∈ SMER

3. goal = {vi, ei, fi, gi, hi : 1 ≤ i ≤ n}.

Note that all the roles have positive pre-requisite condi-
tions of size at most 1 - I satisfies the |ppre| ≤ 1 restric-
tion, each role r ∈ R has at most one state change rule in
can assign and can revoke - I satisfies the D restriction,
and negation is specified only as SMER constraints - I sat-
isfies the EN restriction. Thus, I is in the problem class
[D,EN, |ppre| ≤ 1].

Claim 7: If G has a clique of size k, then I has a plan
of size 13n− 2k.
Proof: Let C be a clique in G of size k. Consider the
sequence of actions
P = P1.P2.P3.P4.P5.P6.P7.P8, P9.P10.P11.P12.P13.P14

where UA and UR abbreviate UserAssign and
UserRevoke respectively.

1. P1 = . . . UR(ci), UA(ai), UA(ei) . . . where vi ∈ V −
C. |P1| = 3n− 3k.

2. P2 = . . . UR(di), UA(bi), UA(fi) . . . where vi ∈ C.
|P2| = 3k.

3. P3 = . . . UR(ci) . . . where vi ∈ C. |P3| = k.
4. P4 = . . . UR(di) . . . where vi ∈ V − C. |P4| = n− k.
5. P5 = . . . UA(vi) . . . for all 1 ≤ i ≤ n. |P5| = n.
6. P6 = . . . UR(ai) . . . where vi ∈ V − C. |P6| = n− k.
7. P7 = . . . UR(bi) . . . where vi ∈ C. |P7| = k.
8. P8 = . . . UR(vi) . . . where vi ∈ V − C. |P8| = n− k.
9. P9 = . . . UA(ci), UA(bi), UA(fi), UR(ci) . . . where
vi ∈ V − C. |P9| = 4n− 4k.

10. P10 = . . . UA(di), UA(ai), UA(ei), UR(di) . . . where
vi ∈ C. |P10| = 4k.

11. P11 = . . . UA(vi) . . . where vi ∈ V −C. |P11| = n−k.
12. P12 = . . . UR(ai) . . . where vi ∈ C. |P12| = k.
13. P13 = . . . UR(bi) . . . where vi ∈ V −C. |P13| = n−k.
14. P14 = . . . UA(gi)UA(hi) . . . where 1 ≤ i ≤ n.
|P14| = 2n.

It is easy to see that P is a plan for I and that |P | =
15n− 2k.

Claim 8: Suppose I has a plan of length at most 15n−
2k. Then G has a clique of size k.
Proof: The proof is similar to the proof of Claim 6.

From Claims 7 and 8 it follows that G has a clique of
size k if and only if I has a plan of size at most 13n− 2k.
Thus, BRE for [D,EN, |ppre| ≤ 1] is NP-hard.

D. PSPACE-complete Reachability Analysis

Theorem 24 is based on complexity results for SAS+

planning described in [BN95]. Next, we describe the SAS+

planning model of [BN95].
Definition 5: An instance of the SAS+ planning problem

is given by the tuple Π = 〈V,O, s0, s∗〉 with components
defined as follows.

• V = {v1, v2, . . . , vm} is a set of state variables. Each
variable v has an associated domain Dv, which im-
plicitly defines an extended domain D+

v = Dv ∪ {u}
where u denotes the undefined value. Further, the
total state space S = Dv1 ×Dv2 × . . .×Dvm

and the
partial state space S+ = D+

v1 × D+
v2 × . . . × D+

vm
are

implicitly defined. We write s[v] to denote the value
of variable v in state s.

• O is a set of operators of the form 〈pre, post, prv〉
where pre, post, prv ∈ S+ denote the pre, post, and
prevail conditions. O is subject to the following re-
strictions. For every operator 〈pre, post, prv〉,

– (R1) ∀v ∈ V : pre[v] 6= u→ pre[v] 6= post[v] 6= u.
– (R2) ∀v ∈ V : post[v] = u or prv[v] = u.

• s0 ∈ S+
V and s∗ ∈ S+

V denote the initial and goal states
respectively.

Restriction R1 says that a state variable can never be-
come undefined once it has been defined by some operator.
Restriction R2 says that the prevail condition of an oper-
ator must never define the variable being modified by the
operator. If o = 〈pre, post, prv〉 is an operator, we write
pre(o) to denote pre, etc..

A SAS+ planning instance Π = 〈V,O, s0, s∗〉 satisfies
the

1. Binary (B) restriction iff for all v ∈ V, |Dv| = 2.
Thus, every variable is boolean variable under the B
restriction.

2. Unary (U) restriction iff for all operators o ∈ O,
post(o)[v] 6= u for exactly one v ∈ V. Thus, an opera-
tor can change the state of a single variable under the
U restriction.

Theorem 24: Reachability for the problem class without
any restrictions is PSPACE-complete.

Claim 9: Reachability for unrestricted ARBAC policies
is in PSPACE.
Proof: A non-deterministic Turing Machine can solve
the problem in polynomial space as follows. Starting from
the initial state, it can guess the next action, execute the
action, and transform the initial state to a new state. It
then discards the old state, and stores only the newly
reached state. It continues this process until the required
goal state is reached. Since only a single state is stored at
any point in time, and the size of the state is polynomial
in size of the problem instance, the Turing Machine takes
polynomial space.

Claim 10: Reachability for unrestricted ARBAC policies
is PSPACE-hard.

POLICY ANALYSIS FOR ADMINISTRATIVE ROLE BASED ACCESS CONTROL 21

Proof: [BN95] shows that Plan-Existence for a SAS+

planning problem under the U and B restrictions is
PSPACE-complete. We reduce this problem to to the
Reachability problem for unrestricted ARBAC policy.

Let Π = 〈V,O, s0, s∗〉 be a SAS+ problem instance
that satisfies the U and B restrictions. Construct
a Reachability problem I = (γ, goal, ψ) where ψ =
〈can assign, can revoke, SMER〉 is the unrestricted AR-
BAC policy, SMER = ∅, γ = 〈R,UA〉 is the initial RBAC
policy, and goal is the set of roles to be proved as follows.

1. Define R = V. Since for all v ∈ V, |Dv| = 2, every
v ∈ V is a boolean variable. Thus, the set of roles R
is well defined.

2. Define UA = {v ∈ V : s0[v] = true.
3. Define goal = {v ∈ V : s∗[v] = true.
4. For each operator o ∈ O, let v ∈ V be the unique

variable for which post(o)[v] 6= u.
• For each w ∈ V, if prv(o)[w] = true, then w ∈ c, and

if prv(o)[w] = false then ¬w ∈ c.
• if pre(o)[v] = false (equivalently, post(o)[v] =

true), then include (c, v) in can assign.
• if pre(o)[v] = false (equivalently, post(o)[v] =

true), then include (c, v) in can revoke.
Note that |I| = O(|Π|). It is clear that γ is a well-defined

RBAC policy, and that ψ is a well-defined ARBAC policy.
It is easy to see that any plan for Π is also a plan for I,
and any plan for I is also a plan for Π. Thus, we have
reduced Plan-Existence for SAS+ planning under U and
B restrictions to the Reachability problem for unrestricted
ARBAC policy. Thus, the Reachability problem for unre-
stricted ARBAC policy is PSPACE-hard.

From Claims 9 and 10 it follows that the Reachabil-
ity problem for unrestricted ARBAC policies is PSPACE-
complete.

