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Abstract

Role based access control (RBAC) is a widely used access control paradigm. In large organizations, the RBAC policy is managed
by multiple administrators. An administrative role based access control (ARBAC) policy specifies how each administrator may
change the RBAC policy. It is often difficult to fully understand the effect of an ARBAC policy by simple inspection, because
sequences of changes by different administrators may interact in unexpected ways. ARBAC policy analysis algorithms can help
by answering questions, such as user-role reachability, which asks whether a given user can be assigned to given roles by given
administrators.

Allowing roles and permissions to have parameters significantly enhances the scalability, flexibility, and expressiveness of
ARBAC policies. This paper defines PARBAC, which extends the classic ARBAC97 model to support parameters, proves that user-
role reachability analysis for PARBAC is undecidable when parameters may range over infinite types, and presents a semi-decision
procedure for reachability analysis of PARBAC. To the best of our knowledge, this is the first analysis algorithm specifically for
parameterized ARBAC policies. We evaluate its efficiency by analyzing its parameterized complexity and benchmarking it on case
studies and synthetic policies. We also experimentally evaluate the effectiveness of several optimizations.
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1. Introduction

Role based access control (RBAC) (Sandhu et al., 1996) is
a widely used access control paradigm. In RBAC, users are
assigned to roles, and permissions are granted to roles. Al-
lowing roles and permissions to have parameters significantly
enhances scalability: the policies of most large organizations
can be expressed more easily and compactly using parameters.
For example, consider a policy for a university. To grant differ-
ent permissions to users (e.g., faculty or students) in different
classes or departments, in an RBAC model without parameters,
we would need to create a separate role and corresponding per-
mission assignment rules for each course or department, lead-
ing to a large and unwieldy policy. In a parameterized RBAC
model, this policy can be expressed using a few roles and per-
missions parameterized by the class identifier or department
name. Several parameterized RBAC models have been pro-
posed, e.g., (Giuri and Iglio, 1997; Lupu and Sloman, 1997;
Bacon et al., 2002; Ge and Osborn, 2004; Li and Mao, 2007).

Administrative role based access control (ARBAC) refers to
administrative policies that specify how an RBAC policy may
be changed by each administrator. In ARBAC97, the first com-
prehensive ARBAC model (Sandhu et al., 1999), ARBAC poli-
cies assign users (administrators) to administrative roles, and
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grant permissions for administrative operations—such as as-
signing a user to a role—to administrative roles. This sup-
ports decentralized policy administration, which is crucial for
large organizations, coalitions, etc. Several other ARBAC mod-
els were subsequently proposed, e.g., (Sandhu and Munawer,
1999; Kern et al., 2003; Crampton and Loizou, 2003; Cramp-
ton, 2005; Oh et al., 2006; Li and Mao, 2007).

Allowing administrative roles and administrative permis-
sions to have parameters significantly enhances the scalability
and practical applicability of the administrative model. For ex-
ample, consider the policy that the chair of a department can
assign users to committees in that department. In a parame-
terized ARBAC model, this can be expressed by a single rule,
while ARBAC models without parameters would require sep-
arate rules for each department and committee. In this paper,
we define parameterized RBAC and ARBAC models, by ex-
tending the classic ARBAC97 model (Sandhu et al., 1999) with
parameters in a fairly straightforward way. We call these mod-
els PRBAC and PARBAC, respectively.

While flexible and expressive administrative models are needed
to handle the complex policies that can arise in real organiza-
tions, they also make it more difficult to ensure that adminis-
trative policies accurately capture the author’s intentions. It is
often difficult to understand the effect of an administrative pol-
icy by simple inspection, largely because (without help) people
may fail to see the possible effects of sequences of adminis-
trative operations by different administrators, and may fail to
take into account how the administrative rules interact with role
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hierarchy. Policy analysis helps system designers and adminis-
trators understand policies, including administrative policies.

This paper focuses on user-role reachability analysis, which
answers questions of the form: given an initial PRBAC policy
(“state”), a PARBAC policy, a set of administrators, a target
user, and a set of roles (called the “goal”), is it possible for
those administrators to modify the RBAC policy so that the tar-
get user is a member of those roles? Other analysis problems
including permission-role reachability, user-permission reacha-
bility, availability, role containment (Li and Tripunitara, 2006),
and weakest precondition (Stoller et al., 2007) can be solved in
a similar manner or by reduction to user-role reachability anal-
ysis (Sasturkar et al., 2006; Stoller et al., 2007).

Why are new algorithms needed to solve this problem? If
all parameters range over finite types, existing finite-state reach-
ability algorithms for unparameterized ARBAC (e.g., (Li and
Tripunitara, 2006; Sasturkar et al., 2006; Stoller et al., 2007;
Jha et al., 2008)) can be used, by instantiating each rule with
all combinations of values of its parameters. However, this ap-
proach is practical only if the types are small. Realistic policies
often involve large types (e.g., Stony Brook University has over
2000 class sections each semester and over 50 departments);
symbolic analysis of such policies is much more efficient. An-
other disadvantage of the finite-state approach is that the anal-
ysis results are valid only for the specific types used for instan-
tiation. With symbolic analysis, an infinite type can be used as
an abstraction of a finite type, to obtain more general results.
This abstraction is conservative in the sense that if the answer
to a reachability query (defined in Section 3) is true when the
types of some parameters are taken to be finite, then the an-
swer is still true if those types are taken to be infinite. Thus,
if symbolic analysis with infinite types says that a goal (of the
attackers, i.e., an unsafe state) is unreachable, then that goal is
unreachable when the parameters range over any finite types.

This paper shows that user-role reachability analysis for PAR-
BAC is undecidable when parameters may range over infinite
types, and it presents the first (to the best of our knowledge)
semi-decision procedure for reachability analysis for PARBAC.
We define the semantics of PARBAC policies in terms of a
straightforward concrete transition relation. We then introduce
a more complicated symbolic transition relation that captures
the semantics compactly, efficiently, and exactly using variables
and constraints. Our algorithm for user-role reachability has
two stages. The first stage performs a goal-directed approx-
imate backward search. The second stage performs an exact
forward search limited to transitions identified as useful by the
first stage. We also developed several optimizations to the basic
algorithm and experimentally evaluated their effectiveness. Al-
though our algorithm is a semi-decision procedure (thus, it may
diverge on some problem instances), we show that it is guaran-
teed to terminate under realistic assumptions about the policy.

We also explore the parameterized complexity (Downey and
Fellows, 1995) of user-role reachability for PARBAC and give a
fixed-parameter tractability result for it under realistic assump-
tions about the policies. The idea of parameterized complex-
ity is to identify an aspect of the input that makes the problem
computationally difficult, introduce a parameter to measure that

aspect of the input, and develop a solution algorithm that may
have high complexity in terms of that parameter, but has poly-
nomial complexity in terms of the overall input size when the
value of that parameter is fixed. This is called fixed-parameter
tractability. Formally, a problem is fixed-parameter tractable
with respect to parameter k if there exists an algorithm that
solves it in O( f (k) × nc) time, where f is an arbitrary function
(depending only on its argument k), n is the input size, and c is
a constant.

Numerous algorithms have been proposed to verify specific
classes of infinite-state systems. As discussed in Section 11, to
the best of our knowledge, none is suitable for efficient reacha-
bility analysis for PARBAC.

In summary, the main contributions of this paper are

• the definition of the symbolic transition graph, which com-
pactly captures the semantics of PARBAC policies and
provides the basis for our algorithm,

• a two-stage symbolic algorithm for user-role reachabil-
ity analysis of PARBAC that terminates under realistic
assumptions about the policy,

• a proof that user-role reachability analysis for PARBAC
is undecidable.

• a fixed-parameter tractability result for this reachability
problem under realistic assumptions about the policy, and

• experimental results demonstrating the efficiency of our
algorithm compared to non-symbolic algorithms and eval-
uating the effectiveness of several optimizations

We chose ARBAC97 as the basis for our PARBAC model
because it is relatively simple while still capturing essential
features of realistic administrative policies. We know of only
one other parameterized ARBAC model, UARBACP (Li and
Mao, 2007). UARBACP is more sophisticated and flexible than
PARBAC, but we believe the work in this paper provides a
good foundation for developing practical analysis algorithms
for UARBACP and other parameterized security policy models.

The rest of this paper is organized as follows. Section 2 de-
fines PRBAC and PARBAC. Section 3 defines user-role reacha-
bility for PARBAC. Sections 4 defines the symbolic state graph,
which provides a foundation for the symbolic analysis algo-
rithm in Section 5. Section 8 discusses extensions and other
analysis problems. Case studies and experiments are described
in Sections 9 and 10, respectively. Section 11 discusses related
work. Section 12 proposes future work and concludes.

2. Parameterized RBAC and Parameterized ARBAC

This section formally defines parameterized RBAC (PRBAC)
and parameterized ARBAC (PARBAC). The definitions are based
on a notion of role schema. Each role schema specifies the
name of a role and the names of that role’s parameters. For
brevity, we omit aspects of RBAC and ARBAC related to the
user-permission assignment and role hierarchy. Those aspects
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can be extended with parameters in the same way as aspects re-
lated to the user-role assignment. For analysis purposes, hierar-
chical PRBAC policies can be transformed into non-hierarchical
PRBAC policies using an algorithm similar to the one in (Sas-
turkar et al., 2006). PARBAC policies that control the user-
permission assignment are structurally similar to PARBAC poli-
cies that control the user-role assignment and hence can be an-
alyzed using the same techniques. Analysis of PARBAC poli-
cies that control changes to the role hierarchy requires different
techniques.

2.1. Parameterized RBAC

The syntax of policies is parameterized by a set Var of vari-
ables, a set R of role names, a set O of object names, a set P of
parameter names, and a set Op of operation names.

A role schema is a term ρ(p1, p2, . . . , pn), where n ≥ 0,
ρ ∈ R is a role name, and each pi ∈ P is a distinct parame-
ter name. In our basic framework, each parameter ranges over
an implicit universal data type that contains an infinite number
of data values (constants). Introducing a type system in which
each parameter in a role schema ranges over a specified infinite
data type has no significant effect on our results, except to add
clutter. Allowing finite types requires only a change to the al-
gorithm for checking satisfiability of constraints, as described
in Section 4. We implicitly extend our framework with a type
system with finite types in some examples.

An instance of a role schema ρ(p1, p2, . . . , pn) has the form
ρ(p1 = x1, p2 = x2, . . . , pn = xn), where each xi is a data value
or a variable. We use identifiers starting with lower-case letters
for data values, and identifiers starting with upper-case letters
for variables (identifiers starting with upper-case letters are also
used for role names, etc.). An instance is concrete if it contains
no variables. We use r to denote an instance of a role schema,
and rc to denote a concrete instance.

For an instance r, let schema(r) denote the schema of which
r is an instance. Let args(ρ(e1, . . . , en)) = (e1, . . . , en). For
a set RS of role schemas, inst(RS) denotes the set of all in-
stances of RS, and conc(RS) denotes the set of concrete in-
stances of RS. For example, in a policy for a university, the role
schema Student(dept, cid) is used for students registered for the
course numbered cid offered by department dept, and the role
schema Student(dept) is used for all students of a specific de-
partment. Students taking cs101 are members of the instance
Student(dept = cs, cid = 101). We make parameter names ex-
plicit to allow overloading; we sometimes omit them for role
names that are not overloaded.

A substitution is a mapping from variables to data values
and variables. We use θ, σ to denote substitutions. A substitu-
tion θ is ground, denoted ground(θ), if it maps all variables to
data values. The application of a substitution θ to an expression
e is denoted eθ.

Definition 1. A parameterized RBAC (PRBAC) policy is a tu-
ple 〈RS,U,UA〉 where

• RS is a finite set of role schemas. U is a finite set of
users.

• UA ⊆ U × conc(RS) is the user-role assignment. (u, rc) ∈
UA specifies that user u is a member of rc.

For example, (Alan, Student(dept = cs)) ∈ UA specifies that
user Alan is a member of role Student(dept = cs).

PRBAC policies, as defined above, use only concrete role
instances. We could allow variables in PRBAC policies; we
do not consider this extension, because our main focus is on
administrative policies, defined next.

2.2. Parameterized ARBAC
A PARBAC policy is a tuple 〈RS,U,URA〉, where RS is a

set of role schemas, U is a set of users, and—analogously to
ARBAC97—URA is the user-role administration policy. The
PARBAC policy defines the transition relation that describes
allowed changes to the PRBAC policy.

The user-role administration policy URA controls changes
to the user-role assignment. URA consists of two kinds of rules:
can assign and can revoke. A can assign rule has the form
can assign (ra, (P,N), r), where ra ∈ inst(RS) is the adminis-
trator’s role, P ⊆ inst(RS) is the positive precondition, N ⊆
inst(RS) is the negative precondition, and r ∈ inst(RS) is the
target. The rule means that an administrator in role ra can add
a user to r if the user is a member of all the roles in P and
is not a member of any roles in N. In examples, we usually
write preconditions as logical formulas; for example, the pre-
condition ({r1, r2}, {r3}) would be written as r1 ∧ r2 ∧ ¬r3. For
example, the rule can assign(Dean(school=engg), Prof(dept=
cs), Chair(dept = cs)) specifies that the Dean of the Engineer-
ing School can assign a professor of the CS Department to
be the Chair of that Department. For an example that uses
variables, the rule can assign(Chair(dept = D), Faculty(dept =

D), AdmissionsCommittee(dept=D)) specifies that the Chair of
department D can assign faculty of that department to the de-
partment’s admissions committee.

The identity of the administrator performing an action is
sometimes relevant, so we introduce a distinguished variable,
Self, whose value identifies that administrator. For example,
can assign(Faculty, Student,RA(fac = Self)) specifies that a fac-
ulty member can assign a student to be his/her RA.

In negative preconditions, wildcards, denoted by underscore
(“ ”), may be used as arguments to roles. For example, consider
the policy: a department chair can appoint a student as a TA for
a course in the same department if the student is not already
a TA for any course in any department. This is expressed by
the following rule, where the parameter cid contains the course
number:

can assign(Chair(dept=D),
¬TA(dept= , cid= ),
TA(dept=D, cid=CID))

Note that replacing wildcards with fresh variables—for exam-
ple, changing the negative precondition to ¬TA(dept=D′, cid=

CID′)—produces a rule with a much different meaning, namely,
that a student can be appointed to TA(dept = D, cid = CID) if
there is some instantiation of D′ and C′ such that the student is
not a member of TA(dept=D′, cid=CID′).
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A can revoke rule has the form can revoke(ra, r). It means
that an administrator in role ra can remove users from role r. We
follow ARBAC97 in omitting preconditions from can revoke
(Sandhu et al., 1999).

A role schema is an administrative role schema if it has an
administrative permission, i.e., it appears in the first compo-
nent of some can assign or can revoke rule. An administra-
tive role is an instance of an administrative role schema. The
separate administration restriction requires that administrative
role schemas do not appear in the precondition or target of
can assign rules or the target of can revoke rules. We follow
ARBAC97 in adopting this restriction. Other work on ARBAC
policy analysis, such as (Schaad and Moffett, 2002; Sasturkar
et al., 2006; Li and Tripunitara, 2006) also adopts this restric-
tion (or a similar one, in the case of the AAR model in (Li
and Tripunitara, 2006)), with the exception of analysis for the
AATU model in (Li and Tripunitara, 2006), which adopts two
other significant restrictions instead. Our analysis algorithm is
also applicable to many policies that satisfy a different but re-
lated restriction, described in Section 8.

3. User-Role Reachability

This section defines user-role reachability for PARBAC. For
a PRBAC policy γ, let U(γ) and UA(γ) be the set of users and
the user-role assignment in γ, respectively.

Definition 2. A user-role reachability query has the form: Given
a user u0, an initial PRBAC policy γ = 〈RS,U,UA〉, a PARBAC
user-role administration policy URA, a subset A of the user-role
assignment UA containing only administrative roles, and a set
g of role instances, can actions by administrators in A, acting
in the administrative roles to which they are assigned in A, and
using the administrative permissions granted to those roles by
URA, transform γ to another PRBAC policy γ′ such that, for
some substitution θ, u0 is a member of all roles in the instanti-
ated goal gθ?

Under the separate administration restriction, the user-role
reachability problem can be simplified as in (Sasturkar et al.,
2006). This restriction implies that the transitions allowed by a
PARBAC policy do not change the set of tuples containing ad-
ministrative roles in the user-role assignment UA. Hence we can
partition UA into administrative and non-administrative subsets,
corresponding to tuples containing administrative roles and those
containing non-administrative roles, respectively. Since the ad-
ministrative subset does not change, we “factor it out”, i.e., we
do not include it in the nodes of the concrete state graph, defined
below. Moreover, in ARBAC97, each user’s role memberships
are controlled completely independently of other users’ role
memberships, so we can perform user-role reachability anal-
ysis by tracking only tuples in UA that contain the user u0 men-
tioned in the reachability query. Thus, the answer to a user-role
reachability query can be expressed in terms of a graph whose
vertices (states) correspond to sets of non-administrative roles
that u0 is a member of.

The concrete transition relation Tc(URA, A) expresses the
semantics of a user-role administration policy URA, restricted
to administrative actions performed by a user uA in adminis-
trative role rA such that (uA, rA) ∈ A. Tc(URA, A) contains
(s, (ϕ, θ), s′) iff the rule ϕ in URA, instantiated using substitution
θ, allows an administrator uA acting in role rA with (uA, rA) ∈ A
to perform a role assignment or role revocation that changes the
user-role assignment for a user from s to s′. When URA and A
are clear from context, we sometimes write a triple (s, (ϕ, θ), s′) ∈

Tc(URA, A) as s
ϕ,θ
−→c s′.

Definition 3. The concrete transition relation Tc(URA, A) for a
user-role administration policy URA and a user-role assignment
A containing only administrative roles is the smallest relation
such that:

• (s, (ϕ, θ), s′) ∈ Tc(URA, A) if ϕ = can assign(ra, (P,N), r)
and ϕ ∈ URA and θ is a ground substitution such that there
exists (uA, rA) ∈ A such that:

– rθ < s (the role being added is not present in state s),

– s′ = s ∪ {rθ},

– Pθ ⊆ s (the positive preconditions of ϕ are satisfied in state
s),

– (∀rn ∈ N. ∀r ∈ s. rn ,wc r), where equality considering
wildcards is defined by: r(e1, . . . , en) =wc r′(e′1, . . . , e

′
n) if

r = r′ ∧ (∀i ∈ [1..n]. ei = e′i ∨ ei = ∨ e′i = ) (the
negative preconditions of ϕ are satisfied in state s),

– raθ = rA (instantiating ra yields the administrative role in
A used to perform this role assignment), and

– θ(Self) = uA (θ maps the distinguished variable Self to the
identity uA of the administrator performing this role as-
signment)

• (s, (ϕ, θ), s′) ∈ Tc(URA, A) if ϕ = can revoke(ra, r) and
ϕ ∈ URA and θ is a ground substitution such that there exists
(uA, rA) ∈ A such that:

– rθ ∈ s (the role being revoked is present in state s),

– s′ = s − {rθ},

– raθ = rA, and

– θ(Self) = uA

The concrete state graph for a user-role reachability query
of the form in Definition 2 is the graph created by starting from
the initial user-role assignment for the target user u0 and using
the concrete transition relation to repeatedly add new edges and
nodes. For a labeled graph, we use a triple (v, `, v′) to represent
an edge from v to v′ labeled with `.

Definition 4. The concrete state graph for a user-role reacha-
bility query of the form in Definition 2 is the smallest labeled
directed graph (V, E) with vertices V and labeled edges E such
that
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• {r | (u0, r) ∈ UA(γ) ∧ ¬admin(r)} ∈ V , where admin(r) is
true iff r is an administrative role (the initial state contains all
non-administrative roles assigned to the target user u0 in the
initial user-role assignment UA(γ)).

• (s1, ϕ, s2) ∈ E and s2 ∈ V if s1 ∈ V and there exists a
substitution θ such that (s1, (ϕ, θ), s2) ∈ Tc(URA, A).

The answer to a user-role reachability query is true iff there
exists a substitution θ such that the concrete state graph for the
query contains a state s with gθ ⊆ s.

Example 1. Consider the following PARBAC policy (for brevity,
we do not show the set of users, etc.).

RS = {Chair(dept), Student(dept, cid),TA(dept, cid)}
ϕ = can assign(Chair(dept=D),

¬Student(dept=D, cid=CID),
TA(dept=D, cid=CID))

The policy contains no can revoke rules. Consider the query:
Can the chair of CS Department assign a user who is initially
a member of role Student(dept = cs, cid = 501) to both roles
TA(dept = cs, cid = 101) and TA(dept = cs, cid = 201)? The
answer is yes. For illustrative purposes, suppose the course
identifier parameter cid ranges over the set {101, 201, 301, 401,
501}; in this case, the concrete state graph for this query con-
tains 16 states and 32 transitions. If cid ranges over an infinite
data type, the concrete state graph is infinite.

These definitions define the semantics of PARBAC policies
but do not provide an effective algorithm for reachability analy-
sis: parameters take values from an infinite type, so the concrete
state graph is infinite, except for trivial policies. As discussed
in Section 1, even if parameters take values from finite types,
those types are often large, making construction of the concrete
state graph costly or impractical.

4. Symbolic State Graph

This section defines symbolic states and symbolic transi-
tions, which are the basis of our symbolic analysis algorithm.

A symbolic state is a pair (R,C) where R is a set of role
instances (not necessarily concrete), and C is a constraint over
variables that appear in R. A constraint is the constant true
or a conjunction of tuple disequalities. A tuple disequality has
the form (e1, . . . , en) , ( f1, . . . , fn), where each ei and fi is a
constant or a variable. We elide angle brackets around singleton
tuples. Note that a conjunction of tuple disequalities is just a
more compact notation for a logical combination of single (as
opposed to tuple) inequalities, in conjunctive normal form.

For a constraint C, satisfiable(C) is false if C contains a tu-
ple disequality whose left side and right side are the same, and
is true otherwise. For example, if C0 denotes X , cs, then
satisfiable(C0) is true, and satisfiable(C0[X 7→ cs]) is false,
where [X 7→ e] denotes the substitution that replaces X with
e. As another example, if C1 denotes (X,Y) , (Z, cs) then

satisfiable(C1) and satisfiable(C1[X 7→ Z]) are true. This sat-
isfiability test is correct when all variables range over infinite
data types. Support for finite data types is discussed below.

A symbolic state (R,C) represents the concrete states ob-
tained by instantiating R consistent with C; formally, the mean-
ing of (R,C) is [[(R,C)]] = {Rθ | ground(θ) ∧ satisfiable(Cθ)}.
For example, ({Student(dept= D)},D,cs) represents states con-
taining a single instance of Student instantiated with any con-
stant other than cs.

For a constraint C, simplify(C) returns a new constraint ob-
tained by removing tuple disequalities in which the two tuples
have distinct constants in some component (such disequalities
are equivalent to true, e.g., (X, cs) , (Y, ee)) and removing
components of tuple disequalities that are equal in the two tu-
ples (this yields a logically equivalent disequality, e.g., (X,Y) ,
(X,Z) is replaced with Y , Z). More formally, simplify(C) is
obtained from C as follows:

1. Delete all tuple disequalities (e1, . . . , en) , ( f1, . . . , fn)
such that for some i, ei and fi are distinct constants. If
C becomes empty (i.e., all tuple disequalities in it are
deleted), then C simplifies to true.

2. For each tuple disequality (e1, . . . , en) , ( f1, . . . , fn) in
C, for each i such that ei is the same as fi, or ei or fi is
a wildcard, delete component i of the tuple disequality.
If any tuple disequality becomes empty (i.e., it becomes
() , (), which is false), then C simplifies to false.

For a constraint C and a set Vars of variables, the projec-
tion of C on Vars, denoted project(C,Vars), is the constraint ob-
tained from C by discarding disequalities that do not affect the
satisfying values of variables in Vars. Specifically, project(C,Vars)
constructs an undirected graph with a vertex for each tuple dis-
equality in C, and with an edge between disequalities d1 and
d2 if they share a variable (i.e., vars(d1) ∩ vars(d2) , ∅, where
vars(e) is the set of variables that appear in expression e), and
discards disequalities that are not reachable in the graph from
any vertex d that mentions a variable in Vars. For example,
project(X , Y ∧ Y , Z ∧ U , V, {Z}) equals X , Y ∧ Y , Z.

A substitution θ1 is more general than a substitution θ2, de-
noted θ2 �g θ1, if there exists a substitution θ such that θ2 =

θ1 ◦ θ, where ◦ denotes composition.
The symbolic transition relation needs to replace some vari-

ables with locally fresh variables, i.e., variables not appearing
in the source state of the transition that introduces them. Let
freshSubst(vars1, vars2) denote a substitution θ that maps vari-
ables in vars1 to distinct variables that are not in vars2. Any de-
terministic method for choosing the fresh variables is fine, e.g.,
choose the lexicographically smallest variables not in vars2.
To simplify the semantics of the graph, after the initial con-
struction, we apply a straightforward, linear-time transforma-
tion mkGloballyFresh that renames introduced variables so they
are globally fresh, i.e., each variable is introduced in at most one
state in the graph. For example, suppose a can assign rule that
introduces a locally fresh variable is executed from two states
s1 and s2, and the variable C is used as a locally fresh vari-
able in the resulting states s′1 and s′2; then the mkGloballyFresh
transformation might rename the occurrence of C in s′1 to C1
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(of course, corresponding occurrences of C in states reachable
from s1 are also renamed), and the occurrence of C in s′2 to C2.

Definition 5. The symbolic transition relation T (URA, A) for
a user-role administration policy URA and an assignment A of
users to administrative roles contains a tuple ((R,C), (ϕ, θ f , θ),
(R′,C′)) if execution of rule ϕ in URA, instantiated with the
substitution θ ◦ θ f , leads from symbolic state (R,C) to symbolic
state (R′,C′), where θ f replaces variables in ϕ with fresh vari-
ables, and θ unifies the positive preconditions in ϕ with roles
in R and unifies ra with an administrative role in A. Formally,
T (URA, A) is the least relation such that:

• ((R,C), (ϕ, θ f , θ), (R′,C′)) ∈ T (URA, A) if ϕ ∈ URA and ϕ =

can assign(ra, (P,N), rt) and there exist Rp ⊆ R, (uA, rA) ∈ A
such that

– θ f = freshSubst(vars(ϕ), vars((R,C)))

– θ is �g-maximal among substitutions such that

∗ Pθ f θ ⊆ Rpθ (the roles in Rp satisfy the positive precon-
ditions of ϕ)

∗ range(θ) ⊆ vars(Rp)∪Constants (θ instantiates variables
in the rule ϕ with constants and with variables in the
roles in R used to satisfy the positive preconditions).

∗ raθ f θ = rA (instantiating ra yields the administrative
role in A used to perform this role assignment)

∗ θ(Self) = uA (θ maps the distinguished variable Self to
the identity uA of the administrator performing this role
assignment)

– rtθ f θ < R (the role being added is not already in the state)

– R′ = Rθ ∪ {rtθ f θ}

– neg =∧
rn∈N

∧
r∈R such that schema(r)=schema(rn) args(rθ) , args(rnθ f θ)

(the negative preconditions of ϕ are satisfied)

– C′ = simpli f y(Cθ ∧ neg)

– satisfiable(C′) = true

• ((R,C), (ϕ, θ f , θ), (R′,C′)) ∈ T (URA, A) if ϕ ∈ URA and
ϕ = can revoke(ra, rt) and there exist r ∈ R, θ f ∈ Subst, θ ∈
Subst, (uA, rA) ∈ A such that

– θ f = freshSubst(vars(ϕ), vars((R,C)))

– θ is �g-maximal among substitutions such that

∗ rθ = rtθ f θ (the role being revoked is in the current state)
∗ range(θ) ⊆ vars(r) ∪ Constants
∗ raθ f θ = rA (instantiating ra yields the administrative

role in A used to perform this role assignment)
∗ θ(Self) = uA (θ maps the distinguished variable Self to

the identity uA of the administrator performing this role
revocation)

– R′ = Rθ \ {rθ}

– C1 = simpli f y(Cθ)

– satisfiable(C1) = true

– C′ = project(C1, vars(R′))

It might seem surprising, at first glance, that in the condi-
tion R′ = Rθ ∪ {rtθ f θ}, the substitution θ is applied to the entire
state R, not only to the role being added. This reflects the fact
that the transition might be possible for only some instances of
the symbolic state. For example, consider execution of the rule
can assign(Dean,Faculty(dept=cs),ComputingCommittee) from
the symbolic state ({Faculty(dept = D)}, true). This leads to the
symbolic state ({Faculty(dept=cs),ComputingCommittee}, true),
reflecting that the transition is possible only if the target user is
a member of Faculty(dept=cs).

In the condition R′ = Rθ \ {rθ} for can revoke, the substitu-
tion θ is applied to the entire state for similar reasons. This is
necessary even though can revoke roles lack preconditions. For
example, consider execution of the rule can revoke(Chair(dept=
D),GradAdvisor(dept=D)) from symbolic state ({Faculty(dept=
D),GradAdvisor(dept=D)}, true) with A = {(charles,Chair(dept=
cs))}. This leads to the symbolic state ({Faculty(dept=cs)}, true),
reflecting that the transition is possible only if the target user is
a member of Faculty(dept=cs).

The condition range(θ) ⊆ vars(Rp) ∪ Constants provides
directionality to the unification of the rule’s preconditions with
roles in the current state: variables in P may be instantiated
with variables in Rp, but not vice versa. This is still a form of
unification, not simply matching of P with Rp, because θ may
instantiate variables in Rp with constants in P, as in the above
example.

Note that satisfiable(C′) is checked separately from the se-
lection of the most-general substitutions θ. This is safe because
making θ less general cannot change C′ from being unsatisfi-
able to being satisfiable. Structuring the definition this way (in-
stead of including satisfiable(C′) in the inner-most list of con-
ditions checked before selecting the most-general substitution)
allows a simpler algorithm to be used to compute the substitu-
tion.

Definition 6. The symbolic state graph for a user-role reach-
ability query of the form in Definition 2 is a labeled directed
graph mkGloballyFresh(V, E), where the set V of vertices and
the set E of edges are the smallest sets such that:

• ({r | (u0, r) ∈ UA(γ) ∧ ¬admin(r)}, true) ∈ V .

• ((R,C), ϕ, (R′,C′)) ∈ E and (R′,C′) ∈ V if (R,C) ∈
V and there exist θ f ∈ Subst, θ ∈ Subst, and
((R,C), (ϕ, θ f , θ), (R′,C′)) ∈ T (URA, A).

Example 2. Consider the construction of the symbolic state
graph for the query in Example 1. The initial state is S 1 =

(R1,C1) = ({S tudent(dept = cs, cid = 501)}, true). From S 1,
the can assign rule ϕ is applied (renaming D and CID to fresh
variables D′ and CID′ respectively and then substituting D′

with cs). This adds TA(dept = cs, cid = CID′) to the state
under the constraint CID′ , 501, resulting in a symbolic state
S 2 = (R2,C2) = (R1 ∪ {TA(dept = cs, cid = CID′)}, (CID′ ,
501)). S 2 represents the four concrete states {{S tudent(dept =

cs, cid = 501),TA(dept = cs, cid = X)} for X ∈ {101, 201, 301,
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401}. Similarly, from S 2, rule ϕ can be applied again (renam-
ing D and CID to fresh variables D′1 and CID′1 respectively
and then substituting D′1 with cs). This leads to the state S 3 =

(R3,C3) = (R2 ∪ {TA(dept = cs, cid = CID′1)},C2 ∧ (CID′1 ,
501) ∧ (CID′1 , CID′)). Repeating this process results in a
symbolic state graph containing 5 states: S 1, S 2, S 3, S 4 =

(R4,C4) = (R3 ∪ {TA(dept = cs, cid = CID′2)},C3 ∧ (CID′2 ,
501) ∧ (CID′2 , CID′) ∧ (CID′2 , CID′1)) and S 5 = (R4 ∪

{TA(dept = cs, cid = CID′3)},C4 ∧ (CID′3 , 501) ∧ (CID′3 ,
CID′) ∧ (CID′3 , CID′1) ∧ (CID′3 , CID′2)), and 4 transitions:

S 1
ϕ
→ S 2

ϕ
→ S 3

ϕ
→ S 4

ϕ
→ S 5. If the course identifier param-

eter cid ranges over the set {101, 201, 301, 401, 501}, this is the
complete symbolic state graph: no more symbolic states can be
added, because in symbolic states with additional instances of
TA, the satisfiability check for the disequality constraint fails,
because the answer to the generated graph coloring problem is
false. If cid ranges over an infinite data types, then the symbolic
state graph is infinite, because an infinite number of instances
of TA(dept = cs, cid = CID) can be added to the state.

The following theorem says that the symbolic transition re-
lation is an exact abstraction of the concrete transition relation.

Theorem 1. Let A be a user-role assignment containing only
administrative roles. Let URA be a user-role administration pol-
icy.

1. Every concrete instance of a symbolic transition in T (URA,
A) is a concrete transition in Tc(URA, A); more precisely,
for all ((R,C), (ϕ, θ f , θ), (R′,C′)) ∈ T (URA, A), for all
ground substitutions θc such that θc �g θ and such that
Cθc∧C′θc holds, (Rθc, (ϕ, θc◦θ◦θ f ),R′θc) ∈ Tc(URA, A).

2. Every concrete transition between instances of two sym-
bolic states is represented by a symbolic transition; more
precisely, for all symbolic states (R,C) and (R′,C′), if
there exist Rc ∈ [[(R,C)]], R′c ∈ [[(R′,C′)]], and a ground
substitution θc such that (Rc, (ϕ, θc)R′c) ∈ Tc(URA, A), then
there exist substitutions θ f and θ such that θc �g θ and
((R,C), (ϕ, θ f , θ), (R′,C′)) ∈ T (URA, A).

In the first item in Theorem 1, the condition θc �g θ reflects
the fact that the symbolic transition requires R1 to be instanti-
ated consistently with θ.

One might expect a simpler and tighter relationship to hold
between the concrete and symbolic transition relations. For
example, one might hope to replace both items in Theorem 1
with the biconditional: ((R,C), (ϕ, θ f , θ), (R′,C′)) ∈ T (URA, A)
iff for all ground substitutions θc such that θc �g θ and such
that Cθc ∧C′θc holds, (Rθc, (ϕ, θc ◦ θ ◦ θ f ),R′θc) ∈ Tc(URA, A).
However, this relationship does not hold, because of the �g-
maximality condition on θ in the definition of the symbolic tran-
sition relation. To see this, note that this biconditional would
imply that the symbolic transition relation contains all concrete
transitions. The �g-maximality condition on θ exists specifi-
cally to avoid this. Including concrete transitions in the sym-
bolic transition relation would be sound, but it would be disas-
trous for efficiency of symbolic analysis.

The following theorem says that the symbolic state graph
is an exact abstraction of the concrete state graph. Define the
meaning of an edge in the symbolic state graph by[[

(s, ϕ, s′)
]]

= {(sc, ϕ, s′c) | sc ∈ [[s]] , s′c ∈
[[

s′
]]
}

Theorem 2. Let (Vc, Ec) and (V, E) be the concrete and sym-
bolic state graphs, respectively, for a user-role reachability query
of the form in Definition 2.

1. Vc =
⋃

s∈V [[s]]
2. Ec =

⋃
e∈E [[e]]

Finite data types. Our framework can easily be extended to
support a type system for parameters of role schemas. If the
types may be finite, then we modify modify the symbolic tran-
sition relation to generate disequality constraints that ensure
every element of R represents a distinct role instance, and we
modify the algorithm for satisfiable(C) to check whether there
are sufficiently many values of each type to satisfy the disequal-
ity constraint. This prevents transitions that introduce unneces-
sarily many instances of a role schema. For example, if param-
eter cid of role schema TA(cid) ranges over {101, 201, 301, 401,
501}, then these constraints prevent symbolic transitions to states
containing more than 5 instances of TA(cid).

Specifically, in the definition of the symbolic transition re-
lation, the item rtθ f θ < R is deleted, the item

– distinct =
∧

r∈R such that schema(r)=schema(rt) args(rθ), args(rtθ f θ)
(the role being added is not already in the state; note that a
conjunction with no conjuncts is true)

is added, and the definition of C′ is changed to

– C′ = simpli f y(Cθ ∧ neg ∧ distinct)

satisfiable(C) is false if (1) C contains a tuple disequality
whose left side and right side are the same, or (2) one of the
following checks fails: for each finite type T , construct a dis-
equality graph Gd with a vertex for each constant and variable
of type T in C, and with an edge between two vertices if C
contains a disequality requiring them to be unequal, and check
that the chromatic number of Gd (i.e., the least number of col-
ors needed for a proper vertex coloring of Gd) is less than or
equal to the number of values of type T . This is a well-studied
NP-complete problem. Many exact algorithms, heuristics, and
approximation algorithms have been proposed. Gd is typically
small enough that exact algorithms can be used. In the case
studies described in Section 10, the abstraction of infinite types
is preferable to the use of finite types, but if finite types were
used, then for our sample queries, the disequality graph for each
symbolic state would contain 3 or fewer nodes.

5. Analysis Algorithm

This section presents a symbolic algorithm for user-role reach-
ability analysis of PARBAC policies. The algorithm has two
stages. The first stage performs a backward search from the
goal towards the initial state. However, some of the enabling
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conditions of the administrative actions are not checked dur-
ing the backward search. In other words, this stage constructs
an over-approximation of a backward slice (starting from the
goal) of the symbolic state graph. The second stage determines
which states in that graph are actually reachable, by running
an exact forward search from the initial state, but limiting the
search based on the results of stage 1. Compared to a purely for-
ward algorithm, the backward stage improves the algorithm’s
efficiency by pruning the search space, and improves the algo-
rithm’s termination behavior. The overall strategy of using an
approximate backward search followed by a forward search is
reminiscent of Graphplan (Blum and Furst, 1997), although the
details are quite different.

5.1. First Stage
The graph constructed by the first stage of the algorithm is

an over-approximation for two reasons: negative preconditions
are ignored, and disequality constraints are ignored. Negative
preconditions could, at best, be only partially checked during
the first stage, because the symbolic states constructed during
the first stage might be subsets of the symbolic states that are
actually reachable. This is because those states might actually
contain additional roles that were needed to satisfy positive pre-
conditions of earlier transitions (i.e., transitions between a state
and the initial state); although some of those roles could per-
haps be revoked, some of them might not be revocable by the
administrative roles in A.

Since negative preconditions cannot be checked completely
during the first stage, for simplicity, we do not check them at
all during that stage; they are enforced during the second stage.
Since disequality constraints are used primarily to enforce neg-
ative preconditions, we do not keep track of them during the
first stage. Thus, each symbolic state in the backward symbolic
state graph is simply a set of roles (i.e., role instances). Edges
are determined by the backward symbolic transition relation Tb.
A tuple (R′, (ϕ, θ f , θ),R) is in that relation if a backward step
from R′ to R (i.e., R′ is closer to the goal, and R is closer to
the initial state) is possible—ignoring negative preconditions—
using rule ϕ with the given substitutions, which are analogous
to the substitutions in the forward symbolic transition relation
introduced in Section 4. The backward symbolic transition rela-
tion considers only role assignment actions; it does not consider
revocation, which cannot help satisfy positive preconditions.

Definition 7. The backward symbolic transition relation Tb(URA,
A) for a user-role administration policy URA and an assignment
A of users to administrative roles is the least relation such that:

• (R′, (ϕ, θ f , θ),R) ∈ Tb(URA, A) if ϕ ∈ URA and ϕ =

can assign(ra, (P,N), rt) and there exist r′t ∈ R′, P1 ⊆ P,Rp ⊆

R′ \ {r′t }, (uA, rA) ∈ A such that

– θ f = freshSubst(vars(ϕ), vars(R′))

– θ is �g-maximal among substitutions such that

∗ P1θ f θ ⊆ Rpθ (the positive preconditions in P1 are satis-
fied by the roles in Rp; the other preconditions of ϕ will
be added to R, acting as new sub-goals)

∗ θ does not map variables in vars(R′) to locally fresh vari-
ables.

∗ raθ f θ = rA (instantiating ra yields the administrative
role in A used to perform this role assignment)

∗ θ(Self) = uA (θ maps the distinguished variable Self to
the identity uA of the administrator performing this role
assignment)

∗ r′tθ = rtθ f θ (the role r′t in R′ is the role added by this
transition)

– R = R′θ \ {r′tθ} ∪
⋃

r∈P\P1
{rθ f θ} (the earlier state R contains

the roles in R′, minus the role added by this transition, plus
roles used to satisfy the remaining positive preconditions
of ϕ)

– r′tθ < R (the role being added is not present in the earlier
state R)

Definition 8. The backward symbolic state graph for a user-
role reachability query of the form in Definition 2 is a labeled
directed graph mkGloballyFresh(V, E), where the sets V of ver-
tices and E of edges are the smallest sets such that:

• g ∈ V .

• (R′, ϕ,R) ∈ E and R ∈ V if R′ ∈ V and there exist θ f ∈ Subst
and θ ∈ Subst such that (R′, (ϕ, θ f , θ),R) ∈ Tb(URA, A).

Example 3. The backward symbolic state graph for the follow-
ing policy and query is shown in Figure 1.

RS = {ra, ρ1(p), ρ2(p), ρ3(p)}
ϕ1 = can assign(ra, true, ρ1(p = X))
ϕ2 = can assign(ra, ρ1(p = X), ρ2(p = X))
ϕ3 = can assign(ra, ρ2(p = X) ∧ ¬ρ1(p = X), ρ3(p = X))
ϕ4 = can revoke(ra, ρ1(p = X))
ϕ5 = can revoke(ra, ρ3(p = X))
UA(γ) = {(ua, ra)}
A = {(ua, ra)}
g = {ρ1(p = Y), ρ3(p = Z)}

The definition of the backward symbolic transition relation does
not require ⊆-maximality of P1, so when a backward symbolic
transition is possible with a non-empty value of P1, then back-
ward symbolic transitions corresponding to subsets of P1 are
also possible. This allows positive preconditions to be satis-
fied using either new role instances or role instances already
in the state. For example, for the transition labeled ϕ2 from
{ρ1(Y), ρ2(Z)} to {ρ1(Z)}, P1 contains the positive precondition
of ϕ2 (this is why the size of the symbolic state decreases),
while P1 is empty for the other transition labeled ϕ2 from the
same source state to {ρ1(Y), ρ1(Z)}.

5.2. Second Stage

The second stage performs a forward search and maintains a
correspondence between states explored by the forward search,
called forward states, and states explored during the first stage,
called backward states. The correspondence is used to limit
the forward search to explore only transitions that might be
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{ρ1(Y), ρ3(Z)}

{ρ1(Y), ρ2(Z)}
φ3

{ρ3(Z)}
φ1

{ρ2(Z)}
φ3

φ1

{ρ1(Z)}

φ2

φ2

{ρ1(Y), ρ1(Z)}
φ2

φ1
{ρ1(Y)}φ1

{}
φ1

φ1

Figure 1: Backward symbolic graph for Example 3. An edge from R to R′

labeled with ϕ means (R′, ϕ,R) ∈ Eb. The roles all have one parameter, p,
whose name is elided, to improve readability; for example, ρ1(p = Y) is shown
as ρ1(Y).

useful for reaching the goal. Specifically, from each forward
state (R,C) and each backward state Rb corresponding to it,
the (unoptimized) forward algorithm explores (1) all enabled
can assign rules ϕ such that one of the backward states Rb cor-
responding to (R,C) is the target of an edge labeled with ϕ in the
backward symbolic state graph, and (2) all enabled can revoke
rules. The resulting graph is called a goal-directed forward
symbolic state graph. Its nodes are pairs ((R,C),Rb) of a for-
ward state (R,C) and a corresponding backward state Rb.

Definition 9. The goal-directed forward symbolic state graph
for a user-role reachability query of the form in Definition 2 is a
labeled directed graph mkGloballyFresh(V, E), where V and E
are the smallest sets satisfying the following conditions, where
(Vb, Eb) is the backward symbolic state graph for the query.

• ((UA0, true),Rb) ∈ V for each Rb ∈ Vb such that (∃θ ∈
Subst. Rbθ ⊆ UA0), where UA0, the initial role assignment
for u0, is UA0 = {r | (u0, r) ∈ UA(γ) ∧ ¬admin(r)} (the initial
forward state (UA0, true) is related to backward states that
represent subsets of UA0; intuitively, we use subset, instead
of equality, because a backward state is a set of sub-goals,
and we just require that the sub-goals are satisfied in the ini-
tial state)

• (((R,C),Rb), ϕ, ((R′,C′),R′b)) ∈ E and ((R′,C′),R′b) ∈ V if
((R,C),Rb) ∈ V and there exist substitutions θ f and θ such
that ((R,C), (ϕ, θ f , θ), (R′,C′)) ∈ T (URA, A) and either (1) ϕ
is a can revoke rule and R′b = Rb, or (2) ϕ is a can assign rule
and (R′b, ϕ,Rb) ∈ Eb.

A forward state (R,C) satisfies goal g with substitution θ if
Rθ ⊇ gθ and satisfiable(Cθ). Let subst((R,C), g) be the set of
substitutions θ such that (R,C) satisfies goal g with substitution
θ.

The algorithm can provide a symbolic representation of all
reachable instances of the goal: for each reachable forward
state (R,C), for each substitution θ in subst((R,C), g) that is
�g-maximal in subst((R,C), g), add ((R,C), θ) to the result.

To improve termination and efficiency, the second stage uses
a depth-first search limited to explore paths whose projection
onto the backward graph is acyclic, except that, as a special
case, the self-loops (i.e., an edge from a node to itself) due to
can revoke transitions are allowed. In other words, a can assign

transition leading to a state ((R,C),Rb) is not taken if Rb is the
second component of some state already on the search stack.
To see that limiting the search in this way is safe, note that a
segment of a forward path that projects to a cycle in the back-
ward graph does not help satisfy any positive preconditions, be-
cause that is exactly what the backward graph is keeping track
of. Thus, the can assign transitions in such a path segment are
useless. The path segment might also contain can revoke tran-
sitions, which might help satisfy some negative precondition.
Since revocation is unconditional, those can revoke transitions
do not depend on the can assign transitions and therefore will
be explored along another path that does not contain useless
can assign transitions.

Example 4. Consider the goal-directed forward symbolic graph
for the policy and query in Example 3. The backward state ∅
corresponds to the initial forward state ({}, true). Consider the
following path in the backward graph in Figure 1 (the roles all
have one parameter p, whose name is elided to improve read-
ability, as in Figure 1):

{ρ1(Z), ρ3(Z)}
ϕ1
→ {ρ3(Z)}

ϕ3
→ {ρ2(Z)}

ϕ2
→ {ρ1(Z)}

ϕ1
→ ∅.

Corresponding to this path in the backward graph, the second
stage of the algorithm, without optimizations, constructs the
following path in the goal-directed forward graph (space is in-
serted between the two components of each state to align the
second components, which are backward states):

((∅, true), ∅)
ϕ1
→ (({ρ1(Z)}, true), {ρ1(Z)})
ϕ2
→ (({ρ1(Z), ρ2(Z)}, true), {ρ2(Z)})
ϕ4
→ (({ρ2(Z)}, true), {ρ2(Z)})
ϕ3
→ (({ρ2(Z), ρ3(Z)}, true), {ρ3(Z)})
ϕ1
→ (({ρ1(Y), ρ2(Z), ρ3(Z)}, true), {ρ1(Y), ρ3(Z)}).

The last of these states satisfies the goal.
This example illustrates the observation in Section 5.1 that

states in the backward graph represent subsets of reachable states:
the backward graph contains the state {ρ1(Z), ρ3(Z)}, but all
reachable states containing an instance of ρ3 also contain an
instance of ρ2, because ρ2 is a positive precondition in the rule
ϕ3 for adding ρ3, and ρ2 cannot be revoked.

5.3. Termination
Termination is an issue, because the symbolic state graph

may be infinite. For example, each use of the rule can assign(
Chair(dept = D),Faculty(dept = D), Instructor(dept = D, cid =

C)) introduces a fresh variable for the course identifier, so a
purely forward symbolic algorithm may add an unbounded num-
ber of distinct instances of the Instructor role schema. The
backward stage prevents divergence in many cases, but not all.
Our algorithm is guaranteed to terminate if either (T1) the pol-
icy’s positive-precondition dependency graph is acyclic, or (T2)
all can assign rules in the policy have at most one positive pre-
condition. The positive-precondition dependency graph for a
PARBAC policy is a directed graph that contains a vertex for
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each role schema and contains an edge from r1 to r2 if the policy
contains a can assign rule with r1 in the positive precondition
and r2 in the target.

Condition (T1) ensures termination of the backward stage,
because it implies the diameter of the backward symbolic state
graph is finite; the outdegree of every node in the backward
symbolic state graph is also finite, so the graph is finite. Condi-
tion (T2) ensures termination of the backward stage, because it
implies that every state constructed during the backward search
contains at most |g| roles, and there are only a finite number of
such states (this is true even though transitions can introduce
fresh variables, because two states are equal if they differ only
in the names of variables introduced during the search).

Termination of the backward stage ensures termination of
the forward stage, because the forward search is limited to ex-
ploring paths whose projection onto the backward graph is acyclic.

The policies for both of our case studies satisfy both (T1)
and (T2). We expect that most real policies satisfy at least
one of them. The positive-precondition dependency graph is
often acyclic, because roles in the positive precondition in a
can assign rule are often junior in the organizational hierarchy
to the target role, and organizational hierarchies are acyclic.

5.4. Optimizations
Slicing. A two-stage policy slicing transformation is applied
before analysis. The first stage of slicing computes a simple
overapproximation of the set of reachable roles. The second
stage of slicing uses this information to eliminate can assign
and can revoke rules that are either unreachable, i.e., cannot be
executed from any state reachable from the given initial state,
or useless, i.e., do not truthify any positive preconditions that
help reach the given goal. Slicing can be done in linear time in
the size of the problem instance, assuming the arity of roles is
bounded by a constant.

The first stage of slicing computes a set QRR of quasi-
reachable roles. QRR is the least set satisfying the following
recursive definition: (1) if r is in the initial state, then r is in
QRR; (2) if r is the target of a can assign rule all of whose pos-
itive preconditions are unifiable with elements of QRR, then r
is in QRR. QRR has the property: every role instance in every
reachable concrete state is an instance of (i.e., can be obtained
by instantiating) some role in QRR.

The second stage of slicing computes sets CAu and CRu of
can assign and can revoke rules, respectively, that overapprox-
imate the sets of policy rules that are possibly useful (and reach-
able), and then discards all rules not in these sets. The set CAu

of useful can assign rules is defined simultaneously with the set
Ru of useful roles (i.e., adding these roles to the state might be
useful for reaching the goal). A role r is in Ru if r appears in
the goal or occurs as a positive precondition of a rule in CAu. A
can assign rule is in CAu if its target is unifiable with a role in
Ru and all of its preconditions are unifiable with roles in QRR.
A can revoke rule is in CRu if its target is unifiable with a neg-
ative precondition of a rule in CAu.

Eager Revocation of Useless Roles. During the second stage
of the algorithm, “useless” roles, i.e., roles that will not be

needed to satisfy any positive preconditions, are eagerly re-
voked; this is a kind of partial-order reduction. Specifically,
a can assign transition corresponding to a backward transition
(R′b, ϕ,Rb) ∈ Eb is augmented so that, after the role assignment,
it also revokes (i.e., removes from the forward state) every re-
vocable role r in the forward state that does not match any el-
ement of Rb. We call these roles useless in that state, because
these roles will not be needed to satisfy any preconditions in the
rest of the path to the goal. A role r is revocable with respect
to a user-role reachability query of the form in Definition 2 if A
contains an administrative role with permission to revoke r. A
role r1 matches a role r2 if r1 and r2 are instances of the same
role schema and, for each parameter p of the schema, either (a)
r1 or r2 has a variable as the value of p or (b) r1 and r2 contain
the same constant as the value of p.

Example 5. Consider the same reachability query as in Exam-
ple 4. With eager revocation of useless roles, the can revoke
transition using rule ϕ4 would be combined with the preceding
can assign transition using ϕ2, and if the policy were extended
with a can revoke rule for ρ2, then the transition that uses ϕ3 to
add ρ3(Z) would be extended to revoke ρ2(Z).

Remove α-Equivalent Useless Roles. This optimization detects
“redundant” useless roles and removes some of them to elimi-
nate the redundancy. The local variables of a role r in a forward
state (R,C) are the variables that appear in r and do not appear
anywhere else in the forward state. Two roles r1 and r2 in a
forward state (R,C) are α-equivalent if they can be obtained
from each other by renaming local variables. If a forward state
contains two α-equivalent useless roles, then one of them is re-
moved. This is sound because useless roles are used only to
evaluate negative preconditions, and this removal does not af-
fect which negative preconditions are satisfied by the state.

Prune Subsumed States. This optimization avoids exploring sym-
bolic states that can only lead to a subset of the states reachable
from some symbolic state that has already been explored. We
say that a set R′ of roles in the forward part of a symbolic state
S ′ is subsumed by a set R of roles in the forward part of a sym-
bolic state S if |R′| = |R| and every concrete instance of R′ is
also a concrete instance of R. We conservatively check sub-
sumption by attempting to construct a 1-1 correspondence be-
tween elements of R′ and R, and a substitution θ satisfying the
disequality constraints, such that for each role r′ in R′ and the
corresponding role r in R, r′ = rθ.

During the second stage of the algorithm, let S be a previ-
ously explored state, and let S ′ be a candidate state to explore.
If S ′ agrees with S on the backward state and the useful part
of the forward state, and a subset of the useless part of S ′ is
subsumed by the useless part of S , then this optimization sup-
presses exploration of S ′.1 The subsumption and subset checks
both ensure that S ′ satisfies fewer negative preconditions than

1The current implementation checks a stricter condition, obtained by delet-
ing “a subset of” from this description. We will fix this, and re-run the affected
experiments, for the next version of the paper.
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S , and the two states satisfy the same positive preconditions, so
any goal reachable from S ′ is also reachable from S .

Note that this is a form of forward subsumption, which ex-
plores a state only if it is not subsumed by a previously en-
countered state. We do not consider backward subsumption,
which prevents further exploration from a previously encoun-
tered state if it is subsumed by a later state.

Early Stopping. If the user wants only one reachable instance
of the goal, then the forward search halts as soon as a state
satisfying the goal is encountered; we call this early stopping.

No Revocation of Non-Negative Roles. A role schema r is non-
negative with respect to a backward state Rb if, for all tran-
sitions ϕ on edges between Rb and g in the backward graph,
r does not appear in a negative precondition of ϕ. After the
first stage of the algorithm, we compute the non-negative role
schemas for each backward state. During the second stage of
the algorithm, from a state ((R,C), Rb), can revoke transitions
are not explored for roles that are instances of role schemas
that are non-negative with respect to Rb, with the exception that
useless roles are still eagerly revoked. Suppressing revocation
of non-negative roles is safe because revocation of those roles
would not enable any transition on the rest of the path to the
goal. Note that useless non-negative roles are still eagerly re-
voked. This has low cost, because eager revocations are com-
bined with a preceding can assign transition and hence do not
add nodes or edges to the graph, and it helps reduce the num-
ber of useless roles in the state and thereby reduce the cost of
subsumption checks.

6. Undecidability

We show undecidability—more specifically, (strict) semi-
decidability—of user-role reachability for PARBAC, based on a
semidecidability result for the plan existence problem for STRIPS-
style planning. Specifically, we use Theorem 3.10 in (Erol et al.,
1991a), a technical report containing details of the complexity
results summarized in the journal article (Erol et al., 1991b).

The plan existence problem is: given a language (of con-
stants, predicate symbols, and function symbols) an initial state,
a set of operators, and a goal, determine whether there exists
a plan from the initial state to the goal. An operator is char-
acterized by a set of positive preconditions, a set of negative
preconditions, an add set (a set of atoms representing facts that
the operator adds to the state), and a delete set (a set of atoms
representing facts that the operator removes from the state). A
problem instance is function-free if the language contains no
function symbols. A problem instance is deletion-free if every
operators has an empty delete set.

Theorem 3.10 in (Erol et al., 1991a) states that the plan ex-
istence problem is semi-decidable if the language is allowed to
contain infinitely many constants, even if problem instances are
restricted to be deletion-free and function-free (and the initial
state is restricted to be finite). The proof in (Erol et al., 1991a,
Appendix A.4) is by reduction from the halting problem.

To reduce a function-free, deletion-free planning problem to
the reachability problem for PARBAC, the main step is to show
how the operators in the planning problem can be expressed us-
ing can assign. The main difficulty is that an operator may add
multiple facts, while a single can assign rule adds only one fact.
To separate this aspect from the rest of the reduction, we fac-
tor the reduction into two steps: a translation from the planning
problem to an extension of PARBAC, called multi-target PAR-
BAC, in which can assign rules may contain multiple target
roles, and a translation from multi-target PARBAC to PARBAC.
The former translation is completely straightforward. The latter
translation introduces new roles that, intuitively, represent sets
of simultaneously added roles of the original policy. Precondi-
tions in can assign rules are transformed to take these new roles
into account. For example, suppose the policy contains a multi-
target can assign rule with target {ρ1(p = X), ρ2(q = Y)}. The
translation replaces this rule with a can assign rule with target
ρ1,2(p = X, q = Y), where ρ1,2(p, q) is a new role schema. Every
can assign rule with ρ1(p = X) in the positive precondition P
is replaced with two rules: one with ρ1(p = X) in P (i.e., no
change), and one with ρ1,2(p = X, q = Y ′) replacing ρ1(p = X) in
P, where Y ′ is a fresh variable (i.e., a variable that does not yet
appear in the rule). Each negative precondition N containing
ρ1(p = X) is extended to also include ρ1,2(p = X, q = ), where
is a wildcard.

More generally, we define a translation that, given a multi-
target PARBAC reachability problem instance of the form in
Definition 2, and a multi-target rule ϕ0 = can assign(r0, (P0,N0),
{ρ1(~e1), . . . , ρn(~en)}) in URA, where ~ei is a vector of arguments,
produces a set of reachability problem instances (differing only
in their goals) in which ϕ0 has been replaced with single-target
can assign rules, and with the property that the original prob-
lem instance is satisfiable (i.e., the goal is reachable) iff one of
the generated problem instances is satisfiable. The result of the
translation is the problem instance in Figure 2, where ρ′ is a
fresh role name, fp transforms roles used as positive precon-
ditions or goals, fn transforms roles used as negative precon-
ditions, and fR transforms can assign rules (the deletion-free
restriction implies that there are no can revoke roles). Disjunc-
tion in a positive precondition of a rule is a shorthand that is
easily expanded by replacing the rule with multiple rules (one
for each disjunct). Similarly, disjunction in a goal is a shorthand
for multiple goals (hence multiple problem instances).

Repeatedly applying this translation, once for each rule with
multiple target roles, reduces a multi-target PARBAC reachabil-
ity problem instance to a set of PARBAC problem instances.

Harrison, Ruzzo, and Ullman’s classic proof of undecid-
ability of the safety analysis problem for their access control
model (Harrison et al., 1976) cannot easily be adapted to our
setting for a variety of reasons, e.g., their model allows creation
of subjects and objects, while our result applies to reachability
analysis for user-role administration (URA) policies, which do
not support creation of users or roles. Crampton (Crampton,
2002) defines an administrative model for RBAC (without role
parameters) and shows that reachability analysis for it is unde-
cidable. There are several differences between the URA poli-
cies considered here and the administrative model considered
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γ′ = 〈RS′,U,UA〉
RS′ = RS ∪ {ρ′(~e1, . . . ,~en)}
A′ = A
ϕ′0 = ϕ0 with target changed to ρ′(~e1, . . . ,~en)
URA′ = { fR(ϕ) | ϕ ∈ URA ∪ {ϕ′0} \ {ϕ0}}

fp(ρ(~e)) = let S = {i | i ∈ 1..n ∧ ρi = ρ}
in if S = ∅ then ρ(~e)

else ρ(~e) ∨
∨

i∈S ρ
′(~X1, . . . , ~Xi−1, ~e, ~Xi+1, . . . , ~Xn)

where ~X j is a vector of fresh variables,
with same length as ~e j

fn(ρ(~e)) = {ρ(~e)} ∪
⋃

i∈1..n s.t. ρi=ρ{ρ
′( , . . . , , ~e, , . . . , )}

where, in the arguments of ρ′, there are i − 1 wildcards
before ~e and n − i wildcards after ~e

fR(can assign(ra, (P,N), r)) =

can assign(ra, ({ fp(r) | r ∈ P},
⋃

r∈N fn(r)), r)
g′ = { fp(r) | r ∈ g}

Figure 2: Translation to replace a multi-target can assign rule ϕ0 with a single-
target can assign rule.

in (Crampton, 2002, Section 5.2), e.g., the former supports role
parameters, and the latter supports creation of roles. Becker’s
semidecidability result for the reachability problem for Dyn-
PAL (Becker, 2009) is also based on Theorem 3.10 in (Erol
et al., 1991a). The main difference from our result is that Dyn-
PAL rules may perform multiple updates, so there is no need
for an analogue of our reduction from multi-target PARBAC to
PARBAC.

7. Fixed-Parameter Tractability

Expressing the complexity of the optimized backward algo-
rithm as a function of the overall problem size alone is unsatis-
factory, because the worst-case complexity with respect to this
parameter is exponential, while we expect the typical complex-
ity to be much better. To provide some insight into when and
why this is the case, we express the complexity in terms of sev-
eral metrics that characterize the “difficulty” of the policy. This
complexity result applies to policies that satisfy conditions (T1)
and (T2) in Section 5.3.

Let Gb denote the backward symbolic state graph for a query.
Each backward state Rb in Gb satisfies |Rb| ≤ |g|, because each
backward transition replaces the target role with the positive
precondition of the selected can assign rule. Let dp denote the
diameter of the positive-precondition dependency graph. Typ-
ically dp is much smaller than |RS |, because it measures the
height, not the total size, of an organization’s administrative
structure. The length of paths in Gb is bounded by |g|dp, be-
cause each backward transition decreases the sum of the heights
(in the positive precondition dependency graph) of the schemas
of the roles in the backward state.

Let dt denote the maximum number of can assign rules
with the same role schema as a target. The outdegree of a ver-
tex in the backward state graph is bounded by |g|dtdθ, where
dθ bounds the number of different successor states that can be

reached from a given backward state using a given can assign
rule and different substitutions, i.e., it is the maximum, over
backward states R′b in Gb and can assign rules ϕ in the policy,
of |{Rb | ∃θ f , θ. (R′b, (ϕ, θ f , θ),Rb) ∈ Tb(URA, A)}|. Note that
dθ is bounded by |R′b| hence by |g|, because differences in θ that
lead to differences in Rb come from matching the target of ϕ
with different elements of R′b. Thus, the outdegree of a vertex
in the backward state graph is bounded by |g|2dt. The number
of nodes in a graph with maximum path length ` and maximum
outdegree d is O(d`). Therefore, the number of backward states
is O((|g|2dt)|g|dp ).

Let G f denote the goal-directed forward symbolic state graph
for the query. Every node in G f is reachable by a simple path
in G f . Every simple path in G f corresponds, by projection onto
the second component of each node, to a distinct path in Gb, be-
cause (1) every transition in the goal-directed forward symbolic
graph corresponds to execution of a backward symbolic tran-
sition that changes the second component (i.e., the backward
state) in the node, and (2) distinct outgoing transitions from
a state in the goal-directed forward symbolic graph must cor-
respond to execution of different can assign transitions hence
to execution of different backward symbolic transitions. Fur-
thermore, these paths in Gb contain at most one occurrence of
each cycle in Gb, because transitions that go around a cycle
in Gb a second time would not add more irrevocable roles or
constraints to the corresponding forward states, hence the cor-
responding fragment of the path in G f would be a cycle, con-
tradicting the assumption that the path in G f is simple. There-
fore, the number of states in G f is bounded by the number of
paths in Gb that go around each cycle at most once. This is
bounded by some function φ of the number of backward states.
The time complexity of standard state-graph construction al-
gorithms is polynomial in the size of the input and linear in
the size of the output (i.e., the generated state graph). There-
fore, the worst-case time complexity of the overall backward
algorithm is O(|I|cφ((|g|2dt)|g|dp )), for some constant c and some
function φ, where |I| is the size of the problem instance (the
query). This implies that user-role reachability for queries sat-
isfying (T1) and (T2) is fixed-parameter tractable with respect
to max(|g|, dt, dp). For the queries in our case studies, we found
|g| ≤ 2, dt ≤ 10, and dp ≤ 3.

8. Beyond Separate Administration

Recall that the preceding algorithms assume separate ad-
ministration. In (Stoller et al., 2007), we presented two ap-
proaches to analysis of policies that do not satisfy separate ad-
ministration. The first approach extends the algorithms to keep
track of the user-role assignment for each administrator as well
as the target user u0; this is straightforward but may be com-
putationally expensive. The second approach allows more effi-
cient analysis of policies that satisfy an alternative assumption
called hierarchical role assignment, which says, roughly, that
each administrative role has authority to assign users only to
selected roles that are junior to it in the role hierarchy. Both
approaches can be adapted for analysis of PARBAC.
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9. Case Studies

We used PARBAC policies for a university and a health-
care facility as case studies. Unparameterized versions of these
policies were used as case studies in (Stoller et al., 2007); those
versions are unrealistic in the sense that they accommodate only
one department, one course, one faculty, etc. The parameter-
ized versions accurately handle multiple departments, multiple
courses, multiple faculty, etc. Both policies have the following
characteristics: (1) the positive-precondition dependency graph
is acyclic; (2) every can assign rule has at most one positive
precondition; (3) for almost all can assign rules, there is a cor-
responding can revoke rule, so almost all roles are revocable;
and (4) the policy does not satisfy separate administration, but
hierarchical role assignment is satisfied for most sets of admin-
istrative roles. The policies contain about 3 dozen and 1 dozen
can assign rules, respectively.

University. Our PARBAC policy for a university controls as-
signment of users to student roles and employee roles. It con-
tains 60 role schemas and 35 can assign rules; expanding role
hierarchy increases it to 625 rules. Role schemas for students
include Student, Undergrad, Undergrad(dept), Undergrad(dept,
cid), and RA(fac). Role schemas for employees include Employee,
Faculty, Faculty(dept), Instructor(dept, cid), DeptChair(dept),
and Provost. Role hierarchy relationships include President �
Provost � DeanOfAdmissions � AdmissionsOfficer � Staff .

A sample user-role reachability query is: Can an adminis-
trative user initially in DeptChair(dept = cs) add a user initially
in Faculty(dept = ee) to QualExamCommittee(dept = cs)?
The answer is no, because the policy states that members of
DeptChair(dept = D) can assign only members of Faculty(dept =

D) to QualExamCommittee(dept = D). Another sample reacha-
bility query is: Can administrative users in GradAdmissionOfficer
and RegistrarOfficer add a user initially in no roles to Grad(dept =

cs, cid = 501)? Yes, because a GradAdmissionOfficer can first
assign the user to Grad, and a RegistrarOfficer can then assign
the user to Grad(dept = cs, cid = 501).

Health Care Facility. Our second case study is a PARBAC pol-
icy for a health care facility, based on policies in (Evered and
Bögeholz, 2004; Becker, 2005). The policy contains 14 can assign
rules. Role schemas include Doctor, Doctor(patient), Nurse,
ReferredDoctor(patient), PrimaryDoctor(patient), Receptionist,
Manager, MedicalManager, and ThirdParty. Hierarchical role
assignment is satisfied for most sets of administrative roles, but
not as high a percentage of them as for the university policy.

10. Experimental Results

We implemented the symbolic algorithm described in this
paper and the forward and backward algorithms for analysis
of unparameterized ARBAC in (Stoller et al., 2007) using the
XSB tabled logic programming system, version 3.1. We refer
to the algorithms in (Stoller et al., 2007) as concrete algorithms.
All reported data were obtained on a 2.5GHz Pentium machine
with 4GB RAM running Linux 2.6.28. The policies used in our

|g| Symbolic |T | Concrete Backward
Node-1/Edge-1

Time Mem Node-2/Edge-2 Time Mem Node-1/Edge-1
1 0.01 5.92 27/291 1 0.00 5.45 27/291

21/70 2 0.00 5.73 49/950
3 0.01 7.06 75/2.2K
4 0.03 9.10 109/4.4K
5 0.11 12.4 149/7.7K
6 0.12 17.2 194/12.5K
7 0.39 23.9 246/19.1K

2 0.20 14.26 384/8385 1 0.05 5.45 370/7.9K
362/1337 2 0.41 5.96 1.2K/47K

3 1.96 7.07 3.0K/178K
4 8.33 9.10 6.3K/512K

3 7.74 135 826/32K 1 1.79 5.45 3.4K/108.6K
2 62.94 5.97 20.4K/1.2M

Table 1: Running time (sec) and memory consumption (MB) on parameterized
policies. Node-i/Edge-i: number of nodes and edges generated in Stage i. K
and M represent 103 and 106, respectively.

experiments are available at http://www.cs.stonybrook.
edu/~stoller/parbac/.

Case studies. We applied the symbolic algorithm to 5 user-role
reachability queries for the university policy and 2 such queries
for the health care policy (details are at the above URL). Each
query is answered in less than 0.01 sec.

Performance Comparison for Parameterized Policies. These ex-
periments evaluate the performance benefit of using symbolic
analysis for parameterized policies in which all parameters range
over finite types. These experiments compare the performance
of the symbolic algorithm applied to a parameterized policy
with the performance of the concrete algorithm applied to each
unparameterized policy obtained by instantiating the parame-
terized policy using values from a single finite type, for varying
sizes of the type.

To do this for a variety of “realistic” policies, we generate
synthetic policies that are structurally similar to our university
policy after expansion of role hierarchy and that contain about
the same number of can assign rules (namely, 625). The poli-
cies contain the same role schemas as the university policy. The
number of can assign rules per (target) role schema is chosen
randomly following the distribution of rules per role schema in
the university policy. The numbers of positive and negative pre-
conditions per rule are chosen in an analogous way. For each
rule, role schemas for the positive and negative preconditions
are randomly selected and then instantiated based on the fol-
lowing observation about the university policy: in each rule, pa-
rameters (in different role schemas) are instantiated with same
variable iff the parameters have the same name. “Easy” prob-
lem instances, for which policy slicing yields an empty policy,
are discarded and replaced during policy generation. To gen-
erate problem instances with goal size 1, one role is randomly
selected as the goal; to generate problem instances with goal
size 2, each goal of size 1 is augmented with a randomly se-
lected role; and so on.
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|g| Symbolic Concrete Backward Concrete Forward
Time Mem Time Mem Time Mem

1 0.00 0.52 0.00 5.12 0.08 12.24
2 0.02 0.93 0.00 5.57 0.09 12.56
3 0.26 17.7 0.15 13.84 0.10 12.71
4 7.06 137.26 4.19 64.60 0.10 12.71
5 119.4 294.78 70.58 236.96 0.10 12.71

Table 2: Running time (sec) and memory consumption (MB) on unparameter-
ized policies.
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Figure 3: Normalized running times for symbolic algorithm.

Table 1 gives performance data for the algorithms with all
optimizations enabled. For the concrete backward algorithm,
we report only numbers of nodes and edges in stage 1, because
the nodes and edges in stage 2 are a subset of those in stage
1. Each data point is an average over 32 synthetic problem in-
stances. We varied the size |g| of the goal and the size |T | of
the finite type. Running time is rounded to the nearest 0.01
sec. The running time and memory consumption of the con-
crete backward algorithm grow quickly as a function of |T |. For
|g| = 1, the symbolic algorithm and the concrete algorithm have
similar running times for |T | ≤ 3, and the symbolic algoritm is
faster for |T | > 3. For |g| > 1, the symbolic algorithm is faster
than concrete backward algorithm when |T | > 1. For |g| = 3,
we do not include performance results for the concrete back-
ward algorithm for |T | = 3 (or higher), because the concrete
algorithm did not terminate within 4 hours for some policies.
Data for the concrete forward algorithm is omitted from Table 1
because that algorithm runs significantly slower than the other
two algorithms when |T | = 1 and runs out of memory when
|T | > 1, because (1) that algorithm is exponential in the number
of mixed roles (roles that appear positively in some precondi-
tions and negatively in others) and the number of mixed roles
is large (namely, 18), and (2) that algorithm tends to generate
states containing unnecessarily many distinct instances of some
role schemas.

To illustrate the distribution of running times, Figure 3 shows
the normalized running times of the symbolic algorithm on all
the problem instances used for Table 1. For each goal size, the
running times are normalized by dividing by the longest run-
ning time for that goal size. Observe that the running times do
not follow a normal (Gaussian) distribution, and the distribu-
tion tends to have outliers on the right side, especially for larger

Optimization Time Mem Node-2 Edge-2
Baseline 36.49 20.3 4521 6407
Eager revocation 0.12 5.71 18 59
No revoc. nonneg. 8.98 12.92 2234 3520
Prune subsumed 2.17 14.11 2588 3284
Remove subsumed 8.80 10.17 1544 2544
Best 0.01 5.92 21 27

Table 3: Evaluation of optimizations on synthetic problem instances with goal
size 1.

goal sizes.

Performance Comparison for Unparameterized Policies. These
experiments evaluate the performance penalty of unnecessarily
using symbolic analysis on unparameterized policies, by com-
paring the performance of the symbolic and concrete algorithms
applied to the same unparameterized policies. We used the syn-
thetic unparameterized policies used for Tables 2(a) in (Stoller
et al., 2007) which vary goal size (running times in (Stoller
et al., 2007) were obtained with a different implementation of
the concrete algorithms, in C++). Table 2 shows the time and
space requirements of the three algorithms on the unparame-
terized policies used for Table 2(a) in (Stoller et al., 2007),
which contain 32 roles, including 8 mixed roles. The perfor-
mance of the symbolic algorithm and concrete backward al-
gorithm is similar for these policies. As expected, the time
and memory consumption of these algorithms increases quickly
with |g|, while the cost of the concrete forward algorithm in-
creases slowly with |g|.

Evaluation of Optimizations. The performance data in Table 3
demonstrates the effect of some of the optimizations for syn-
thetic problem instances with goal size 1. For the first row
(“Baseline”), only slicing and early stopping are enabled. We
included these two optimizations in the baseline, because with-
out them, the running time is very high (e.g., several hours) for
some problem instances. For each of the next four rows, the one
specified optimization is also enabled (in addition to slicing and
early stopping). For the last row (“Best”), all optimizations are
enabled. These experiments use the same synthetic problem
instances as in Table 1, except that we omitted one problem in-
stance for which the baseline does not terminate in a reasonable
amount of time. The optimizations evaluated in this table affect
only stage 2, so the numbers of nodes and edges from stage 1
are not shown.

Observe from the table that all four of the evaluated op-
timizations reduce the size of the graph generated in stage 2.
Eager revocation provides the most dramatic reduction in graph
size and running time. The “Eager revocation”, “Prune sub-
sumed”, “Remove subsumed”, and “No revocation of non-negative
roles” optimizations reduce the execution time by 99.7%, 94%,
76%, and 75%, respectively.

We draw the following conclusions from our experiments.
(1) Slicing and early stopping are very effective in many cases
and have low cost. (2) Eager revocation provides a very effec-
tive partial-order style reduction, dramatically running time and
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graph size. It has low per-transition overhead (linear in the size
of a state representation). (3) Pruning subsumed states is also
effective, but comes at a cost: subsumption checks are expen-
sive. The algorithm we use is O(N!), where N is the number
of useless roles in a forward state. Pruning subsumed states
works best when combined with removal of α-equivalent use-
less roles, which helps keep N small. For example, for some
problem instances, we saw values of N as high as 13 when “Re-
move α-equivalent useless roles” was disabled; when it was en-
abled, we did not see values larger than 3. (4) ”No revocation
of nonnegative roles” eliminates some transitions and hence re-
duces the size of the graph, but it increases the number of roles
in the state, potentially making various operations, especially
subsumption checks, more expensive. Also, the overhead of
computing the set of non-negative roles for each backward state
may be significant in some cases.

11. Related Work

Analysis of Unparameterized ARBAC Policies. A significant
difference between this paper and prior papers on reachabil-
ity analysis for ARBAC, including (Li and Tripunitara, 2006;
Sasturkar et al., 2006; Stoller et al., 2007; Jha et al., 2008),
is that they consider only policies without parameters, so they
are inapplicable to policies with parameters that range over in-
finite types, and they are inefficient when applied to policies
with parameters over finite types that have been eliminated by
exhaustive instantiation. Some general ideas in our prior work
in (Stoller et al., 2007) are also used here (e.g., backward search
followed by forward search), but analysis of parameterized poli-
cies is significantly more difficult, requiring new algorithms and
complexity results: the symbolic transition relations defined
here are much more complicated than the concrete ones used
in (Stoller et al., 2007), the relationship between the two stages
of the backward algorithm is different, new optimizations are
needed for stage 2, different complexity parameters are used in
the fixed-parameter tractability result, etc. Section 10 empiri-
cally compares our current work with (Stoller et al., 2007).

Analysis of Other Kinds of Parameterized Systems. In general,
parameterized systems have infinite state spaces, and the reach-
ability problem for them is undecidable. Many specialized tech-
niques have been developed for verification of various kinds
of parameterized systems. There are two broad, overlapping
classes of parameterized systems. In the first class, parame-
ters represent the number of components (e.g., processes) in
a system. There are numerous sound but incomplete reacha-
bility algorithms for such parameterized systems, e.g., (Clarke
et al., 1997; Emerson and Namjoshi, 1995). In the second class,
parameters represent data values that range over infinite or un-
bounded domains. There are numerous techniques that ana-
lyze abstractions of such parameterized systems, giving up ei-
ther soundness or completeness. In some restricted cases, such
as data-independent systems and timed automata, sound and
complete algorithms for reachability are known, e.g., (Sarna-
Starosta and Ramakrishnan, 2003; Alur and Dill, 1994).

We are not aware of an existing symbolic reachability frame-
work that can directly be applied for analysis of PARBAC, be-
cause of the following combination of features of the problem:
(1) states are described by potentially unbounded sets of pa-
rameterized boolean variables corresponding to role member-
ship facts (in other words, the number of roles in a state, hence
the number of state variables, is unbounded, as in the first cat-
egory of parameterized systems described above), (2) the pa-
rameterized boolean variables may be used both positively and
negatively in preconditions of transitions, (3) the parameters
of the boolean variables range over an infinite data type (as
in the second category of parameterized systems above), and
(4) transitions may introduce an unbounded number of these
parameters (i.e., fresh variables) in the symbolic state graph
(cf. the discussion of termination in Section 5). For exam-
ple, work on verification of unbounded networks of processes,
such as (Emerson and Kahlon, 2000), is not applicable because
it assumes that each process’s state ranges over a fixed finite
set. Work on verification of data-independent systems, such
as (Sarna-Starosta and Ramakrishnan, 2003), is not applicable
because it assumes that fresh variables are not introduced dur-
ing the search. Work on verification of cryptographic proto-
cols, such as (Blanchet and Podelski, 2005), allows unbounded
numbers of nonces (represented by variables that range over
an unbounded domain) but is not applicable because it does
not allow these variables to be used in negative preconditions
of transitions. Work on verification using inductive assertions,
such as (Arons et al., 2001), heuristically constructs a candi-
date inductive invariant φ and calls a theorem prover to check
whether φ is inductive and stronger than the property of inter-
est, but is not applicable for a variety of reasons: the method can
prove formulas containing universal but not existential quanti-
fiers, so it can try to prove that a goal is unreachable but not
that a goal is reachable (which would require existential quan-
tification over the substitution, as in Definition 2), and if the
heuristic method fails to prove that a goal is unreachable, we
can draw no conclusions (in particular, we cannot conclude the
goal is reachable); also, the heuristic cannot generate invariants
that contain existential quantifiers, which are sometimes needed
to accurately capture the effects of feature (4) above. Even if
some existing parameterized verification framework could be
applied, we would still need to define a symbolic transition re-
lation for PARBAC, similar to Definition 5. Also, we are not
aware of any fine-grained complexity results or fixed-parameter
tractability results for such algorithms.

This paper extends our conference paper Stoller et al. (2009)
in several ways. On the theory side, we extended the policy lan-
guage to allow wildcards in negative preconditions, simplified
the statement of Theorem 2, and proved undecidability of user-
role reachability analysis for PARBAC. On the algorithm side,
we developed three new optimizations: “remove α-equivalent
useless roles”, “prune subsumed states”, and “no revocation of
non-negative roles”. On the implementation side, we imple-
mented the search stack check, eager revocation, and the three
new optimizations, re-ran the previous experiments, and added
new experiments that measure the effectiveness of the optimiza-
tions. In the experiments reported in Table 3, the new optimiza-
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tions together reduce the running time by an order of magni-
tude.

12. Conclusion

This paper shows that user-role reachability analysis for AR-
BAC with parameters is undecidable, and presents a semi-decision
procedure for this problem. The algorithm is symbolic and does
not need to consider all instantiations of the parameters. It ex-
ploits the structure of PARBAC policies, constructing a back-
wards graph to prune the search space. We show that the algo-
rithm terminates under realistic assumptions about the policy,
and we present a fixed-parameter tractability result. We also
developed and evaluated several optimizations. Future work on
analysis for PARBAC includes algorithms guaranteed to termi-
nate in more cases, efficient analysis of policies that do not sat-
isfy separate administration or hierarchical role assignment, and
analysis of policies that control changes to the role hierarchy.
Future work beyond PARBAC includes analysis for trust man-
agement frameworks, such as SecPAL (Becker et al., 2007).

Acknowledgement. The authors thank Jason Crampton and the
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and suggestions, and Yogesh Upadhyay for implementing the
conversion from hierarchical to non-hierarchical policies.
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