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ABSTRACT
Several program analysis problems can be cast elegantly as a logic
program. In this paper we show how recently-developed techniques
for incremental evaluation of logic programs can be refined and
used for deriving practical implementations of incremental pro-
gram analyzers. Incremental program analyzers compute the changes
to the analysis information due to small changes in the input pro-
gram rather than re-analyzing the program. Demand-driven ana-
lyzers compute only the information requested by the client anal-
ysis/optimization. We describe a framework based on logic pro-
gramming for implementing program analyses that combines incre-
mental and demand driven techniques. We show the effectiveness
of this approach by building a practical incremental and demand-
driven context insensitive points-to analysis and evaluating this im-
plementation for analyzing C programs with 10-70K lines of code.
Experiments show that our technique can compute the changes to
analysis information due to small changes in the input program in,
on the average, 6% of the time it takes to reanalyze the program
from scratch, and with little space overhead.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Program Analy-
sis; D.1 [Programming Techniques]: Logic Programming

General Terms
Algorithms, Performance, Design, Languages, Theory

Keywords
Pointer analysis, Incremental analysis, Demand-drive analysis, Logic
programming

1. INTRODUCTION
Many program analysis problems can be naturally formalized by

a set of inference rules. For instance, Anderson’s points-to anal-
ysis [3] can be represented by a set of inference rules [20] (see
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Figure 1). In many cases (Anderson’s analysis being one of them),
the inference rules can be readily encoded as a logic program (e.g.
see Figure 2). The solution to the analysis problem can then be
obtained from the least (or in some cases, the greatest) relation sat-
isfying its defining clauses.

While Horn clause logic has been used as a framework to spec-
ify many analysis problems, logic programming systems have been
seldom used to derive practical analyzers directly from these spec-
ifications. Tabled evaluation [38, 10], which is complete for Data-
log programs, has offered the promise to derive implementations of
analyzers from specifications [41]. However, declarative program-
ming technology has not been used to offer benefits, other than the
elegance and simplicity, for the construction of program analyzers.

In this paper we describe a concrete instance where declarative
programming technology significantly improves the state of the art
in the implementation of program analyzers. We combine our re-
cent development of an incremental evaluation technique for logic
programs with the demand-driven query evaluation capabilities of
tabling to derive incremental program analyzers. We refine our in-
cremental evaluation technique so that the resultant analyzers are
efficient and scalable. For instance, our implementation of An-
derson’s points-to analysis for C programs, which is a flow- and
context-insensitive analysis1, scales well to programs with nearly
70K lines of code. We show the effectiveness of demand-driven
and incremental computation for this analysis. We demonstrate the
generality of this approach by deriving an incremental and demand-
driven version of a context-sensitive points-to analysis.

Incremental Program Analysis. Incremental algorithms for
program analysis and optimization have long been a subject of re-
search (e.g. [8, 5, 28]). These algorithms efficiently compute the
changes in results due to small changes in the input, and are of
importance in software development environments. Information
such as global points-to sets (to determine the set of memory loca-
tions that may be accessed through pointer dereferences) have been
critical for ensuring the soundness of other program analyses and
transformations (e.g. program slicing). However, such information
is not routinely gathered due to the lack of practical incremental
techniques and frameworks for computing it.

Previous works on incremental program analysis have reported
significant time and space savings. However, these works pro-
vide solutions that are specific to a program analysis technique or
problem. For instance, [44] gives an efficient incremental data-

1Flow-insensitive analyses ignore the control flow in a program,
considering it as a set of unordered statements. Context-insensitive
analyses ignore the calling context of procedures [21].



flow analysis technique which performs flow-sensitive and context-
sensitive points-to analysis; but the technique cannot be readily
generalized to other program analyses including other points-to
analyses (such as flow-insensitive or context-insensitive analyses).
Demand-driven program analysis [13, 12], which efficiently gath-
ers only that information which is needed by its client analysis/
optimization, is also seen as a way to reduce the cost of analy-
sis. To date, there have been no method that combines the benefits
of demand-driven and incremental computation. We address this
problem in this paper.

Contributions. In this paper, we describe efficient techniques
for evaluating program analyses specified as Horn clause rules in-
crementally and in a demand-driven fashion. Note that many pro-
gram analysis problems can be readily encoded into deductive frame-
work [2, 31, 11]. By developing techniques that apply to the gen-
eral setting of this deductive framework, we can generate incremen-
tal and demand-driven analyzers for different analysis problems.
We illustrate this approach by deriving a practical demand-driven
and incremental analyzer for context-insensitive points-to analysis.
Experiments show that the incremental analyzer is 20 times faster
(on the average) than the comparable from-scratch analyzer for
small changes in the analyzed program, with negligible space over-
head. We also describe preliminary results on incremental-context
sensitive analysis derived using the same framework.

An Overview of Our Solution. We formulate the program
analysis problems in terms of query evaluation over logic programs.
The analysis is performed by evaluating queries over a logic pro-
gram which contains clauses defining the analysis itself, as well as
a representation of the program to be analyzed (Intensional and Ex-
tensional Databases, resp., in database terminology). When we use
a goal-directed query evaluation mechanism (such as tabled resolu-
tion [38, 10] or magic set transformations [29]), we naturally obtain
demand-driven analysis.

Using this formulation, the problem of incremental analysis is
reduced to that of evaluating the changes to the derived relation
(i.e. materialization of the intensional database) corresponding to
the changes to the program (the extensional database). In this pa-
per, we consider changes to the program in terms of addition and
deletion of tuples to its relational representation. For example, if an
assignment x=*y is changed to x=*z, this change is represented
by the deletion of the tuple corresponding to x=*y, and insertion
of a new tuple representing x=*z.

We have developed efficient techniques for incremental, goal-
directed query evaluation over definite logic programs [34]. The
incremental evaluation technique keeps an auxiliary data structure,
called the support graph, to quickly identify the changes to the de-
rived relation when tuples in the base relation are deleted. However,
the support graph may consume a large amount of space, and is es-
pecially impractical for program analysis problems. In this paper,
we describe a hybrid approach which maintains a limited amount
of auxiliary support information in order to bound the space usage,
and yet exhibits very good time behavior.

The rest of the paper is organized as follows. We describe a
logic-programming-based formulation of pointer analysis in Sec-
tion 2, and its demand-driven version in Section 3. We describe
techniques for incremental evaluation in Section 4. Section 5 con-
tains experimental results that show the characteristics of our demand-
driven and incremental analyses. A detailed discussion of related
research appears in Section 6, and concluding remarks appear in
Section 7.

u −→ v
u = &v v −→ x

u −→ x
u = v

v −→ x, x −→ y

u −→ y
u = *v

u −→ x, v −→ y

x −→ y
*u = v

Figure 1: Anderson’s rules for pointer analysis.

points to(U,V) :-
assign(plain(U),addr(V)).

points to(U,X) :-
assign(plain(U),plain(V)),
points to(V,X).

points to(U,Y) :-
assign(plain(U),star(V)),
points to(V,X), points to(X,Y).

points to(X,Y) :-
assign(star(U),plain(V)),
points to(U,X), points to(V,Y).

Figure 2: Logic program using Prolog notation corresponding
to Anderson’s rules

2. A DEDUCTIVE FORMULATION OF
POINTER ANALYSIS

We consider Anderson’s [3] inclusion-based context-insensitive
and flow-insensitive pointer analysis. To simplify our presentation,
we assume that the program is decomposed to a set of primitive
assignment statements of the following form:

u = &v | u = v | u = ∗v | ∗ u = v

Figure 1 shows the points-to analysis rules for each assignment
statements (from [19]). In the figure x −→ y denotes that x may
point to y.

These rules can be readily written as a logic program which
is shown in Figure 2. Following Prolog’s notational convention,
identifiers beginning with uppercase letters denote variables, and
identifiers beginning with lowercase letters denote relation names
and data constructors. For instance points to denotes the binary
may-points-to relation, and the term points to(x,y) denotes that
x may point to y. The terms plain(x), addr(u) and star(u)
represent pointer variable x and pointer expressions &u and ∗u re-
spectively. Also assign(U,V ) represents the assignment state-
ment with left hand side and right hand side contains pointer ex-
pressions corresponding to the terms U and V . For example, the
second rule should be read as “U may point to X if there exists an
assignment statement of the form U = V in the code and V may
point to X .”

Based on this formulation the set of all variables that a given
variable v may point to can be computed as answers to the query2

points to(v, X). For instance, given set of assignment state-
ments {u=&v, p=u, u=p}, the query points to(p, X) has
one answer X=v, meaning that p may point to v. While the points-
to analysis can be succinctly encoded in Prolog syntax, most Pro-
log systems will fail to evaluate the program correctly. This results
from Prolog’s inability to compute the least models of programs
with left recursion— even for Datalog programs (i.e. logic pro-
grams without data structures). For instance, consider the evalua-
tion of the query points to(p,X) w.r.t. the set of assignments

2In this paper, we use the terms “query”, “goal”, “subgoal” and “call” in-
terchangeably.



{u=&v, p=u, u=p, t=&u}. In resolving the original goal, Prolog
will issue the query points to(u,X) (due to p=u), whose res-
olution gives an answer X=v. To find more answers for the latter
goal, we again encounter the goal points to(p,X). This causes
Prolog to loop.

Tabled resolution is a goal-directed evaluation technique [38, 10]
which removes this shortcoming by using memoization as follows.
Tabled resolution maintains the set of subgoals encountered so far
(called the call table) and their associated answers (called answer
tables, one table per call). During resolution, if a subgoal occurs
in the call table, its answers can be found by simply retrieving an-
swers from the corresponding answer table. This process is called
answer clause resolution. When a subgoal is encountered for the
first time, it is added to the call table. Answers to this subgoal
are computed by resolving the goal w.r.t. program clauses (called
program clause resolution), and are added to its answer table. Con-
sider again the query points to(p,X) w.r.t. the set of assign-
ments {u=&v, p=u, u=p, t=&u}. Upon first encountering the
original query, tabled resolution adds the goal to the call table and
creates an empty answer table for it. Program clause resolution
will then produce the goal points to(u,X), which, in turn is
entered in the call table. Further resolution will produce one an-
swer X=v, which is entered in both answer tables. Continuing with
resolution, we will once again get the goal points to(p,X). In-
stead of doing program clause resolution which makes Prolog loop,
tabled resolution resolves this goal using answers in the first goal’s
table. In this example, this produces X=v, an answer that was al-
ready generated. No further answers can be generated, and hence
evaluation terminates.

By remembering the past resolution steps and avoid repeating
them, memoization helps tabled resolution terminate for datalog
programs, and moreover, evaluate queries with polynomial data
complexity. Moreover, unlike the semi-naive algorithm used in
the deductive database literature [39], tabled resolution is goal-
directed, and hence is naturally suited for demand-driven analysis.

Pragmatics. We apply the above analysis to C programs by trans-
forming all assignment expressions into a set of primitive assign-
ments. Nested uses of & and * are handled by introducing tem-
porary variables. For each static call site we introduce assignment
statements where formal parameter is assigned to actual parame-
ter. Dynamic call sites are resolved matching with functions hav-
ing same number and types of parameters. If the returned value is
assigned to a variable then we generate an assignment statements
which assigns a temporary variable (same as the function name) to
that variable. For each function the return expression is assigned
to the same temporary variable generated from function name. In
this paper we consider field-independent analysis which ignores
field information for accessing structures and unions. Each array
is treated as a single variable and index information is ignored. Re-
laxing these restrictions adds complexity to the analysis but does
not reveal any more insight into the problem of incremental analy-
sis, and hence we describe only an analysis with these restrictions.

3. DEMAND-DRIVEN POINTER ANALYSIS
Recall that the evaluation of points to(p,X) w.r.t. the set

of assignments {u=&v, p=u, u=p, t=&u} did not make use of the
assignment statement t=&u. This is due to the goal-directedness
of the evaluation technique: only calls and answers that are needed
to resolve the given goal are used. However, note that implementa-
tions of tabled resolution follow Prolog’s literal selection strategy:
at each program clause resolution step, the left-most subgoal is se-
lected for resolution. Hence, the order of literals in a clause affects

points to(X,Y):- assign(plain(X),addr(Y)).
points to(X,Y):- assign(plain(X),plain(Z)),

points to(Z,Y).
points to(X,Y):- assign(plain(X),star(Z1)),

points to(Z1,Z),points to(Z,Y).
points to(X,Y):- pointed to by(X,U),

assign(star(U),plain(Z)),
points to(Z,Y).

pointed to by(X,Y):- assign(plain(Y),addr(X)).
pointed to by(X,Y):- pointed to by(X,Z),

assign(plain(Y),plain(Z)).
pointed to by(X,Y):- pointed to by(X,Z),

pointed to by(Z,Z1),
assign(plain(Y),star(Z1)).

pointed to by(X,Y):- pointed to by(X,V),
assign(star(U),plain(V)),
points to(U,Y).

Figure 3: Logic program for points-to analysis specialized with
respect to calling modes

the propagation of demand. For example, consider the same query
points to(p, X) with the set of assignments {u=&v, p=u,
u=p, t=&u, *s=r}. Due to the statement *s=r and the fourth rule
for points-to, we will generate new queries points to(s,p)
and points to(r,X). Thus we evaluate the points-to relations
of variables that are unrelated to p.

Consider the case when we are interested in evaluating, for dif-
ferent variables v, what variables v may point to. This can be done
by issuing queries of the form points to(v, A) for different
v: queries where the first argument is bound and second argument
is free. The pattern of boundedness of query arguments is known
as the calling mode of the query; the calling mode of the above
query is bound-free. Note that for bound-free queries, the fourth
rule defining points-to uses the bound argument (X) only in the sec-
ond literal. Thus, we will backtrack through every assignment of
the form *U=V, without regard to whether it is related to the origi-
nal query.

We can avoid this by reordering the literals in the fourth rule to
as follows:

points to(X,Y) :- points to(U,X),
assign(star(U),plain(V)), points to(V,Y).

Due to the first literal in the body of the above rule, we now get
queries to points-to with calling mode free-bound. Note that differ-
ent calling modes require different literal orders. For instance, for
free-bound queries, it is better to reorder the body of the fourth rule
with points to(V,Y), as the first literal. We hence special-
ize the points-to relation with respect to the two calling modes, as
shown in Figure 3. In the figure, points to handles bound-free
queries to the original points-to relation; pointed to by, the in-
verse of points to, handles free-bound queries to the original
points-to relation. Note that if we issue only bound-free queries to
points to from the top-level, then all queries to points to as
well as pointed to by will be bound-free.

Note that the queries to points to and pointed to by are
distinct (bound-free queries are distinct from free-bound queries)
and their answers are not shared in the current tabling infrastruc-
ture. Subsumptive tabling [30] can be used to share the answers,
but only provided a more general (in this case, a free-free) query is
issued first; however, the general query will mean that the analysis
will no longer be demand-driven.

The rules in Figure 3 are similar to the inference rules for de-
mand driven analysis in [19]. The mode based specialization pre-
sented here is straightforward. However since it involves goal re-



[f0] h = &b; [f3] c = &e; [f6] j = c;
[f1] j = h; [f4] c = d; [f7] g = d;
[f2] c = &b; [f5] d = j; [f8] g = c;

(a) Assignments

Answers Supports
[a0] points to(h,b) s0 {f0}
[a1] points to(j,b) s1 {f1, a0} s7 {f6,a3}
[a2] points to(d,b) s2 {f5,a1}
[a3] points to(c,b) s3 {f2} s8 {f4,a2}
[a4] points to(c,e) s4 {f3} s9 {f4,a6}
[a5] points to(j,e) s5 {f6,a4}
[a6] points to(d,e) s6 {f5,a5}
[a7] points to(g,b) s10 {f7,a2} s11 {f8,a3}
[a8] points to(g,e) s12 {f7,a6} s13 {f8,a4}

(b) Answers and their corresponding supports

Figure 4: Examples of supports

ordering, it is not clear how this specialization can be automated for
general logic programs. The program can be further optimized by
grouping the literals on the right hand sides and tabling intermedi-
ate results. The details are omitted here, but appear on this paper’s
web page [33].

4. INCREMENTAL POINTER ANALYSIS
In this section we describe space-efficient techniques for incre-

mental evaluation of logic programs; we describe this technique
using the points-to analysis in Figure 3 as an example. Our algo-
rithms compute changes to the points-to set due to the addition or
deletion of one or more facts representing the program.

Our incremental evaluation algorithm to handle addition of
facts is based on program transformation [34]. This technique
is relatively straightforward, and has been studied extensively
in the literature (e.g. [17]). For every relation p defined
in the program, we derive a new relation, called its delta re-
lation (denoted by δp), which captures changes to the rela-
tion due to the addition of facts. For every rule of the form
p :− q1, q2, . . . qn in the original program, we add rules of the
form γp :− (q1; δq1 ), . . . , (qi−1; δqi−1

), δqi
, qi+1, . . . , qn for each

i ∈ [1, n], where δp is defined as γp − p. For example, correspond-
ing to the second rule given in Figure 3 we generate two rules as
shown below.

γpoints to(X, Y ) :−
δassign(plain(X), plain(Z))),points to(Z, Y ).

γpoints to(X, Y ) :−
(δassign(plain(X), plain(Z));assign(plain(X), plain(Z))),
δpoints to(Z, Y ).

In the above, δp is the exact set of changes to relation p due to
changes in the program, and γp is an over-approximation of δp.
In [34] we proposed data structures and algorithms to efficiently
evaluate these delta relations. Program analysis problems do not
raise new issues in incremental addition, and the results of [34] are
directly applicable.

Efficient incremental computation in the presence of deleted
facts is a more complex problem. Techniques independently devel-
oped for incremental program analysis [27, 44], incremental view
maintenance in deductive databases [17] and incremental model
checking [35] are remarkably similar, and have the following two

s1

s13s11

a7 a8

s10 s12

a5

f6

f5

f7

f8

s2 s5s7

a3 a2 a4a6

s6

s4

f2 f3

a1

a0
s0

f0

f1

s9s8 f4

s3

Figure 5: Support graph for program in Figure 4

phases. In the first phase (called the deletion phase in [17]) the
set of answers that could be affected by the deletion of the given
set of facts is computed. For instance, consider the C program in
Figure 4(a). When the statement c=&b is deleted, since j=c is a
statement in the program, the answer that j may point to b may be
affected, and is marked. The second phase (called the rederivation
phase in [17]) attempts to rederive the marked answers without us-
ing the deleted facts. Affected answers which cannot be rederived
are deleted. Note that in the above example, j still points to b
since h points to b, and j=h is a statement in the program. We ob-
serve that such deletion followed by rederivation is often wasteful,
and most answers marked in the first phase are often rederived (see
Section 5 for experimental results).

Our incremental evaluation algorithm considerably improves
this situation by keeping an auxiliary data structure, called the
support graph [34], to quickly identify the set of answers to
be marked in the first phase. At a high level, a support for
an answer is an immediate reason for its truth. More pre-
cisely, s is a support for an answer a, if a :− s is an in-
stance of a clause in the program, and all literals in s are
true. Note that a support is, in general, a conjunction of an-
swers and facts. For instance, in the above example, the answer
points to(j,b) has two supports: (1) assign(plain(j),
plain(h)) and points to(h,b) ({f1,a0} in Figure); and
(2) assign(plain(j),plain(c)) and points to(c,b)
({f6,a3}).

A support graph is a bipartite graph with vertices drawn from
the set of all answers and facts in one partition, and the set of
all supports in the other. Figure 4 illustrates supports and sup-
port graphs: part (a) shows an example set of primitive assign-
ments in C code form; part (b) shows the answers to queries of the
form points to(v,X) for all v, and their corresponding sup-
ports. We refer to each fact, answer and support with names of
the form f0, f1, . . .; a0, a1, . . .; and s0, s1, . . . respectively. Fig-
ure 5 shows the support graph corresponding to the program given
in Figure 4. An answer vertex a and its support s are connected
by an edge from s to a (called a “answer-of” edge, shown using a
white arrowhead in the figure). If a fact or an answer a is in a sup-
port s then there is an edge (called a “uses-of” edge, shown using a
black arrowhead in the figure) from a to s.



Support graphs make it easy to mark affected answers in the first
phase. For example, if we delete the assignment j=c (fact f6)
then we mark all the supports containing that fact, i.e. s5 and s7
as affected. Since s5 supports a5, we then mark a5 as affected.
We continue to propagate the marks, marking support s6 and then
answer a6. Thus we infer that answers points to(j,e) and
points to(d,e) are possibly affected by the deletion of state-
ment j=c.

Now, note that answer a6 is in support s9 and s12, and hence
s9 and s12 will also be marked. Since s9 is a support of a4
(points to(c,e)), that answer will also be marked as affected.
However, this answer will be rederived (due to the assignment
c=&e) in the second phase. Note that a4 has two supports: s9
and s4, and that truth of support s4 is not dependent on the truth of
a4. Thus support s4 has a derivation that is independent of answer
a4. Since s4 is not marked, we can infer that a4 will be unaffected
and hence need not be marked. Hence, if we can quickly identify
independence of supports and answers, we can limit the marking of
affected answers, and consequently reduce the rederivation effort
also.

In any least fixed point computation, the first support used to
derive an answer will itself be independent of the answer. We call
such a support as the primary support for an answer. In Figure 4(b)
we list the primary support before any other supports for an answer.
All the primary supports are shown in bold in the support graph in
Figure 5. In our incremental algorithm for deletion [34], we mark
an answer only if its primary support is marked. In the second
phase, if a marked answer a has an unmarked support s, we know
that s is independent of a, and hence can make s as the new primary
support of a. We can now remove the mark on a, remove the marks
on supports that were marked due to a, and continue to remove
marks by traversing the support graph. For example, deletion phase
would mark a8 since s12 is marked and rederivation phase would
remove the mark on a8 based on its other unmarked support s13.

Note that the above algorithm checks if an answer is rederiv-
able solely based on the support graph, and hence requires us to
store the complete support graph. Although this permits us to re-
duce incremental evaluation time, the support graph size grows
quickly enough to make it impractical, especially for program anal-
ysis problems. For instance, in our encoding of points-to analysis,
we observe many hundreds of supports for each answer (the sizes
of complete support graphs for all benchmarks is given in the last
column of Table 2 in Section 5).

Below, we describe three new algorithms that keep the space us-
age bounded by keeping only a part of the support graph, yet ex-
hibit acceptable time performance. The first is a memory efficient
algorithm which keeps only the primary support for each answer;
the subsequent algorithms expand on the earlier ones, trading off a
bounded amount of space to obtain better time performance.

We use the following notations in the description of the algo-
rithms. The answer a supported by s is denoted by answer of(s).
The set of all supports {s1, s2, . . . , sk} that contain a given answer
or fact a is denoted by uses of(a). We begin with the description
of PS, the primary-support-based algorithm.

Algorithm PS. In this algorithm we record only the primary sup-
port for each answer. The resultant support graph is called primary
support graph or PSG. The PSG at the beginning of incremental
phase is shown in Figure 6(a). With each support vertex in the
support graph, we keep an integer field called false count that
records the number of marked answers in that support; this field is
initialized to zero at the beginning of each incremental phase. With
each answer vertex, we keep three fields: call, a pointer to the call
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Figure 6: Primary support graphs

deletion phase()
∀deleted fact f
∀support s ∈ uses of(f)

mark support(s);

mark support(support s)
s.false count++;
if(s.false count==1)

ans=answer of(s);
mark answer(ans);

mark answer(answer ans)
mark delete(ans);
if(ans.all support==false)

ans.call.dirty count++;
∀s ∈ uses of(ans)

mark support(s);

Figure 7: Primary support based deletion

to which it is an answer, and all support, a boolean to record
whether the support we have for the answer is its only support.
Since we have only incomplete support information, rederivation
of an answer may be performed using program clause resolution
(PCR) of the corresponding call (see below for details). For each
call we keep a count of the number of marked answers in a field
called dirty count. This field is also initialized to zero before
each incremental phase.

When an answer is derived for the first time we generate its
primary support, and set its all support to true. If the an-
swer is derived again we discard the new support and make
all support false. The incremental deletion algorithm consists
of two phases, described below:
Phase 1: Deletion phase. The algorithm for this phase is
given in Figure 7. Consider the deletion of assignment state-
ments c=d and j=h in the example given in Figure 6(a). The
support graph after the deletion phase is shown in Figure 6(b).
In the figures, we have annotated each support vertex with the
value of its false count field, and each answer vertex with
the value of its all support field. The deletion phase marks
the answers a1, a2 and a7 and it makes dirty count=1 for
call points to(j,X) and points to(g,X) but not for call
points to(d,X) since the all support field of a2 is true
(see the rederivation phase, below).
Phase 2: PCR Rederivation phase. To check if an
answer marked for deletion can be rederived, we can per-



form program clause resolution (PCR) for the corresponding
call. PCR, however, is expensive since it may rederive an-
swers not even marked for deletion in the first place. For in-
stance, computing points to(j,X), points to(d,X) and
points to(g,X) by PCR to rederive a1, a2 and a7 will also
derive answers a5, a6 and a8. Hence we devise two ways to avoid
PCR-based rederivation whenever possible.

The first is based on all support field of an answer. If
this field is true, then the recorded supports (in algorithm PS only
the primary support) for an answer are the only supports for this
answer. Hence the only way the answer can be true is if the
deletion mark on the primary support is removed. For instance,
we do not have to execute call for points to(d,X) to know
whether points to(d,b) (answer a2) is true, as we know that if
points to(j,b) (answer a1) is true then that will subsequently
make support s2 and answer a2 true by removal of marks through
support graph. Thus for a marked answer with all support bit
set we do not increment the dirty count for its call.

The second heuristic uses the notion of derivation length (de-
noted by dl) to determine the order in which marked answers are
processed. Intuitively, if an answer a1 has a lower dl than answer
a2, then a1 is independent of a2. Thus if answers with lower dls
are rederived earlier, then PCRs for rederiving higher dls may be
avoided altogether. Given a vertex v in the support graph, dl(v) is
defined as

8

<

:

0 if v is a fact
max{dl(a) | v ∈ uses of(a)} + 1 if v is a support
dl(s) | s is the primary support of v if v is an answer

To ensure that a call is issued only when necessary, we keep the
total number of its marked answers in dirty count, and issue a
call only if its dirty count is non-zero. Whenever an answer
is rederived using the support graph and its all support is
false, we decrement the dirty count of its call. In the above
example, since answer a1 has lower derivation length (2) compared
to that of answer a7 (4), we issue the call points to(j,X)
first. This rederives the answer a1 along with generation
of new support s7. By calling rederive answer(a1)
and rederive support(s2) we rederive the answer a2
and, subsequently, calling rederive answer(a2) and
rederive support(s10)we rederive a7. This decrements the
dirty count for the call points to(g,X) to 0 and thereby
we save the PCR rederivation for the call points to(g,X).

The algorithm for Phase 2 is in Figure 8.

Algorithm AS. In the above example we mark the answer a1
(points to(j,b)) since its primary support is marked. Note
that, its other support s7 is also independent of a1: i.e. if s7 is
derivable, so is a1. We call these supports as acyclic supports.

An acyclic support subgraph (ASG) corresponding to a support
graph (SG) is defined as a directed acyclic subgraph of SG which
contains all the facts and answers of SG and at least one support
for each answer. Note that, there can be multiple acyclic support
subgraph corresponding to a support graph. Supports in an ASG
are called acyclic supports.

We can now generalize Algorithm PS by keeping acyclic sup-
ports with each answer, and marking an answer only if all its acyclic
supports are marked. In the above example, if we keep s7 as an
acyclic support of a1 then a1 will not be marked, and consequently,
there will be no rederivation. This generalization leads to Algo-
rithm AS. The size of the support graph is limited by the specify-
ing the maximum number of acyclic supports stored for an answer
(called the Maximum Acyclic Support Count, or MASC).

rederivation phase()
queue = set of all marked answers
while(queue is not empty)

remove ans from queue with minimum dl;
call=ans.call;
if((!considered for rederivation(call))

&& dirty count(call)>0)
consider for rederivation(call)=true;
execute query(call);
∀newly generated answers ans

if(marked deleted(ans))
rederive answer(ans);

rederive answer(answer ans)
remove delete mark(ans);
if(ans.all support==false)

ans.call.dirty count−−;
∀s ∈ uses of(ans)

rederive support(s)

rederive support(support s)
s.false count−−;
if(s.false count==0)

ans=answer of(s);
rederive answer(ans);

Figure 8: PCR rederivation for algorithm PS

The key problem in Algorithm AS is to determine whether a sup-
port is acyclic. If the derivation length of a support s is no greater
than that of an answer a, then s has a derivation that is independent
of a, and therefore s is acyclic. We use this as a conservative test
to determine the acyclicity of a support:

s is acyclic if dl(s) ≤ dl(answer of(s))

For the program in Figure 4, the above heuristic deems supports
s8 and s9 as potentially cyclic supports since dl(a3) = 1, dl(s8) =
4 and dl(a4) = 1, dl(s9) = 4. These supports are marked by boxes
in the support graph in Figure 5.

Algorithm AS is derived from Algorithm PS as follows. With
each answer we now keep the number of unmarked acyclic
supports recorded for that answer in support count. In
mark support, when false count of a support becomes 1,
we decrement the support count of its answer. We mark an
answer (and propagate this mark) only when its support count
falls to zero. It is easy to see that our Algorithm PS is a special case
of Algorithm AS with MASC=1. Consider the example in Figure 4.
With MASC=2, we will store s7, s11 and s13 as additional acyclic
supports (apart from the primary supports); When statements j=h
and c=d are deleted, Algorithm AS will not mark any answer.

Note, however, that an acyclic support for an answer may not be
remain acyclic after rederivation. For instance, in Figure 4, con-
sider the deletion of statement c=&b (f2). Using Algorithm AS
with MASC=2, we will mark s3, a3, s7, and s11. The new primary
support of a3 is s8 whose derivation length is 4. Thus dl(a3) = 4
and hence dl(s7) = dl(s11) = 5. Consequently, s7 and s11 are
no longer acyclic and will have to be removed from the graph. The
PCR rederivation phase of Algorithm AS is obtained from that of
Algorithm PS as follows. Whenever a new answer a is generated
by PCR, we store the derivation length of its first support as a.dl.
When we rederive an answer a based on an existing support s (in
rederive support) and the answer is not marked (i.e. it had
been already rederived), we check the cyclicity of the s with re-
spect to a, and delete s if it is not acyclic. The modified procedure



rederive support(support s)
s.false count−−;
if(s.false count==0)

ans=answer of(s);
dl(s)= maximum{dl(a)| s ∈ uses of(a)}+1;
if(ans.support count==0)

ans.support count++;
dl(ans) = dl(s);
rederive answer(ans);

else
if(dl(s)≤dl(ans))

ans.support count++;

Figure 9: PCR rederivation for algorithm AS

gred()
rederive list={}
∀marked answers ans

if (ans.total support count>0)
ans.support count=ans.total support count;
dl(ans) = max {dl(s)| s is a support of ans,

s.false count=0}
rederive list=rederive list + ans

∀ans ∈ rederive list
rederive answer(ans);

Figure 10: Support graph based rederivation

rederive support of Algorithm PS is shown in Figure 9.

Algorithm MS. Algorithm AS improves on PS by reducing the
number of answers marked in the first phase. We now describe Al-
gorithm MS, which builds on AS, and aims to reduce the number
of PCR rederivations. In AS we bound the number of acyclic sup-
ports for each answer by the constant MASC. For some answers
we might not fill this “quota” as the number of acyclic supports
may be less than MASC. Algorithm MS fills the rest of the “quota”
for each answer with other (possibly cyclic) supports, while giving
preference to acyclic supports.

For instance consider the example in Figure 4. Let MASC=2,
and assume that we keep supports s8 and s9 in the support graph
(as supports to a3 and a4 respectively) even though they are do not
meet the acyclicity criterion described before. Now consider the
deletion of statement c=&b. In the deletion phase we will mark
s3, a3, s7 and s11. Since s8 remains at the end of this phase, we
know that the support s8 has a derivation that is independent of
a3. Thus s8 now qualifies as an acyclic support of a3. Hence we
can remove the mark on a3 without PCR rederivation. We derive
Algorithm MS from Algorithm AS by invoking gred (Figure 10)
which does a support graph based rederivation before doing PCR
rederivation. In addition to the data for Algorithm AS, this algo-
rithm maintains the total number of current supports for an answer,
and also a structure to access all supports for a given answer. The
details of this additional bookkeeping are straightforward and omit-
ted. This strategy does not affect the number of answers marked,
but reduces the number of PCR rederivations.

Discussion. We now describe the space and time complexity of
from-scratch as well as incremental pointer analysis. These com-
plexity measures are given in terms of the number of variables of
the program to be analyzed (denoted by N ). The worst-case run-
ning time for Anderson’s pointer analysis is O(N3). By optimizing
the analysis program in Figure 3 as described at the end of Section 3

Fun. Prim. From Scratch All Points-to
Programs LOC Ptr Assign Avg. Size Time(s) Space
smail 3850 - 664 24.5 0.09 1.5M
gzip 8620 1 391 0.7 0.01 0.8M
parser 11391 - 2190 5.8 0.01 2.6M
vpr 17729 10 2708 1.8 0.03 3M
m88ksim 19093 2 1406 6 0.03 2M
twmc 24951 3 7065 16.7 2.48 12.8M
nethack 33993 11 4875 35.0 1.04 9.7M
vortex 67110 14 14387 69.8 13.34 40M

Table 1: Benchmark characteristics

and evaluating the program using tabling, our implementation has
the same worst-case time complexity. The space complexity of the
analysis as well as its implementation is O(N2).

The size of the complete support graph for pointer analysis is
O(N3). However, the size of the partial support graph described
in this section is O(N2) since the number of supports for an answer
is bounded by a constant. Thus, the space complexity of the incre-
mental pointer analysis has been made to match the space complex-
ity of from-scratch analysis.

The time taken by our incremental insertion algorithm is, in
worst case, the time taken for from-scratch analysis of the changed
program. For incremental deletion, the time taken by the deletion
phase is proportional to the size of the partial support graph, and
hence bounded by the time taken for from-scratch analysis of the
original program. Rederivations done on the basis of the partial
support graph is also proportional to the size of the graph. Now
consider the rederivations that require program clause resolution.
Note that PCR rederivation invokes calls that had been made for the
original analysis, and hence the PCR rederivation time is bounded
by the from-scratch analysis time. Therefore, incremental deletion,
which comprises of deletion and rederivation phases, takes time
proportional to that of from-scratch analysis of the original pro-
gram.

The correctness of our incremental insertion and deletion algo-
rithms follows from the correctness of DRed algorithm [17]. Ad-
ditionally our deletion algorithm identifies a set of acyclic supports
for an answer. It is easy to construct a proof for an answer using
an acyclic support, by recursively building proofs of answers in the
support. Since the support is acyclic, this recursive process will ter-
minate, yielding a proof. Hence it follows that any answer with an
unmarked acyclic support has a derivation and hence is not deleted.

5. EXPERIMENTAL RESULTS

Experimental Setup. We measured the performance of our al-
gorithms for demand driven and incremental points-to analysis on
programs taken from C benchmarks available with PUF compiler
suite and SPEC95 benchmarks. The incremental evaluation algo-
rithms were implemented by extending the XSB logic program-
ming system [43] (v2.6). Our incremental points-to analysis sys-
tem, the benchmarks, and detailed experimental results are avail-
able at [33].

We preprocessed the C source code using CIL [26] into Prolog
facts representing the primitive assignment statements. Each li-
brary function was replaced by a stub representing the data flow
between its formal parameters and return value and preprocessed
in the same manner. Performance measurements were taken on
a PC with 1.4Ghz Pentium M processor with 512MB of physical
memory running Linux (Debian) 2.6.7. We present the benchmark
characteristics in Table 1.
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Figure 11: Relative performance of Function Pointer Analysis
w.r.t. All Points-to Analysis
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Figure 12: All Points-To Analysis: Incremental deletion time
relative to from-scratch time

Demand Driven Analysis. We measured the effectiveness of
the demand-driven analysis for resolving dynamic call sites in the
benchmark programs. Function Pointer Analysis (FPA) uses the
logic program encoding in Figure 3, and computes all answers to
queries of the form points to(f, X) for each function pointer
f occurring in a given benchmark program. All Points-To Analysis
(APA) also uses the same logic program, but computes the entire
points to relation (i.e. over all program variables). Figure 11 shows
the time taken and the size of the points-to relation computed by
FPA relative to those of APA. Observe from the figure that, for
some benchmarks (gzip, twmc, and nethack) FPA takes less
than 1.8% of the time taken by APA; and in others (vpr, vortex)
the time taken for FPA is a significant fraction of that for APA.
The latter benchmarks keep function pointers in structures, and the
higher analysis times appear to be the artefact of performing field-
insensitive analysis, which results in a large number of spurious
points-to tuples for the function pointers.

Incremental Analysis. To measure the effectiveness of our in-
cremental evaluation algorithms, we performed All Points-to Anal-
ysis (APA) and Function Pointer Analysis (FPA) using the logic
program encoding in Figure 3. For single statement-level changes
to the benchmark programs, we measured the time and space taken
to redo the analyses from scratch and to maintain the points-to re-
lations using our incremental techniques. We first report on the
performance of incremental deletion.

Effectiveness of incremental deletion. We compare the average time
taken for single assignment statement deletion in source (over 105
deletions) for incremental and from-scratch APA. Note that each
assignment statement in the source may correspond to multiple
primitive assignment statements in the preprocessed code. Fig-
ure 12 shows the average time taken for incremental APA per
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Figure 13: Function Pointer Analysis: Incremental deletion
time relative to from-scratch time

PS 2AS 2MS 3AS 3MS ALL
smail 26K 29K 37K 30K 47K 211K
parser 24K 29K 34K 32K 42K 91K

vpr 9.9K 11.1K 11.6K 11.7K 12.7K 14.4K
m88ksim 11K 12K 14K 13K 15K 21K

twmc 279K 389K 397K 490K 506K 5728K
nethack 205K 239K 270K 252K 317K 2075K
vortex 1202K 1564K 1714K 1810K 2099K 33444K

Table 2: Support graph sizes

source statement deletion as a percentage of the time taken for
from-scratch APA. That figure shows the relative performance of
the different incremental deletion algorithms PS, AS and MS, and
for the latter, with different values of maximum support set size
(MASC=2 and 3). Recall that PS is identical to AS and MS with
MASC=1.

Observe from the figure that, even the simplest of our primary
support-based algorithms, PS, takes 1.8%(m88ksim) to 19%(vor-
tex) of the from-scratch time. Time decreases with increasing
MASC, and the MS algorithm performs better than AS. This is
because most of the time (more than 95%) is taken by the PCR
rederivation phase and keeping extra supports considerably reduces
the number of calls made for PCR rederivation.

Figure 13 shows the average time taken for incremental FPA
per source statement deletion as a percentage of the time taken for
from-scratch FPA. The figure shows that the performance gains due
to demand-driven analysis can be further improved by incremental
analysis. Note that the gains for FPA are consistent with those for
APA (Figure 12).

Space Behavior. In Table 2 we compare the space overhead of our
different incremental deletion algorithms by comparing the total
number of supports recorded for APA. The last column in the table
shows the total number of supports in complete support graph for
each benchmark. Each support vertex takes at most 6 words, and
the total number of supports is a very good measure of the space
overheads due to incremental evaluation3. Note that the support
graph space overheads are very small when the number of supports
per answer is bounded. However, note that the size of full support
graphs is prohibitively large for the bigger examples (e.g. 30M ver-
tices for vortex), and hence the simpler incremental algorithm
of [34] is impractical. It is interesting to observe that the sup-
port size for MS with MASC=2 is smaller than AS with MASC=3,
but the average evaluation time is longer for the latter (Figure 12),
showing the advantage of keeping non-acyclic supports in reducing
evaluation time.

3The amount of space each support takes varies from Algorithm PS
(2 words), AS and MS (6 words).



MASC=0 1 2 3
smail 15375 890 636 618
parser 16311 72.6 71.4 70
vpr 1400 20 10 9.8
m88ksim 283 73 45.8 45.6
twmc 51417 2770 2172 1933
nethack 54490 337 208 208
vortex 493445 6273 614 614

Table 3: No. of answers marked in Deletion Phase
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Figure 14: All Points-To Analysis: Incremental insertion time
as percentage of from-scratch time

The importance of supports. To measure the effectiveness of pri-
mary and acyclic supports in reducing the number of answers
marked and later rederived, we collected the average number of an-
swers marked in the first phase for APA. Table 3 shows the number
of answers marked using the AS algorithm for various benchmarks
(rows) and for different MASC values (columns). Note that AS
and MS are identical w.r.t. number of marked answers, and that
AS with MASC=0 is identical to the non-support-based (e.g. [17,
44, 35]) algorithms. The comparison of MASC=0 and MASC=1
columns shows the substantial advantage (4–160 times) of keeping
primary support for restricting the marking and rederivation of an-
swers. The number of marked answers decreases as we increase
the number of acyclic supports stored. However, the decrease ta-
pers off after MASC=2, and MASC=2 appears to be a good balance
between evaluation time and space overhead.

Tables 2 and 3 show the importance of keeping a partial sup-
port graph for deriving scalable incremental analyses. Note that
the PCR rederivation phase is needed only when the support set is
partial. We observe that this phase takes more than 95% of the in-
cremental evaluation time. Hence, if it is if the entire support graph
is kept, the incremental evaluation time will be less than 2% of the
from-scratch evaluation time. The algorithms presented in this pa-
per hence trade off incremental evaluation time to lower the space
requirements.

Incremental Insertion. We measured the performance of in-
crementally maintaining the points-to sets for APA when new state-
ments are added, with the same random assignment statements used
for incremental deletion. We computed the points-to relation after
deleting a selected statement, then added back the deleted state-
ment and ran the transformed program for incremental addition.
The average time taken to run the incremental insertion query as a
percentage of the from-scratch re-evaluation time for each bench-
mark is shown in Figure 14. Observe that, for m88ksim and
CPR incremental insertion takes about 45-73% of the from-scratch
time. However, but for large benchmarks (nethack, twmc and
vortex) it takes only 5% of the from-scratch evaluation time.
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Figure 15: Relative time for incremental deletion in context
sensitive analysis

Note that the time reflects the effect of insertion on all derived re-
lations.

Context Sensitive Analysis. In addition to the context insen-
sitive analysis described in this paper, we also encoded a context
sensitive (summary-based) analysis in our framework. This anal-
ysis builds a parametric summary for each procedure and instanti-
ates the summary at the call sites; its details are beyond the scope
of this paper. The average time to perform incremental evaluation
after a single source statement deletion is given in Figure 15 as
a percentage of the from-scratch analysis time. We observe with
MS algorithm with MASC=3 takes about 50% of the from-scratch
time, though with only primary support we could take as high as
73% of the from-scratch time. This high percentage is due to the
fact that deletion of each assignment statement marks a large num-
ber of answers (compared to context in-sensitive analysis) which
in turn triggers a large number of expensive PCR rederivations of
answers.

Adding field-sensitivity to our existing pointer analysis would
make the analysis more precise does not change the essential nature
of the analysis problem and is unlikely to affect the relative per-
formance of incremental analysis with respect to the from-scratch
analysis. However, a flow-sensitive analysis cannot be efficiently
evaluated with our current implementation. Flow-sensitive analy-
sis needs ability to handle of stratified negation (due to kill sets).
Our current implementation handles insertions in a top-down man-
ner (by issuing queries for the delta relations) and deletions in a
bottom-up manner. Although negation can be handled in principle,
a more efficient implementation would need to propagate both in-
sertions and deletions along the same direction; this is a topic of
current research.

6. RELATED WORK
The problem of incremental evaluation of logic programs has

been extensively researched, especially in the context of deductive
databases4. Few techniques however deal with incremental evalu-
ation in the presence of recursive rules as well as deletion of facts.
The most general of these, Delete-Rederive (DRed) algorithm [17]
is the closest to our incremental evaluation technique. DRed com-
putes the dependencies between answers at the time of incremental
evaluation and does not maintain a support graph. The MCI algo-
rithm [35] was proposed in a different context, namely incremental
model checking, and maintains an analogue of the support graph.
However both MCI and DRed mark an answer as deleted if any

4See [34] for a detailed comparison of our basic incremental eval-
uation technique with those in deductive database literature.



of its supports is deleted— thereby over-propagating the effects
of a deletion. In [34] we introduced the notion of primary sup-
ports and showed its effectiveness in reducing recomputation. In
that algorithm, all supports of an answer were recorded, and hence
the expensive PCR rederivation operation is never needed. Con-
sequently, the algorithm in [34] shows better time behavior than
the one described in this paper. However, the maintenance of com-
plete support graphs leads to space overheads that are prohibitive
for program analysis, rendering the algorithm in [34] impractical.

Points-to analysis has been studied extensively (see [21] for a
survey), and continues to attract significant attention (e.g. [15, 16,
18, 42, 24]). The aim of this work is to present techniques for
making program analysis incremental. Although we do not directly
address the accuracy-time tradeoffs that are at the core of much of
the points-to analysis work, ability to perform incremental analysis
will enable us to deploy more accurate analyses that may otherwise
be deemed impractical.

Among the many works on points-to analysis, Heintze and
Tardieu [20, 19] encode flow-insensitive and context-insensitive
subset-based pointer analysis due to Anderson [3] using deductive
rules. Our encoding in Section 2 follows [19]. We derive demand-
driven as well as incremental analyses directly based on these rules.
Several graph based optimization techniques [14, 37] cannot be
declaratively encoded showing the limitations of rule-based tech-
niques. However, the idea of deduction is present at least implicitly
in every worklist-based algorithm, and we believe the analogues
of support graphs in those settings will make it possible to derive
incremental versions of such algorithms as well.

Demand-driven program analysis using logic-programming
based formulation has been studied before [31, 19]. For in-
stance, our encoding of demand driven context-insensitive Ander-
son’s rules in terms of Horn clauses (Figure 3) is similar in na-
ture to the rules obtained in [19]. The main difference between the
earlier works and the one presented in this paper lies in the way
the rules are evaluated. Heintze et. al. use CLA [20] infrastruc-
ture to implement a set-based algorithm corresponding to the rules
by using a technique similar to magic set transformation to bring
goal-directedness to bottom-up evaluation [31, 22]. Tabled reso-
lution [38] is naturally goal directed, and as observed in [31] this
strategy ensures that it accesses only those assignment statements
and generates only those intermediate queries which are relevant
to answer the top level query [11]. Although the implementation
by Heintze et. al is considerably faster than our from-scratch APA
analysis, our support graph based incremental algorithm can be in-
corporated into CLA framework for yielding better performance.

In [13] the authors presented a method for the construction of
precise demand-driven algorithms for the class of distributive fi-
nite data flow problems. As also explained in [19] demand-driven
pointer analysis falls outside the scope of [13]. In [4] a demand-
driven pointer algorithm has been presented for Steengard’s Algo-
rithm [36] and program slicing is used to show effectiveness of de-
mand driven analysis. Demand-driven call graph construction for
the Java programs has been investigated in [1].

The closest related work on incremental pointer analysis we are
aware of is that of Yur et. al. [44]. The authors developed incre-
mental pointer aliasing algorithm based on Landi-Ryders’s flow-
and context-sensitive alias analysis [23]. They update points-to in-
formation after a program change rather than computing it from
scratch. Their incremental algorithm is not complete in the sense
that it may compute less precise solution than the exhaustive tech-
nique. In contrast, we show that our incremental algorithms pro-
duce exactly same relations as their exhaustive counterpart. The
incremental algorithm in [44] also has the two phases of alias fal-

sification (deletion) and alias introduction (rederivation) as our al-
gorithm. Their selective falsification strategy degenerates to fal-
sification strategy of DRed [17] where all directly and indirectly
generated aliases due to the deleted statement are falsified. Our
work substantially reduces the unnecessary falsification followed
by rederivation. The experimental results presented in Section 5
show the effectiveness and the necessity of our techniques. Per-
haps more importantly, our memory-efficient support graph based
incremental algorithm is not confined to alias analysis but can be
readily applied to any analysis specified using deduction rules.

In [40] an incremental algorithm is presented which analyzes
part of the program assuming no previous analysis result. That al-
gorithm monitors the analysis results incrementally in each phase to
direct the analysis in those parts of the program which offer high-
est expected optimized return. That work does not consider the
problem of updating existing analysis results to reflect the effect of
program changes.

Many incremental algorithm have been developed for data-flow
analysis problems. Some incremental analyses use the elimination
method [6, 9, 32]; some are based on the technique of restarting it-
erations [27] and some are combination of the two techniques [25].
A comparison of incremental iterative algorithm can be found
in [7]. Effectiveness of incremental analysis has been shown for
MOD analysis of C programs [45]. Pollock and Soffa [27] pre-
sented precise incremental iterative algorithm using change classi-
fication and reinitialization for bitvector problems. They employ
two phase solution where the exaggerate and adjust phases corre-
spond to our delete and rederive phases respectively. Adding sup-
port information to the data flow sets will reduce the effort in the
adjust phase of this algorithm also.

7. CONCLUSION AND FUTURE WORK
In this paper we presented incremental and demand driven algo-

rithms for program analyses formulated using deductive rules. We
demonstrate the effectiveness of our demand driven approach by
first encoding context insensitive Anderson’s pointer analysis us-
ing deductive rules and later deriving a set of rules more suitable
for demand driven query. For some benchmarks we observe that
demand driven analysis takes less than 1% time for resolving func-
tion pointers compared to its exhaustive query. Averaged over all
benchmarks, our primary-support based incremental algorithm for
single source statement deletion takes about 9% of time of com-
puting from scratch with negligible space overhead. The time can
be further reduced to 6% by keeping more supports. We also pre-
sented preliminary experimental results of incremental evaluation
of a context-sensitive subset-based points-to analysis. These re-
sults shows that our incremental evaluation framework can readily
accommodate more complex analysis.

Many data-flow analysis problems can be cast in terms of query
evaluation over logic programs. The presence of kill sets however
gives rise to programs with negation. Our techniques can, in prin-
ciple, be extended to handle logic programs with stratified negation
(i.e. no cycles involving negation). We are currently extending our
implementation to accommodate such programs.

Although our support-based deletion algorithm is implemented
on a top-down goal-directed memoized logic programming frame-
work, the idea of supports can be used to derive incremental coun-
terparts of other algorithms which compute least fixed points. How-
ever, when only partial support sets are maintained, the rederivation
step would need goal-directed evaluation. Designing an effective
rederivation algorithm that can be used in a bottom-up evaluation
framework (e.g. CLA [20]) is an interesting open problem.

Note that, for any demand-driven analysis, incremental inser-



tion and PCR rederivation part of incremental deletion can be done
lazily: i.e. only when a related query is issued by the client anal-
ysis. However, deletion of tuples from relations is an inherently
bottom-up process and is best done eagerly. We are currently in-
vestigating techniques to perform lazy insertion and rederivation.
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