
Compiling Constraint Handling Rules for
Efficient Tabled Evaluation?

Beata Sarna-Starosta1 and C. R. Ramakrishnan2

1 Dept. of Comp. Sci. & Engg., Michigan State University, East Lansing, MI 48824
E-mail: bss@cse.msu.edu

2 Dept. of Computer Science, University at Stony Brook, Stony Brook, NY 11794
E-mail: cram@cs.sunysb.edu

Abstract. Tabled resolution, which alleviates some of Prolog’s termination prob-
lems, makes it possible to create practical applications from high-level declarative
specifications. Constraint Handling Rules (CHR) is an elegant framework for im-
plementing constraint solvers from high-level specifications, and is available in
many Prolog systems. However, applications combining the power of these two
declarative paradigms have been impractical since traditional CHR implemen-
tations interact poorly with tabling. In this paper we present a new (set-based)
semantics for CHR which enables efficient integration with tabling. The new se-
mantics coincides with the traditional (multi-set-based) semantics for a large class
of CHR programs. We describe CHRd, an implementation based on the new se-
mantics. CHRd uses a distributed constraint store that can be directly represented
in tables. Although motivated by tabling, CHRd works well also on non-tabled
platforms. We present experimental results which show that, relative to traditional
implementations, CHRd performs significantly better on tabled programs, and yet
shows comparable results on non-tabled benchmarks.

1 Introduction

Constraint Logic Programming (CLP) is an elegant framework for encoding a wide va-
riety of problems ranging from infinite-state system verification [6, 7] to specification
and analysis of security policies [3, 15]. However, traditional CLP systems are unsuit-
able for directly evaluating these formulations since they use Prolog-style resolution
strategy, and, consequently, inherit Prolog’s weak termination (infinite looping) and
efficiency (repeated subcomputations) problems. Tabled resolution [4, 28] overcomes
these problems by memoizing subgoals and computed answers during resolution, and
reusing them. Prolog systems enhanced with tabling (e.g. XSB [19]) have supported
the construction of efficient tools for program analysis and the verification of finite
state systems [5, 18] based on high-level logical specifications. Combining constraint
processing with tabled resolution will enable evaluating complex applications, such as
the analysis of infinite state systems, directly from high-level specifications.

Constraint Handling Rules (CHR) is a rule-based committed-choice language that
is particularly well-suited for specifying constraint solvers at a high level [10]. CHR

? This research was supported in part by NSF grants CCR-0205376, CNS-0627447 and EIA-
0000433, and ONR grant N00014-01-1-0744.

has been implemented in a variety of Prolog systems including SICStus [27], and hPro-
log [8]. The lack of tabled CLP systems was addressed by the recent port of hProlog’s
CHR to XSB [24] (called XSB-CHR in the remainder of this paper). However, as ex-
plained below, the data structures and algorithms used in traditional CHR systems are
unsuitable for use with tabled resolution, leading to severe performance problems in
XSB-CHR. This paper describes CHRd, an alternative implementation of CHR, that in
addition to working with traditional Prolog systems, seamlessly integrates CHR with
tabling. The efficiency of CHRd permits high-level implementations of applications
combining constraint solving and tabling.
Background. Operationally, CHR programs can be viewed as rewriting rules. The
constraint store is a multi-set of constraints, and the rules specify how the store should
evolve. For instance, consider the CHR program for the partial order constraint:

Example 1 reflexivity @ leq(X,X) <=> true.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X=Y.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

Above, reflexivity and antisymmetry are simplification rules. The latter
states that every pair of constraints in the store that match leq(X,Y) and leq(Y,X)
should be replaced by the equality constraint X=Y (a built-in constraint solved by uni-
fying X and Y). transitivity is a propagation rule. It states that for every pair of
constraints that match the left hand side, the corresponding right hand side constraint
should be added to the store. Since the constraint store is a multi-set, it may contain
more than one instance of the same constraint. The simpagation rule idempotence
(which combines simplification and propagation) ensures that the store is a set. It states
that in the presence of one instance of leq(X,Y) (to the left of ‘\’) another instance
of leq(X,Y) should be replaced by true (i.e. removed from the store).

A rule becomes applicable when the store contains the constraints that match its left
hand side. CHR evaluation proceeds by repeatedly selecting and firing an applicable
rule (i.e. forward chaining) until no rule is applicable (i.e. a fixed point is reached).

Note that a propagation rule remains applicable even after it has been fired. Since the
constraint store is a multi-set, re-firing a propagation rule will change the store, adding
new copies of constraints. To avoid trivial nontermination due to firing the same prop-
agation rule over and over again, the CHR operational semantics (and, subsequently,
its implementations) maintain propagation history, a record of all instances of propa-
gation rules that have been fired so far. A rule is applicable only if its instance is not in
the propagation history.
Traditional CHR and Tabling. The idea of tabling is to record subgoals (calls) and
their provable instances (answers) so that the results of a computation done in one
context can be re-used in another. When tabling is integrated with constraint processing,
we need to associate a constraint store with each call and answer to properly record
the context of a computation. This leads to several efficiency problems. First, the CHR
constraint store as well as its propagation history needs to be copied in and out of tables;
traditional CHR representation of constraints (with their cyclic terms) are not well-
suited for storage in tables. Second, as shown in [24], storing the propagation history
imposes a heavy space burden, but not storing it leads to very high time overheads for
re-propagating the constraints when they are retrieved from tables. Thus a port of a

traditional CHR implementation to a tabled environment (represented by XSB-CHR)
imposes significant performance penalties on tabled applications.
Our Solution. We combine CHR evaluation and tabling by taking a fundamentally
different approach to CHR. We give CHR a set-based semantics that addresses the triv-
ial nontermination problem without the use of propagation history. The new semantics
is formulated so as to coincide with CHR’s well-accepted semantics [9] for a large
class of programs (see Section 3). In our implementation, called CHRd, we consider a
syntactically restricted class called direct-indexed CHR, where all constraint terms in
every rule head are connected by common variables. This class covers a large number
of CHR-based constraint solvers. The restriction permits the constraint store to be rep-
resented in a distributed fashion, as a network of constraints on the individual variables
(see Section 4). The distributed store and the absence of propagation history enables
direct representation of constraint stores in tables, significantly reducing the time taken
to switch between constraint stores in tabled evaluation. Our implementation has been
integrated into XSB v3.0.1, and the latest version can be obtained from XSB’s CVS
repository at http://xsb.sourceforge.net.

CHRd enables us to efficiently evaluate applications that combine tabled evaluation
and constraint processing, and to scale up to problem sizes of practical importance.
A case in point is an application for the analysis of concurrent object-oriented systems
based on a high-level formulation in terms of CHR rules and tabled logic programs [21].
The relatively good performance of CHRd is crucial to the success of this application.
Moreover, CHRd itself is independent of tabling; its performance is comparable to that
of existing CHR implementations on non-tabled platforms1. A detailed description of
the experimental results appears in Section 5.

It should also be noted that ground CHR, a class that is of significant interest to the
CHR community, is not direct-indexed. Nevertheless, ground CHR programs can be
readily converted into programs that can be evaluated by CHRd (Section 4). Moreover,
many of the recently developed CHR optimizations (e.g. selection of indexing struc-
tures) are valid for CHRd. We discuss the relationship between this paper and previous
work on CHR and its implementations in Section 6.

2 Preliminaries

We use standard notions of variables, terms and substitutions [16]. We use t to refer to
terms in general, c for constraint terms which have a constraint symbol as root, and b for
built-in constraint terms which have a built-in constraint symbol as root. We use vars(t)
to refer to the set of variables in the term t. We write] to represent disjoint union, and
++ to denote concatenation of ordered sequences. Sets and multi-sets are occasionally
considered as sequences with non-deterministically chosen order of elements. Substitu-
tions are denoted by θ, and a term t under θ is written as tθ. We use upper-case letters
such as G, S, etc. to denote collections (sets, multi-sets or sequences) and lower-case
letters for elements of these collections.
CHR Syntax. A CHR program is a finite set of rules that specify how user-defined
constraints are solved based on the host language’s built-in constraints (e.g. Prolog pred-

1 The CHRd system for other platforms including hProlog and SWI-Prolog is available at
http://www.cse.msu.edu/∼bss/chrd.

icates). CHR rules are of the form:

label @ Head
{

<=>
==>

}
Guard | Body

Simpagation rules are the most general. They are of the form H1 \ H2 <=> G | B
where H1 and H2 are sequences of user-defined constraint terms (the heads of the rule),
G (the guard) is a sequence of built-in constraints and B (the body) is a sequence of
built-in and user-defined constraint terms. A rule specifies that when constraints in the
store match H1 and H2 and the guard G holds, the constraints that match H2 can be
replaced by the corresponding constraints in B. The literal true represents an empty
sequence of constraint terms. The guard part, G |, may be omitted when G is empty.

A simplification rule, which has the form H2 <=> G | B can be represented by a
simpagation rule true \ H2 <=> G | B. Similarly, a propagation rule, which has the
form H1 ==> G | B, can be represented by a simpagation rule H1 \ true <=> G | B.

CHR Semantics. CHR has a well-defined declarative as well as operational seman-
tics [1, 10]. The declarative interpretation of a CHR program P is given by the set of
universally quantified formulas corresponding to the CHR rules, and an underlying con-
sistent constraint theory CT . The constraint theory defines the meaning of host language
constraints, the equality constraint ‘=’, and the boolean atoms true and false.

The original operational semantics [1] is given in terms of a non-deterministic tran-
sition system. The evaluation of a program P is a path through the transition system.
The transitions are made when a constraint is added from the goal to the store, or by
firing any applicable program rule. The refined semantics ωr [9] defines a more deter-
ministic transition system, specifying, among others, the order in which rules are tried.
Most CHR implementations are based on ωr.

3 The Set-Based Operational Semantics

Our set-based operational semantics, called ωset, is given in terms of a transition rela-
tion. The formulation of ωset closely follows that of the refined operational semantics
ωr [9]. A state in the system is represented by a triple 〈E,CU , CB〉V,P where E, called
the execution stack, is an ordered sequence of constraint activation events; CU , the
user-defined constraint store, is a set of user-defined constraints, and CB , the built-in
constraint store, is a conjunction of built-in constraints; V is a sequence of variables;
and P is the given CHR program. We omit either one or both the subscripts V, P when-
ever clear from the context. In contrast, states in ωr are quadruples 〈E,CU , CB , T 〉V,P

where T is the propagation history and CU , the user-defined store, is a multi-set.
As in the refined operational semantics ωr, different occurrences of constraint terms

with the same symbol in the heads of rules are marked with an occurrence number
corresponding to the order in which they appear in the CHR program (starting from
1). This numbering indicates the order in which the rules are tried, thus reducing non-
determinism of program evaluation. Three kinds of activation events can appear in the
execution stack:

– Inactive constraint: c is a user-defined or built-in constraint term;

– Active constraint: c : j where c is a user-defined constraint term and j is a number,
meaning that this term can match only with the j-th occurrence of the constraint
symbol in the program; and

– Conditional activation: (H1\H2), G . B where H1 and H2 are sets of user-defined
constraint terms, G is a set of built-in constraint terms, and B is a sequence of
user-defined and built-in constraint terms.

A CHR program is evaluated by forward chaining, and the evaluation stack is used
to control this computation. The event at the top of the execution stack is the one cur-
rently scheduled for evaluation. The first two events above are also in ωr; the conditional
activation event is unique to ωset2. An inactive constraint (the first event) corresponds
to constraints that we have not yet begun processing; an active constraint corresponds
to one that is being processed. The conditional activation event marks constraints that
we will begin processing only when the conditions hold.

The initial state of the system is 〈E, ∅, true〉V,P where E is the sequence of con-
straints posed to the system, V is the set of variables in E, P is the CHR program. A
successful terminating state of the system is of the form 〈>, CU , CB〉, where > is an
empty execution stack and CB 6= false. A failed state is one where CB = false. The
logical reading of a state 〈E,CU , CB〉V,P is ∃x̄ E ∧CU ∧CB where E and CU denote
conjunctions of their respective contents and x̄ is the set of variables in the state that are
not in V .

Note that a rule that was not applicable when a constraint was initially activated may
become applicable when variables in that constraint are bound. We determine which
constraints need to be reprocessed using the wakeup function defined below. We say
that a built-in constraint b affects a user-defined constraint c in store CU (denoted by
c ∈ affects(b, CU)) if the evaluation of b adds bindings to any variable in c. A variable
x is fixed in the built-in store CB (denoted by x ∈ fixed(CB)) if there is only one
value for x that makes CB true. A constraint c in CU is fixed in CB (denoted by c ∈
fixed(CB , CU)) if vars(c) ⊆ fixed(CB). We need to reprocess the set of all constraints
in CU that are affected by b but are not fixed by CB . Since these constraints have been
activated before, we define the wakeup function to directly generate active constraints.
Formally, wakeup(b, CU , CB) = {c :1 | c ∈ affects(b, CU) ∧ c 6∈ fixed(CU , CB)}.

3.1 Derivation Rules for ωset

Derivations of ωset are given by the relation 7→set which defines transitions of the form
σsrc 7→set σdst according to the following rules. An example ωset derivation for the
leq program from Example 1 is shown in Fig. 1. We illustrate application of rules of
7→set with appropriate transitions in this derivation.

Activate : Let σsrc = 〈[c|E], CU , CB〉 and c 6∈ CU . That is, c is an inactive user-
defined constraint that is not already in the store. Then c is added to the CHR store and
annotated to match its first occurrence in P . That is, σdst = 〈[c :1|E], {c} ∪ CU , CB〉.

For example, the Activate transition in Fig. 1, lines (1–2), sets the currently sched-
uled constraint leq(A, B) to match the first occurrence of leq in the program, and adds
it to the constraint store.

2 It should be noted that while formal definition of ωr does not have conditional activation, most
CHR implementations use this notion implicitly [12, 22].

〈[leq(A, B), leq(B, C), leq(A, C), leq(C, A)], ∅, true〉 (1)
Activate 7→set 〈[leq(A, B) :1, leq(B, C), leq(A, C), leq(C, A)], {leq(A, B)}, true〉 (2)

7∗Default 7→set 〈[leq(A, B) :8, leq(B, C), leq(A, C), leq(C, A)], {leq(A, B)}, true〉 (3)
Drop> 7→set 〈[leq(B, C), leq(A, C), leq(C, A)], {leq(A, B)}, true〉 (4)

Activate
6∗Default 7→set 〈[leq(B, C) :7, leq(A, C), leq(C, A)], {leq(A, B), leq(B, C)}, true〉 (5)

PropMatch 7→set 〈[(leq(A, B), leq(B, C)\∅), true . leq(A, C), leq(B, C) :8,
leq(A, C), leq(C, A)], {leq(A, B), leq(B, C)}, true〉 (6)

PropFire 7→set 〈[leq(A, C), leq(B, C) :8, leq(A, C), leq(C, A)],
{leq(A, B), leq(B, C)}, true〉 (7)

Activate
7∗Default
Drop>

7→set 〈[leq(B, C) :8, leq(A, C), leq(C, A)],

{leq(A, B), leq(B, C), leq(A, C)}, true〉 (8)
Drop> 7→set 〈[leq(A, C), leq(C, A)], {leq(A, B), leq(B, C), leq(A, C)}, true〉 (9)
Drop< 7→set 〈[leq(C, A)], {leq(A, B), leq(B, C), leq(A, C)}, true〉 (10)

Activate
3∗Default 7→set 〈[leq(C, A) :4], {leq(A, B), leq(B, C), leq(A, C)}, true〉 (11)
Simplify 7→set 〈[C = A], {leq(A, B), leq(B, C)}, true〉 (12)

Solve 7→set 〈[leq(A, B) :1, leq(B, C) :1], {leq(A, B), leq(B, C)}, C = A〉 (13)
3∗Default
Simplify 7→set 〈[C = B, leq(B, C) :1], {leq(A, B)}, C = A〉 (14)

Solve 7→set 〈[leq(A, B) :1, leq(B, C) :1], {leq(A, B)}, C = A ∧ C = B〉 (15)
Simplify 7→set 〈[leq(B, C) :1], ∅, C = A ∧ C = B〉 (16)

7∗Default
Drop> 7→set 〈[], ∅, C = A ∧ C = B〉 (17)

Fig. 1. Derivation for the leq program under ωset

Default : If no other transition can be fired in a state σsrc = 〈[c :j|E], CU , CB〉, then
the currently scheduled constraint c : j is assigned the next occurrence number. That is,
σdst = 〈[c :j+1|E], CU , CB〉.

For example, each of the seven Default transitions in Fig. 1, lines (2–3), increments
the occurrence index j of the currently scheduled constraint leq(A, B) : j until the
occurrence number is 8. Since there are only seven occurrences of leq in the program,
this enables the Drop>rule.

Drop>: Let σsrc = 〈[c :j|E], CU , CB〉 where c does not have a j-th occurrence in P
(i.e., all occurrences of c have been tried with the Default rule; see below). Then c :j is
popped from the execution stack. That is, σdst = 〈E,CU , CB〉.

For example, the Drop>transition in Fig. 1, lines (3–4), pops leq(A, B) :8 from the
execution stack as there are only seven occurrences of leq in the program.

PropMatch : Let σsrc = 〈[c :j|E], CU , CB〉, the program P contain rule R = c′ :
j, H ′

1\H ′
2 <=> G |B. Also let θ be a substitution s.t. c′θ = c, H ′

1θ, H ′
2θ and {c′θ}

are all mutually disjoint subsets of CU , and CT |= CB → ∃x̄(Gθ) where x̄ are vari-
ables that occur in G but not in CB . That is, there is a substitution under which the

constraint store matches the heads of rule R and satisfies its guard. Then the currently
scheduled constraint is assigned the next occurrence number. Moreover, all matching
substitutions are computed iteratively, and the body constraints of R under these sub-
stitutions are pushed onto the stack. Note, however, that before a body constraint thus
pushed on the stack is taken up for evaluation, some of the constraints used in the
match may be removed from the store. Hence we create conditional activations for
the body constraints. Formally, let {θ1, . . . , θn} be the set of all most general sub-
stitutions such that c′θi = c, H ′

1θi, H ′
2θi and {c′θi} are all mutually disjoint sub-

sets of CU , and CT |= CB → ∃x̄(Gθi). Let Γi = (H ′
1θi\H ′

2θi), Gθi . Bθi. Then,
σdst = 〈[Γ1, . . . , Γn]++[c :j+1|E], CU , CB〉.

For example, the PropMatch transition in Fig. 1, lines (5–6), matches the stored
constraint leq(A, B) and the currently scheduled constraint leq(B, C) : 7 with the head
of the transitivity rule in the program. The occurrence index of the currently sched-
uled constraint is incremented by 1, and the corresponding body constraint leq(A, C),
annotated with the matched head constraints, is pushed onto the execution stack.

PropFire : Let σsrc = 〈[(H1\H2), G . B|E],H1]H2] CU , CB〉, such that CT |=
CB → ∃x̄(G) where x̄ are variables that occur in G but not in CB . That is, a conditional
activation event is on top of the stack such that the constraints in H1] H2 exist in the
user-defined store, and the guard G is satisfied by the built-in store. Then the constraints
in H2 are removed from the user-defined store, and all constraints in B are pushed onto
the evaluation stack. Formally, σdst = 〈B++E,H1] CU , CB〉.

For example, the PropFire transition in Fig. 1, lines (6–7), verifies that the con-
straints leq(A, B) and leq(B, C), which matched the head of the transitivity rule
and caused pushing leq(A, C) onto the execution stack, are present in the constraint
store CU , and schedules leq(A, C) for evaluation.

PropDrop : Let σsrc = 〈[(H1\H2), G . B|E], CU , CB〉 such that either (H1]H2) 6⊆
CU or CT 6|= CB → ∃x̄(G) where x̄ are variables that occur in G but not in CB . That
is, a conditional activation event is on top of the stack, and its condition is not satisfied.
Then the currently scheduled event is popped from the stack: σdst = 〈E,CU , CB〉.
Drop<: Let σsrc = 〈[c|E], CU , CB〉 and c ∈ CU . That is, c is an inactive constraint that
is already in the store. Then c is popped from the execution stack: σdst = 〈E,CU , CB〉.

For example, the Drop<transition in lines (9–10) of Fig. 1 pops leq(A, C) from the
execution stack since it is already in the constraint store.

Simplify : Let σsrc = 〈[c :j|E], {c}]H1]H2] CU , CB〉 and the program P contain
a matching rule R. I.e., R = H ′

1\c′ : j, H ′
2 <=> G |B and there is a substitution

θ s.t. H ′
1θ = H1, H ′

2θ = H2, c′θ = c, and CT |= CB → ∃x̄(Gθ) where x̄ are
variables that occur in G but not in CB . Then c : j is popped from the execution stack,
all constraints matching H ′

2 are removed from the store, and R’s body constraints under
the substitution θ are pushed onto the stack. Formally, σdst = 〈Bθ++E,H1] CU , CB〉

For example, the Simplify transition in Fig. 1 lines (11–12), matches the active con-
straint with 4th occurrence of leq (i.e. the antisymmetry rule), removes leq(A, C),
and adds the rule body C = A to the stack.

Solve : Let σsrc = 〈[b|E], CU , CB〉 and b be a built-in constraint. Then b is added to the
built-in store and all constraints affected by b but not fixed by CB are pushed onto the
execution stack. Formally, σdst = 〈wakeup(b, CU , CB)++E,CU , b ∧ CB〉.

For example, the Solve transition in Fig. 1, lines (14–15), processes the scheduled
constraint C = B, by first adding C = B to the built-in store. The affected constraint
leq(A, B) is re-activated, and made the new scheduled constraint.

The transitions PropMatch, PropFire and PropDrop directly correspond to the
way constraint propagation is implemented. The universal search eliminates the prob-
lem of trivial nontermination due to repeated firing of a propagation rule for the same
active constraint. Note that the propagation history used in ωr serves to avoid the
non-termination problem. In ωset, PropFire performs actual propagation for the given
matching to a propagation rule’s head constraints, provided that matching conditions
still hold. If the matching conditions do not hold, PropDrop prevents firing the rule’s
body constraints. The Drop<transition ensures that the constraint store is a set, and the
same constraint is not activated over and over again.

3.2 Properties of ωset

It is easy to show that ωset is sound with respect to CHR’s declarative semantics:

Theorem 1 (Soundness) Let P be a CHR program, CT be the consistent theory un-
derlying the built-in constraints in P , G be a goal, 〈G, ∅, true〉 ∗7→set 〈E,CU , CB〉 be a
derivation, and C be the logical reading of the final state. Then P,CT |= C ↔ G.

This theorem is established by induction on the length of a derivation.
Relationship between ωset and ωr. Since ωset treats the constraint store as a set,
programs for which ωr places multiple occurrences of the same constraint in its store
will have a different behavior under ωset compared to ωr. However, there are CHR
programs for which the constraint store, even under ωr, turns out to be a set. We call
such programs set-CHR programs. Clearly, it is useful to compare the two semantics
only for set-CHR programs.

r1 @ p(X, Y) ==> q(X, Y).
r2 @ q(X, X) <=> X = a.
r3 @ q(X, Y) <=> X = Y.

Fig. 2. CHR program with different
fixed points in ωr and ωset

In general, ωset is not equivalent to ωr. For in-
stance, consider the evaluation of the CHR program
in Fig. 2 in ωset for the goal p(A, B). Starting from
the empty constraint store, activation of p(A, B) will
lead to store {p(A,B)} (for brevity, we combine
the user-defined and built-in stores in this example).
Firing rule r1 takes us to {p(A,B), q(A,B)}. Note
that the simplification rule r2 is not applicable in this store, but r3 is, leading to the
store {p(A,B), A = B}. Since variables A and B have new bindings in the store,
the constraint p(A,B) will be woken up by the Solve transition. Rule r1 will be fired
again, leading to the store {p(A,B), q(A,B), A = B}. Rule r2 is applicable in this
store, yielding {p(a, a)}. The evaluation terminates after one more round of Solve and
firing of r1 and r2.

The evaluation in ωr leads to a different derivation. In ωr, each constraint is given
an identifier to distinguish between different occurrences of the same constraint in the
multi-set store. Propagation history is maintained in terms of the identifiers of matching
constraints. When the variables in a constraint get bound, the constraint’s identifier is
not changed. This means that if a propagation rule was fired once for a set of matching
constraints, it will not be fired again even when the variables in its matching constraints

are bound further. Thus evaluation of p(A,B) in ωr for the above example will proceed
as in ωset until we reach the store {p(A,B), A = B}. Solve will wake up p(A,B), but
rule r1 will not be applicable since it was fired before for the same constraint. Hence,
ωr terminates with the store {p(A,B), A = B}!

It appears that the state with which ωr terminates is not a fixed point, and the prop-
agation history makes ωr terminate the fixed point computation early. For instance, the
evaluation of p(A,B) terminates with a store equivalent to p(A,A). But evaluation of
p(A,A) will terminate with a different store: p(a, a)! In contrast, ωset’s termination
condition (presence of a constraint in the store) distinguishes between a constraint term
under different substitutions, and hence does not abandon the fixed point computation
early. In general, there are set-CHR programs and goals that terminate with ωr but not
with ωset due to this difference in identifying fixed points.

Datalog-CHR is a class of CHR programs such that (i) there are no function symbols
of arity ≥ 1, and (ii) every variable in a rule occurs on the rule’s left hand side. For
instance, the program in Fig. 2 is a Datalog-CHR program. For programs in this class,
evaluation using ωset will terminate whenever ωr terminates.

4 Compiling CHR with Distributed Constraint Store

Direct-Indexed CHR. We now define a subclass of CHR programs for which we can
use a simple and efficient constraint store representation. Note that in ωset Simplify and
PropMatch select a matching substitution in order to determine whether the rule is ap-
plicable for a given active constraint. This operation significantly affects the efficiency
of a CHR implementation, and a considerable amount of work has gone into devising
index structures to optimize it [13, 23]. The matching procedure has two distinct parts:
selecting from the store constraints that match the rule’s head, and checking whether the
guard is satisfiable under the matching substitution. The class of direct-indexed CHR
programs, defined below, has a structure that simplifies the first part.

Each user-defined constraint in a direct-indexed program has a mode declaration that
specifies the set of possible instances of the constraint that may appear in the store. Each
argument of a constraint may have one of three modes: “v” if that argument remains
free in any instance of the constraint in the store, “g” if that argument is a ground term
all instances, and “?” if that argument is a variable or a constant in all instances3.

Given a constraint term c, we use avars(c) to denote the set of variables that appear
at positions with mode “v”. We assume that the mode declarations are consistent with
the use of constraints in the rules and queries; and that all user-defined constraints have
at least one position with mode “v”.

The matching graph for a (multi-)set of constraints is a graph in which there is a
vertex representing each constraint in the set, and there is an edge between every pair
of constraints that share a “v”-moded variable. Formally,

Definition 1 The matching graph of a set C of user-defined and built-in constraints is
a labeled undirected graph G = (V,E) where V = C, and E is the smallest set such
that ∀c1, c2 ∈ V, avars(c1) ∩ avars(c2) 6= ∅ → (c1, c2, l) ∈ E where l = avars(c1) ∩
avars(c2).

3 Similar declarations have been used in other CHR systems [13, 23]

We can use the matching graph for a head of a CHR rule to drive the matching pro-
cess. Given the vertex in the graph that matches the active constraint, we first can check
whether its neighbors match any constraints in the store. Since a neighbor constraint
shares unbound variables with the active constraint, we can index into the constraint
store using this information, thereby speeding up matching. When the neighbors them-
selves are matched, we can traverse the graph further. Clearly, this process will not
apply when there is a subset of head constraints that do not share variables with the
remaining constraints in the head. The direct-indexed CHR is defined to disallow this
condition. Formally:

Definition 2 A rule R in a CHR program is said to be direct-indexed if the matching
graph for its head constraints is connected. A CHR program is direct-indexed if all its
rules are direct-indexed. A CHR goal is direct-indexed if its matching graph is con-
nected. A CHR derivation is direct-indexed if it evaluates a direct-indexed goal over a
direct-indexed program.

All valid CHRd derivations are direct-indexed. Many CHR specifications, e.g., leq
from Example 1, are naturally direct-indexed, and all CHR specifications can be triv-
ially translated to direct-indexed CHR programs. We describe the issues surrounding
such a translation at the end of this section.
The Distributed Constraint Store Representation. Following other CHR imple-
mentations, we use attributed variables [11] to represent constraints. Attributed vari-
ables are associated with mutable data, and an user-defined unification handler is in-
voked whenever an attributed variable is unified. In our implementation, a variable’s
attribute represents the set of all the constraints the variable participates in, that is, the
variable’s local constraint store. The attribute is encapsulated in a constraint attribute
term (CAT). The CAT is different from a suspension term, which in other Prolog imple-
mentations of CHR represents a single stored constraint. The CAT of a variable is a vec-
tor whose size is determined at compile time based on the number and arity of the user-
defined constraint symbols. For instance, if a/2 and b/1 are the only two user-defined
constraint symbols, and a(X,Y) is the lone constraint in the store, then X’s CAT will
be v([attr(Y)],[],[]), and Y’s CAT will be v([],[attr(X)],[]).

The constraint store is a collection of constraint variables and their CATs. It should
be noted that, although each argument of a CAT is represented as a list, it is manipulated
as though it is a set. When two constrained variables are unified, their CATs will be
merged. Again, we treat the arguments of the CATs as sets and compute their pair-
wise union. When a variable changes due to unification, all constraints in its CAT are
considered to be in the wakeup set, and rules involving the constraints are re-fired.
The CHRd Compiler. Our compiler generates the code that faithfully implements the
semantics ωset, following the well-developed CHR-to-Prolog compilation schema [14].
In its current version, the compiler supports simple variants of the join-order, continua-
tion, and late storage optimizations, standard in most of the traditional CHR systems.
Matching. CHRd’s representation of the constraint store helps in quickly checking
whether a matching constraint exists in the store. For instance, to select constraints of
the form a(U,Y) for a particular variable Y, we need to simply inspect the second
argument of Y’s CAT. This structure builds a single-level index on all arguments of a
constraint. Although it is possible to build nested index structures within each argument
of the CAT, this is not done in the current implementation of our system.

gcd(0) <=> true.
gcd(N) \ gcd(M) <=>

N=<M | L is M-N, gcd(L).

:- mode gcd(v,g).
gcd(X,0) <=> true.
gcd(X,N) \ gcd(X,M) <=>

N=<M | L is M-N, gcd(X,L).
(a) (b)

Fig. 3. (a) A ground CHR program; and (b) its translation into direct-indexed CHR

During an application of a propagation rule, first the PropMatch transition retrieves
all constraints of a desired form (by accessing appropriate arguments in the CATs
of the constrained variables) into a temporary data structure. After all matchings for
therule’s head have been collected, the PropFire transition evaluates each matching in
turn against the corresponding substitution of the rule’s guard and, when the guard is
satisfied, fires the rule’s body constraints under the same substitution.
Evaluation of Ground CHR Programs. Consider the CHR program for evaluating
the greatest common divisor of a set of integers given in Figure 3(a). When we pose two
ground constraints, say gcd(12), and gcd(8), the program terminates with gcd(4)
as the lone constraint in the store. The program is not direct-indexed since the matching
graph for its second rule has two vertices and no edges (i.e. no shared variables).

Such programs can be trivially translated to direct-indexed CHR by adding an extra
variable to each constraint. The direct-indexed CHR program equivalent to that in Fig-
ure 3(a) is given in Figure 3(b). The extra variable can be thought of as representing the
constraint store itself. One salient point of the translation is that we now have a handle
on a constraint store, and we can simultaneously create and manipulate multiple, pos-
sibly independent, stores. For instance, using the translated program, we can pose con-
straints gcd(A,12), gcd(A,9), and in the same computation pose gcd(B,45),
gcd(B,30), and the two queries will be evaluated independently. Thus, we can con-
sider the translated CHR program as operating over local constraint stores. The capacity
for generating new constraint stores and manipulating them locally makes CHRd a good
fit in a tabling system where each answer and call has an associated store.

5 Experimental Results

We now present the results of the experiments evaluating the performance of CHRd in
tabled as well as non-tabled settings. All measurements were taken on a PC with 1.4
GHz Pentium-M processor and 512 MB RAM running Linux. The run time, given in
milliseconds, is averaged over multiple tests. We have compared the performance of
CHR and CHRd on XSB 3.0.1 (CHRd’s native platform) and hProlog 2.4.35-32. We
chose hProlog since it is the host for K.U.Leuven’s CHR (KUL-CHR), currently the
most representative of systems that efficiently implement Constraint Handling Rules.
Examples Using Tabled Evaluation We evaluate the performance of CHRd for
tabled programs using four examples: (1) truckload, a problem used in [24] to
measure the performance of XSB-CHR; (2) buffer, the constraint-based verification
of “in-order” message delivery property of a FIFO buffer; (3) dining ph, deadlock
analysis of a dining philosophers specification using synchronization contracts; and (4)
fischer, a CHR-based implementation of reachability analysis for real-time systems.

Benchmark XSB-CHR CHRd
truckload(300) 1870 243 (13%)
truckload(500) 2530 380 (15%)

fifo(240) — 1580
fifo(320) — 3730

dining ph(6) — 120
dining ph(8) — 980

Table 1. Run time (in ms.) for evaluation of
tabled CHR programs

Truckload is a variant of knapsack,
the classical dynamic programming prob-
lem, for scheduling the delivery of packages
using finite-capacity trucks to different des-
tinations. Tabling ensures polynomial-time
behavior. The base data for the problem,
e.g. the attributes of packages were taken
from [24].

The time taken to run truckload in
XSB-CHR and CHRd for two truck capac-
ities is given in Table 1. The percentage of

time taken by CHRd w.r.t. XSB-CHR, given in parentheses, shows that CHRd is four
times faster than XSB-CHR. The memory usage is similar on both systems.

The truckload problem is relatively small, and CHRd significantly outperformed
XSB-CHR. The other tabled problems, taken from verification examples, are relatively
large. As can be seen from the table, due to the more complex constraints and large
number of table operations, XSB-CHR failed to work on these examples.

In [20] we presented a constraint-based algorithm for verifying a class of infinite-
state systems called data independent systems. The rows labeled fifo(N) of Table 1
show the run time of a CHRd-based implementation of this algorithm for verifying
the “in-order” message delivery property of an N -place FIFO buffer. The solver uses
a reachability-based algorithm and hence needs tabling for termination. The original
implementation for this problem (which used a meta-interpreter for constraint handling)
is 2.5 times slower that the one based on CHRd.

Our deadlock detection framework [21] uses CHR to enforce correct synchroniza-
tion of threads based on locally defined concurrency constraints, and reachability anal-
ysis to detect deadlocked states. Table 1 shows run time results for the evaluation of two
configurations of N dining philosophers in which no deadlock was found.

Finally, we used CHRd to analyze Fischer’s protocol, a mutual-exclusion protocol
that is often used to benchmark real-time verification tools. We used CHR to specify a
solver for the clock constraints. While CHRd was able to solve the verification problems
for various instances of the protocol, XSB-CHR was unable to solve even a 2-process
instance. However, the CHRd-based verifier is 2-5 times slower than a verifier that uses
a hand-built (Prolog-based) clock constraint solver [17]. This example indicates that
CHRd needs to be further optimized before it can compete with custom-built solvers
for well-known constraint domains.

Non-tabled Examples Table 2 compares CHRd running on XSB and hProlog, with
each platform’s original CHR system: XSB-CHR and KUL-CHR. The table shows the
results for direct-indexed programs: cycle, a cycle of leq constraints on N variables;
queens and zebra, two classical problems solved using finite-domain CHR; bool,
N -digit binary addition; bool chain, a cycle of “∧” constraints over N variables;
alias, an encoding of Anderson’s may-points-to analysis for C programs [2]; and ta,
an evaluation of clock bounds on finite automata.

The table also shows results for ground CHR benchmarks: gcd described in Sec-
tion 4; primes, a computation of prime numbers up to N ; fib, a computation of first
N Fibonacci numbers; and ram simul, a simulator of a RAM machine. The ground

XSB hProlog
Benchmark XSB-CHR CHRd KUL-CHR CHRd
cycle(60) 11015 1500 (14%) 940 554 (59%)
queens(16) 9693 2520 (26%) 1250 820 (65%)
zebra(10) 45220 690 (2%) 1130 320 (28%)
bool(50000) 255810 1470 (1%) 770 1050 (136%)

bool chain(400) 207420 16970 (8%) 680 610 (90%)
alias(m88ksim) – 189 140 96 (69%)
alias(parser) – 3690 3650 4050 (111%)

ta(200) 5860 2090 (35%) 690 560 (75%)
gcd([3,106]) 1010 945 (94%) 126 360 (300%)
primes(2000) 6871 2753 (40%) 500 1065 (213%)
fib(500) 3260 1250 (38%) 240 475 (198%)

ram simul(40000) – 2740 330 1170 (355%)
Table 2. Runtime (in ms.) for evaluation of non-tabled CHR programs

CHR programs were evaluated directly by the native CHR systems on each platform.
For CHRd, they were first translated as described in Section 4 and then ran.

Clearly, CHRd outperforms XSB-CHR for all tests. On hProlog, the performance
of CHRd is close to, or better than, that of KUL-CHR for the direct-indexed programs.
It should be noted that KUL-CHR is built to handle a more general class of CHR pro-
grams, and does not exploit the indexing available in direct-indexed programs. On the
other hand, CHRd does not (currently) optimize the compilation based on the mode in-
formation, nor does it support the alternative index structures (e.g. hash tables) used in
KUL-CHR. The significantly slower run times of our system for the ground benchmarks
is due to the absence of such optimizations. We believe that adding these optimizations
to CHRd will bring its performance closer to that of KUL-CHR.

6 Related Work and Discussion

Although the CHR framework was initially proposed for specifying constraint solvers,
there is a growing body of work for using it as a full-fledged programming language.
The semantics of the language and its implementation have evolved hand-in-hand. For
instance, while the initial papers refer to the constraint store as a conjunction of con-
straints [10], the implementations represented the store using multi-set of terms. Sub-
sequently, the formalization of its semantics in terms of multi-set rewriting have been
widely accepted. The original operational semantics [1, 10] has been refined [9] to re-
duce non-determinism and extend the class of programs amenable for evaluation. One
of the stated motivations for the refined semantics was to bring the formalism closer to
the popular implementations.

It was observed that the propagation history, a key structure of CHR semantics, con-
tributed to significant performance issues when an existing CHR implementation was
ported to a tabling environment [24]. When working with multi-set-based constraint
store, it appears that propagation history is essential to provide a reasonable semantics.
Our work can be viewed as an investigation into the effect of making the constraint

store set-based. Note that bottom-up techniques for evaluating definite logic programs
compute fixed points (minimal models) without maintaining something analogous to
propagation history [16]. Our semantics ωset extends this basic idea to work in the
presence of simplification rules (i.e. non-monotonic changes to the store) and bindings
on variables. As a result, we obtain a simpler semantics that is easier to implement
in a tabled setting. We ensure that the new semantics is as close as possible to exist-
ing implementations by basing its formulation on refined semantics ωr [9]. Although
our semantics ωset coincides with ωr for a large class of constraint handlers written in
CHR, the two semantics do not coincide in general. One problem of current interest is
to identify the class of CHR programs for which the two semantics coincide.

Although traditional CHR implementations rely on central storage of constraints,
direct indexing (storing constraints as variable attributes) has been recognized as more
efficient. Therefore, many existing systems [13, 14, 23] store constraints both ways, us-
ing the central data structures only to access constraints when direct indexing is not
available. Our work extends this approach by entirely eliminating central storage, and
transforming programs that are not direct-indexed to simulate a store using another at-
tributed variable. All CHR implementations we are aware of maintain a propagation
history, which is eliminated in CHRd, thanks to its set-based semantics. Consequently,
we have reduced the overheads of storing and manipulating constraint stores, leading to
a scalable integration of CHR-based constraint solvers with tabled evaluation.

As mentioned before, CHR is being treated as a full-fledged programming language,
and not just for writing constraint solvers. It has been shown that algorithms can be en-
coded in CHR and evaluated with no loss in their asymptotic-time complexity [25].
Recent works have addressed the space complexity of CHR programs [26]. In order to
support the growing number of applications (most of them are ground CHR programs),
a lot of effort has gone to optimizing central storage structures critical to performance
of such programs. Works such as [13] propose analyses to determine the best index
depending on the properties of the constraints specified in the program. Additionally,
structures that guarantee efficient lookup (234-trees in [13] or hash tables in [23]) have
replaced simple unordered lists that was used in early implementations [14]. In CHRd,
the constraint set associated with each variable is defined as an unordered list, similar
to that in [14]. Incorporating the results of indexing research will improve the CHRd
implementation. Furthermore, for non-tabled programs, CHRd replaces the check on
propagation history by a check on the constraint store. Our experience with CHRd in-
dicates that constraint store checks can be done as efficiently as propagation history
checks. There has also been analyses that determine whether propagation history can
be eliminated [22]. Whether similar analyses can be used to eliminate explicit checks
on the constraint store remains to be seen.

References
1. S. Abdennadher. Operational Semantics and Confluence of Constraint Propagation Rules. In

CP ’97, pages 252–266, 1997.
2. L. O. Anderson. Program Analysis and Specialization for the C Programming Language.

PhD thesis, DIKU, Unversity of Copenhagen, 1994.
3. M. Y. Becker and P. Sewell. Cassandra: Flexible trust management, applied to electronic

health records. In IEEE Computer Security Foundations Workshop (CSFW), pages 139–154,
2004.

4. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.
Journal of the ACM, 43(1):20–74, 1996.

5. S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using general
purpose logic programming systems — a case study. In ACM PLDI, 1996.

6. G. Delzanno and T. Bultan. Constraint-based verification of client-server protocols. In CP,
pages 286–301, 2001.

7. G. Delzanno and A. Podelski. Model checking in CLP. In TACAS, pages 223–239, 1999.
8. B. Demoen. hProlog. http://www.cs.kuleuven.ac.be/∼bmd/hProlog/.
9. G. J. Duck, P. J. Stuckey, M. J. G. de la Banda, and C. Holzbaur. The Refined Operational

Semantics of Constraint Handling Rules. In ICLP 2004, pages 90–104, 2004.
10. T. Frühwirth. Theory and Practice of Constraint Handling Rules. Journal of Logic Program-

ming, Special Issue on Constraint Logic Programming, 37(1-3):95–138, 1998.
11. C. Holzbaur. Metastructures versus Attributed Variables in the Context of Extensible Unifi-

cation. In PLILP ’92, pages 260–268, 1992.
12. C. Holzbaur, M. G. de la Banda, D. Jeffery, and P. J. Stuckey. Optimizing Compilation

of Constraint Handling Rules. In ICLP 2001, volume 2237 of Lecture Notes in Computer
Science, 2001.

13. C. Holzbaur, M. G. de la Banda, P. J. Stuckey, and G. J. Duck. Optimizing compilation
of constraint handling rules in HAL. Theory and Practice of Logic Programming, 5(4-5,
Special Issue on Constraint Handling Rules):503–531, 2005.

14. C. Holzbaur and T. W. Frühwirth. Compiling Constraint Handling Rules into Prolog with
Attributed Variables. In PPDP ’99, pages 117–133, 1999.

15. N. Li and J. C. Mitchell. Datalog with constraints: A foundation for trust management
languages. In PADL, pages 58–73, 2003.

16. J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.
17. G. Pemmasani, C. R. Ramakrishnan, and I. V. Ramakrishnan. Efficient model checking of

real time systems using tabled logic programming and constraints. In ICLP, 2002.
18. C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, Y. Dong, X. Du, A. Roychoudhury,

and V. N. Venkatakrishnan. XMC: A logic-programming-based verification toolset. In CAV,
volume 1855 of LNCS, pages 576–580, 2000.

19. K. Sagonas, T. Swift, D. S. Warren, P. Rao, and J. Friere. The XSB logic programming
system. http://xsb.sourceforge.net.

20. B. Sarna-Starosta and C. R. Ramakrishnan. Constraint-based model checking of data-
independent systems. In Intl. Conf. on Formal Engineering Methods (ICFEM), volume 2885
of LNCS, pages 579–598, 2003.

21. B. Sarna-Starosta, R. E. K. Stirewalt, and L. K. Dillon. A model-based design-for-
verification approach to checking for deadlock in multi-threaded systems. In 18th Inter-
national Conference on Software Engineering and Knowledge Engineering (SEKE), 2006.

22. T. Schrijvers. Analyses, optimizations and extensions of Constraint Handling Rules. PhD
thesis, K.U.Leuven, 2005.

23. T. Schrijvers and B. Demoen. The K.U.Leuven CHR system: Implementation and appli-
cation. In First workshop on constraint handling rules: selected contributions, pages 1–5,
2004. Published as technical report: Ulmer Informatik-Berichte Nr. 2004-01.

24. T. Schrijvers and D. S. Warren. Constraint handling rules and tabled execution. In ICLP,
pages 120–136, 2004.

25. J. Sneyers, T. Schrijvers, and B. Demoen. The Computational Power and Complexity of
Constraint Handling Rules. In CHR 2005, 2005.

26. J. Sneyers, T. Schrijvers, and B. Demoen. Memory reuse for CHR. In ICLP 2006, 2006.
27. Swedish Institute of Computer Science. SICStus Prolog System. http://www.sics.

se/isl/sicstuswww/site/index.html.
28. H. Tamaki and T. Sato. OLDT resolution with tabulation. In ICLP, pages 84–98, 1986.

