
A Local Algorithm for Incremental Evaluation of
Tabled Logic Programs

Diptikalyan Saha and C. R. Ramakrishnan

Dept. of Computer Science, University at Stony Brook, Stony Brook, NY 11794
E-mail: {dsaha, cram}@cs.sunysb.edu

Abstract. This paper considers the problem of efficient incremental maintenance
of memo tables in a tabled logic programming system when the underlying data
are changed. Most existing techniques for incremental evaluation (or materialized
view maintenance in deductive databases) consider insertion and deletion of facts
as primitive changes, and treat update as deletion of the old version followed by
insertion of the new version. They handle insertion and deletion using independent
algorithms, consequently performing many redundant computations when process-
ing updates. In this paper, we present a local algorithm for handling updates to facts.
We maintain a dynamic (and potentially cyclic) dependency graph between and
among calls and answers in the memo tables. The key idea is to interleave the prop-
agation of deletion and insertion operations generated by the updates through this
graph. The dependency graph used in our algorithm is more general than that used
in algorithms previously proposed for incremental evaluation of attribute grammars
and functional programs. Nevertheless, our algorithm’s complexity matches that of
the most efficient algorithms built for these specialized cases. We demonstrate the
effectiveness of our algorithm using data-flow analysis and parsing examples.

1 Introduction
Tabled resolution [4, 6, 29] and its implementations have enabled the development of ap-
plications in areas ranging from program analysis and verification [8, 20, e.g.], to object-
oriented knowledge bases [32, e.g.]. Since results of computations are cached, tabling also
offers the potential to incrementally compute the changes to the results when a rule or fact
in the program changes. Incremental evaluation of tabled logic programs will enable us
to directly derive incremental versions of different applications.

The Driving Problem. The problem of incremental evaluation of logic programs is
closely related to the view maintenance problem which has been extensively researched,
especially in the context of deductive databases [11, 12, e.g.]. Most of these works, in-
cluding our earlier algorithms [22–24] consider changes to the program only in terms of
addition and deletion of facts. An update of a fact is treated as the deletion of the old ver-
sion followed by the addition of the new version, which may lead to several unnecessary
evaluation steps. In contrast, techniques originally from incremental attribute-grammar
evaluation [9, 21], treat update as in-place change, and propagate this change. This ap-
proach is very restrictive for logic programs, since an update may lead to additions or
deletions in general. In-place update techniques for logic programs work only with non-
recursive programs, and restrict the changes to “non-key attributes” [27]: i.e. the control
behavior of the program cannot change. However, these update propagation algorithms
are optimal whenever they are applicable (i.e. when the restrictive conditions are met).

The interesting problem then is to devise an incremental technique for processing ad-
ditions, deletions as well as updates, which applies to a large class of logic programs,
and yet is optimal for the class of programs handled by the in-place update algorithms.

:- table r/2.
r(X,Y) :- e(X,Y).
r(X,Y) :- e(X,Z), r(Z,Y).

e(1,2).
e(2,3).
e(3,4).
e(4,3).

Calls Answers
r(1,A) r(1,2), r(1,3), r(1,4)
r(2,A) r(2,3), r(2,4)
r(3,A) r(3,4), r(3,3)
r(4,A) r(4,3), r(4,4)

(a) (b)
Fig. 1. Example tabled logic program (a), and its call and answer tables (b).

We present such a technique in this paper. We give an incremental evaluation algorithm
that interleaves the processing of additions and deletions. When the conditions of in-place
update algorithms are met, our algorithm generates matching pairs of additions and dele-
tions which result in optimal change propagation. Our algorithm naturally generalizes in-
cremental algorithms for attribute evaluation [21] and functional program evaluation [1].

An Illustrative Example. Consider the evaluation of query r(1,A) over the program
in Figure 1(a). In the program, r/2 defines the reachability relation over a directed graph,
whose edge relation is given by e/2. The calls and answers computed by tabled resolution
for this query are given in Figure 1(b).

Now consider the effect of changing fact e(2,3) to e(2,4) and treating this change
as the deletion of e(2,3) followed by the addition of e(2,4). First, when e(2,3) is
deleted, nodes 3 and 4 are no longer reachable from 1 or 2. Thus the answers r(2,3),
r(2,4), r(1,3) and r(1,4) are deleted. Subsequently, the addition of e(2,4)
makes nodes 3 and 4 again reachable from 1 and 2. Incremental processing of this addi-
tion introduces answers r(2,4), r(2,3), r(1,4) and r(1,3).

Updates may lead to deletions or additions in general making in-place update al-
gorithms restrictive. For instance, in the above example, if fact e(2,3) is changed to
e(3,2), node 2 becomes reachable from 3 and 4, and nodes 3 and 4 are no longer
reachable from 1 or 2. However, a judicious interleaving of additions and deletions can
simulate the effect of in-place update wherever possible. For instance, consider the above
example again when e(2,3) is changed to e(2,4). Since e(2,3) is changed, we
first inspect r(2,X)’s answer table and recalculate results. If we process all changes to
r(2,X)first, we will stop the propagation there since there is no net change in r(2,X)’s
answers. Hence r(1,3) and r(1,4) will not even be deleted in the first place.

Salient Features of Our Approach. We consider definite logic programs where facts as
well as rules may be changed between two query evaluation runs. We consider an update
as a delete and an insert, but select the order in which they will be processed based on
the dependencies between and among the queries and computed answers. We describe
data structures and algorithms to process additions bottom-up while using the information
about the original queries. Section 2 introduces the data structures used for incremental
processing of additions and deletions. Interleaving between the two operations is achieved
by decomposing the processing of an addition or deletion into finer-grained operations,
and assigning priorities to these operations. Section 3 describes the assignment of priori-
ties and a scheduler to perform the operations in order.

The order in which the operations are performed generalizes the call-graph based or-
ders used in previous incremental algorithms [13, e.g.] where changes are evaluated from
topologically lower strongly connected components (SCCs) to higher SCCs in the call
graph. As a result, our algorithm inspects the same number of answers in tables (which
is a good measure of an incremental algorithm’s performance) as algorithms that perform
in-place updates. In particular, for non-recursive programs, the order in which operations
are performed coincide with the topological order of the call dependencies. Hence our

2

algorithm is optimal for the cases for which optimal update algorithms are known. More-
over the algorithm handles inserts, deletes and updates efficiently, even when the changes
affect the control behavior of the program. We explain how our algorithm naturally gen-
eralizes incremental evaluation of attribute grammars [21] and functional programs [1] in
Section 4. We also present experimental results showing the effectiveness of the algorithm
in that section.

In a more general setting when the dependencies may be recursive, our algorithm in-
terleaves insertion and deletion operations even within an SCC in the call graph. It can be
shown that our schedule of operations is uniformly better than inserts-first or deletes-first
schedules. Our approach is closely related to those used in several incremental program
analysis techniques where change propagation is controlled by considering SCCs in a de-
pendency graph. A detailed discussion relating this algorithm to previous work appears
in Section 5. Extensions and optimizations of our technique are discussed in Section 6. A
more detailed version of this paper with formal aspects of the local algorithm is available
as a technical report [26].

2 Data Structures for Incremental Evaluation

We restrict our main technical development to definite logic programs. We later describe
how to extend these results to general logic programs evaluated under the well-founded
semantics. As an optimization, we assume that definitions of only those predicates that
are marked as volatile may be changed (i.e. with additions, deletions or updates).

In SLG resolution [6], derivations are captured as a proof forest, called SLG forest [5].
The SLG forest constructed when evaluating goal r(1,X) over the program in Fig-
ure 2(a) is given in Figure 2(e). Each tree in the forest corresponds to a call in the call
table. For a given tree, the different branches correspond to derivations; the computed
answer substitutions of successful derivations correspond to answers of the call. We in-
formally describe the construction of an SLG forest using the example in Figure 2. The
initial call, r(1,X) results in a root node r(1,X) :- r(1,X) in the forest (labelled
p1 in the figure). The call r(1,X) is also entered in the call table. The children of this
node are obtained by resolving the selected literal in the body of the node (r(1,X), in
this case) with the program clauses. The node r(1,X) :- e(1,X) (labeled c1) corre-
sponds to the step in derivation of answers to r(1,X) based on the answers to e(1,X).
Since e/2 is not tabled, children of this node are also obtained by program clause resolu-
tion. Note that since e(1,2) and e(1,3) are facts, this node has two children, r(1,2)
and r(1,3) (labeled s1 and s2, resp.), corresponding to two answers of r(1,X). These
two answers are entered into the answer table corresponding to r(1,X).

The other child of p1, r(1,X) :- r(1,Z),e(Z,X) (labeled c2) is the result of
resolving r(1,X) with the second clause defining r/2. The selected literal in this node
is r(1,Z) which is a variant (i.e. a renaming) of a call in the table, hence its children are
obtained by resolving r(1,Z) with the answers in the corresponding answer table. For
instance, using the answer r(1,2), we get r(1,X) :- e(2,X) as a child of c2. At
any step, if the selected literal G of some node n is tabled but a variant of G is not already
in the call table, we start a new tree in the forest with G :− G as the root and add G to the
call table. Children are added to the original node n as and when answers are computed
for G. The construction process continues until the SLG forest is complete, i.e. it can no
longer be expanded. The leaves of a complete SLG forest of the form G0 :− G1, . . . , Gn

represent a failed derivation; the other leaves represent successful derivations of answers.
For program given in Figure 2(a) with facts in (b), the tabled call and answers are

given in Figure 2(c); and the SLG forest in Figures 2(d) and (e).

3

Each tree in the SLG forest corresponds to a generator; the call associated with the
root of a tree is said to be the call of that generator (denoted by p.call where p is the
generator). Each non-root node in the SLG forest whose selected literal is either tabled or
volatile corresponds to a consumer, defined formally as follows:

Definition 1 (Consumer) Let P be a definite logic program, and F be the SLG forest
constructed when evaluating a query Γ over P . Then c = 〈p,G0, G1, [G2, . . . , Gn]〉 for
some n ≥ 0 is a consumer iff the SLG tree of generator p in F has a non-root node
G0 :− G1, G2, . . . , Gn. The set of all consumers in F is denoted by CF .

Note that a consumer carries more information than its corresponding non-root node
in the SLG forest. For the rest of this paper we refer to the ‘non-root nodes’ in the SLG
forest and its corresponding ‘consumer’ interchangeably.

Each edge in the SLG forest arises due to program or answer clause resolution. For
each edge (n1, n2) in the forest, n1, as well as the program clause or answer used in that
resolution step are called the premises of n2. For instance, r(1,X) :- r(1,Z),(Z,X)
(node c2) and the answer r(1,2) are premises to e(2,X) (node c3).

Definition 2 (Support) A consumer c ∈ CF corresponding to a leaf of the SLG forest
(i.e. c = 〈 , h, true, []〉) representing a successful derivation of an answer a (i.e. h is a
variant of a) is called a support of the answer a, denoted as a = c.answer and c ∈
a.supports.

In Figure 2 (e), the nodes corresponding to the supports are shown as si. The various
dependencies between the elements of SLG forests are defined below.

Generator-consumer dependencies: If p is a generator and c = 〈 , , g, 〉 ∈ CF is
a consumer such that p is a variant of g, we say p is the generator of the consumer c,
denoted by p = c.generator and c ∈ p.consumers.
Consumer-consumer dependencies: For two consumers c, c′ ∈ CF such that the node
corresponding to c is a premise of the node corresponding to c′ in the SLG forest, we say
that c′ ∈ c.next consumer and c = c′.prev consumer.
Answer-consumer dependencies: If an answer a is a premise of a consumer c ∈ CF we
say that a immediately affects c (c ∈ a.imm affects) and c depends on a (c.depends on =
a). For example, s6 depends on f4 and f4 immediately affects s6.

We assume that the set of all consumers CF is indexed on its third (goal) component
and for constant time access the above defined relations such as consumers, generator,
etc., are maintained explicitly.

Incremental changes to the facts/rules modify the SLG forest as follows. For instance,
consider the insertion of fact e(4,6). Since the goal field of consumer c5 unifies with
this fact, we can add in the SLG forest a child to c5, say s8: a support for answer r(1,6).
This is a new answer to generator p1, which gets forwarded to its consumer c2 [c2 ∈
p1.consumers]. The consumption of this answer by c2 creates a child of c2, say c8 =
r(1,A) :- e(6,A). No further resolution steps are possible and the evaluation stops.
Note that we perform only those operations that are needed to change the original forest
to include the new fact and its effects.

Also consider the deletion of fact e(3,4) (f4) from the program in Figure 2. Since
the node s6 in the SLG forest depends on f4, that node should be deleted. Moreover,
we now need to check if the corresponding answer a3 (r(1,4)) is derivable using a
different support independent of a3. The Delete-Rederive (DRed) algorithm proposed for
view maintenance in deductive databases [12] computes the changes in two phases. In

4

:- table r/2.
r(X,Y) :- e(X,Y). % rule 1
r(X,Y) :- r(X,Z), e(Z,Y). % rule 2
r(X,Y) :- d(X,Z), r(Z,Y). % rule 3

(a)

e(1,2). % f1
e(1,3). % f2
e(2,3). % f3
e(3,4). % f4
e(2,4). % f5
e(4,2). % f6
e(2,5). % f7

Call: r(1,Y)
Answers: r(1,2) [a1]

r(1,3) [a2]
r(1,4) [a3]
r(1,5) [a4]

(b) (c)

[p1] r(1,A) :- r(1,A).
[c1] r(1,A) :- e(1,A).
[c2] r(1,A) :- r(1,B), e(B,A).
[c3] r(1,A) :- e(2,A).
[c4] r(1,A) :- e(3,A).
[c5] r(1,A) :- e(4,A).
[c6] r(1,A) :- e(5,A).
[c7] r(1,A) :- d(1,B), r(B,A).

[s1] r(1,2).
[s2] r(1,3).
[s3] r(1,3).
[s4] r(1,4).
[s5] r(1,5).
[s6] r(1,4).
[s7] r(1,2).

(d)

1
p

r
1

c c

c c c c

s s s s s

c

3 4 5 6

3 4 5 6 7

s
1 2

2 71

r
2

r
3

2
f

1
f

3
f

5
f 7

f
6
f

4
f

a
3

a
21

a
4

s

a a

a a a a

1 2

a

2 3 3 14
a

(e)

Fig. 2. Example program (a), facts (b), calls and answers (c), nodes in SLG forest (d), and
SLG forest (e)

the first phase, answers that are derivable from the deleted fact are marked. In the second
phase the marked answers that are derivable using only unmarked answers and facts are
rederived and the marks on such answers are removed. This strategy is also followed in
incremental evaluation techniques for program analysis [18, 33] and model checking [28].
Following this approach, we mark the support s6 and hence the answer a3. In the next
step, node c5 is marked since it depends on a3. The mark on c5 propagates to s7, hence to
answer a1 (r(1,2)), ultimately marking nodes c3–c6, s3–s7 and answers a1–a4. In the
second phase, since s1 and s2 are unmarked, we remove the marks on answers a1 and a2,
and consequently nodes c3–c6, s3–s5, s7 and answers a3 and a4.

Note that when a support is marked, the answer may still have other independent
derivations. We can significantly reduce the number of markings by identifying acyclic
supports: the nodes whose existence is independent of the answer it supports. Using
acyclic supports, we can mark an answer a only when all its acyclic supports are marked.
Note that the first support for an answer constructed by tabled resolution is acyclic; we
call this as the primary support. We can significantly improve on the DRed strategy using
primary supports, as illustrated by the following example. Let us again consider the dele-
tion of fact e(3,4) (f4) from the program in Figure 2. Deletion of f4 marks s6. Note
that supports in the figure are listed in chronological order. Marking of s6 does not lead
to marking a3 since its primary support s4 is still unmarked.

The effectiveness of this heuristic can be improved if we can identify acyclic sup-
ports other than the primary support. In [23] we used derivation lengths to determine the
acyclicity of supports. In this paper we refine and generalize this measure. First, we main-
tain a call graph that captures the dependencies between the generators in an SLG forest,
and identify strongly connected components (SCCs) in the graph. If p1 is independent
of p2 in the call graph (i.e. p1 does not call p2), then consumers and answers of p1 are
independent of those of p2. We number the SCCs in a topological order so that the inde-
pendence of two generators can be determined based on their SCC numbers, denoted by
p.scc when p is a generator. This permits us to quickly identify independent consumers
and answers irrespective of their derivation lengths. Consider again the example given
in Figure 1. The call graph SCC consists of two trivial SCCs - r(1,A) and r(2,A)

5

and a non-trivial SCC consists of calls r(3,A) and r(4,A) with SCC r(2,A) topo-
logically lower than SCC r(1,A). This means that call r(2,A) is independent of call
r(1,A) and hence we can process changes to r(2,A) before propagating any changes
to r(1,A). Note that in this example there is no net change in the answers of r(2,A)
and thus we do not even process the call r(1,A). Call-graph SCCs have been used before
for localizing change propagation, and serve the same purpose in our algorithm.

Although processing changes within an SCC before propagating its net changes to
topologically higher SCCs seems to be fruitful in some cases, it is clearly ineffective for
change propagation within an SCC. To order change propagation within an SCC, we also
associate an ordinal with all consumers— whether on a successful derivation or not—
(analogous to the derivation length) in the evaluation graph. The ordinal and SCC number
attributes (ord and scc, resp.) are defined as follows:

Entity (X) SCC number (X.scc) Ordinal (X.ord)

Answer (a)
p.scc where a is an answer of
p.call, where p is a generator

{s.ord | s is the primary support of a}+1

Consumer (c) p.scc where c = 〈p, h, g, G〉

max{c′.ord, Ord, 0}, where
c′ = c.prev consumer, a = c.depends on and
Ord = a.ord if a.scc = c.scc and 0 ow.

Note that a support s of an answer a is acyclic if s.ord < a.ord.
The ordinal and SCC numbers are used not only to control the propagation of mark-

ings during deletion, but also to interleave operations arising from addition of facts/rules
with those from deletion. This is described in detail in the next section.

3 The Local Algorithm
In this section we present the algorithm for maintaining the SLG forest incrementally
when facts/rules are added, deleted or updated. The goal of our algorithm is to confine
the processing as closely as possible to the part of the SLG forest that is modified by the
change. We will measure an algorithm’s cost as the total number of answers taken up for
processing. Updates are still treated as simultaneous deletes and inserts, but the algorithm
interleaves the deletion phase of marking answers and processing of insertion such that it
reduces (a) the number of answers marked for deletion and (b) the number of new answers
computed only to be subsequently deleted. We illustrate some of the key features of the
algorithm using the example1 given in Figure 2.

Comparison of Inserts-first, Deletes-first Methods. We notice that neither inserts-
first nor deletes-first strategies is uniformly better than the other. Consider the program
in Figure 2 after updating fact e(1,2) (f1) to e(1,5). This is treated as deleting f1
and inserting a new fact f8 =e(1,5). If we process deletion before insertion, we would
do the following: (i) mark a1 and a4 in the deletion phase; (ii) rederive a1 and a4; and
finally (iii) generate a4 that can again be derived based on the inserted fact. On the other
hand, if we process insertion before deletion we will (i) generate a new acyclic support
for a4 (derivation based on the inserted fact is shorter than the earlier derivation of a4) (ii)
mark a1 but do not mark a4 due to presence of the new acyclic support. Thus processing
insertion first is better than processing deletion first for this example.

Now consider a different change to the program in Figure 2: deleting e(1,2) (f1)
and adding e(2,6) (f9). Processing insertion before deletion, we will (i) derive a new
answer r(1,6) based on r(1,2) and e(2,6); (ii) mark this new answer along with
answers a1 and a4 in the deletion phase (due to deletion of e(1,2); and (iii) rederive

1 Two additional examples in Appendix cover subtle aspects not covered by the main example.

6

all three answers since r(1,2) has an alternative derivation. Processing deletion before
insertion will mark answers a1 and a4, and rederive both. Insertion of e(2,6) will gen-
erate a new answer r(1,6). For this example, processing deletions first performs fewer
operations, and is better.

The previous two examples indicate that interleaving the deletion and insertion may
be better. In fact, if we delete f1 and insert f8 and f9, it is easy to see that the best change
propagation strategy will be to process the insertion of f8 first, deletion of f1 next and
insertion of f9 last. This key idea is encoded in our algorithm, where the ordering of
operations upon a change is driven by associating events with each operation, priorities
with each event, and processing the events in the order of their priorities.

The Event Model. Our algorithm is based on the event model where processing inser-
tion of facts/answers is done using the event consume answer and processing deletion of
facts is done using three events called mark, may rederive and rederive. We maintain two
priority queues— ready queue and delay queue for processing events. Events are sched-
uled only from the ready queue in increasing order of their SCC numbers - thus all events
of an SCC are scheduled before processing events of topologically higher SCC. This en-
sures that change propagation is processed from topologically lower to higher SCCs. The
delay queue consists of events that were originally scheduled but later discovered to be
needed only under certain conditions; events in the delay queue may be moved back into
the ready queue when these conditions are satisfied.

Within an SCC, mark and consume answer events have higher priority that rederive
and may rederive regardless of their ordinals. We process mark and consume answer in
ascending order of their ordinals. Among events with the same ordinal, a mark event has
higher priority over a consume answer event.

Before getting into more detailed description of our algorithm we provide here the
key intuition behind interleaving of mark and consume answer events. Note that a mark
event overapproximates the actual answers that need to be deleted, and a consume answer
event can generate a support for a new/old answer. Marking of an answer can be avoided
if we can generate an acyclic support for the answer using inserted and existed answers,
provided the used answers are never going to be marked. The following two requirements
guide the design of our local algorithm and choice of ordinals of events and entities.

Requirement 1 The answers used in generating a new answer or a new support should
not be marked in the same incremental phase.

Requirement 2 Marking and propagation of marking of an answer should be avoided if
an acyclic support of the answer is generated due to insertion of facts.

Insertion. Generation of a new answer or insertion of a fact/rule generates consume answer
events. For instance, when an answer a is added to p’s table, we generate a consume answer
event for each consumer c of p. The event handler consume answer(a, c) does the work
needed to extend the SLG forest when an answer or a fact (a) is consumed by a consumer
(c) (Figure 3(a)). If the consumer corresponds to the last subgoal of a rule, the consump-
tion of the answer can generate a new answer (lines 1–9, 12–19), or a new support for an
existing answer (lines 1–9, 12, 13, 20–25). Otherwise (i.e. the consumer has a non-empty
continuation) it generates a new consumer corresponding to next literal of the clause.

The pseudo-code in Figure 4 describes processing of the new consumer. The
call check insert(g) function returns the generator of g, creating a generator if one does
not already exist. If a new generator were created, we perform program clause resolu-
tion by iterating through all the clauses of the program (lines 1–5). Otherwise we iterate

7

process event(e=consume answer(a,c))
1 c=〈p,h,g,G〉
2 θ=mgu(a,g)
3 g’=head(Gθ) // g’=true if G is empty
4 G’=tail(Gθ) // G’=null if G is empty
5 a’= hθ //answer generated
6 c’=〈p,a’,g’,G’〉 // new consumer
7 add c’ in c.next consumer, c’.prev consumer=c
8 add c’ in a.imm affects, c.depends on=a
9 if(!is empty(G)) // last subgoal of a clause
10 resolve goal(c’)
11 else
12 is newanswer=check insert answer(p,a’)
//checks if a’ is in p.answer table,if not inserts a’

12 is newanswer=check insert answer(p,a’)
13 if(is newanswer)
14 a’.ord=c’.ord+1;
15 ∀c”∈p.consumer
16 if(!marked(c”))
17 create event(consume answer(a’,c”))
18 else
19 delay event(consume answer(a’,c”))
20 else
21 if(∀c”∈(a’.supports−{c’})

(c”.ord<a’.ord→marked(c”)))
22 if ((c’.ord<a’.ord) && (e.ord<a’.ord))
23 delete from ready queue(mark(a’))
24 else
25 create event(may rederive(a’))

(a)
process event(mark(a))
1 a.marked=true
2 ∀c’, same scc(a,c’),
3 move to delay(consume answer(a,c’))
4 ∀c∈ a.affected ∧ same scc(a,c)
5 if(justmarked(c))
6 ∀a’, move to delay(consume answer(a’,c))
7 if(is leaf(c) ∧ c.ord<c.answer.ord)

// acyclic support
8 if(∀c’∈ c.answer.supports−{c}
9 (c’.ord< c.answer.ord→ marked(c’)))

// all other acyclic supports are marked
10 create event(mark(c.answer))
11 create event(may rederive(c.answer))

event loop()
1 while((SC=next scc(CallSCC Q))!=NULL)
2 while(!empty(READY Q,SC))
3 process event(next event(READY Q,SC))
4 ∀a such that a.scc=SC
5 if(a.marked)

/* do same operation as in mark
event but for different scc */

(b) (c)
process event(may rederive(a))
1 if(∃c∈a.support s.t. !marked(c))
2 if(∀c’∈ a.support

(c’.ord<a.ord→ marked(c’)))
3 a.ord=max{c”.ord | c”∈

a.supports,!marked(c”)}+1
4 create event(rederive(a))

process event(rederive(a))
1 a.marked=false
2 ∀c, s.t. !marked(c)
3 move to ready(consume answer(a,c))
4 ∀c∈a.affected, same scc(a,c) ∧ !marked(c)
5 ∀a’ s.t. !a’.marked,
6 move to ready(consume answer(a’,c))
7 ∀c ∈ a.affected, same scc(a,c)
8 c.ord = max(c.ord, a.ord)

// update ordinal of consumers
(d) (e)

Fig. 3. Algorithms for Processing Consumer Answer (a), Mark (b), Main (c), May Red-
erive (d), Rederive (e) events.

through all answers in answer table of g, creating consume answer events for each of
them (lines 7–11).

For example, insertion of fact e(1,5) [f8] generates the event consume answer(f8, c1)
which when processed produces a new acyclic support for the already existing answer a4
(lines 1–9, 11–13, 21–25 of Figure 3(a)). On the other hand, insertion of d(1,1) [f9]

8

resolve goal(c=〈p,h,g,G〉)
1 p’=call check insert(g)
2 if(is newgenerator(p’)) //g is a new call
3 ∀ rules α:-β1, β2 . . . , βn s.t. (θ=mgu(g,α)!=φ)
4 c’=〈p’,gθ,β1θ,[β2θ, . . . , βnθ]〉

// new consumer
5 resolve goal(c’)
6 else
7 ∀a∈p’.answer table
8 if(!a.marked)
9 create event(consume answer(a,c))
10 else
11 delay event(consume answer(a,c))
12 add c in p’.consumer, p’=c.generator
13 calculate call graph incrementally

Fig. 4. Algorithm for Function resolve goal

is consumed by the consumer
c7 to generate a new consumer
〈p1,r(1,Y),r(1,Y), []〉 (c8) (lines
1–10). Processing of consumer c8
by the function resolve goal creates
four consume answer events for c8
and each of the answers a1, a2, a3,
and a4 in generator p1’s answer ta-
ble.

Most of the steps of
consume answer are common
to traditional SLG resolution. The
interesting aspects are the interac-
tion between the effects of insertion
and (possibly scheduled) deletion.
For instance, when a new acyclic
support c′ is generated for an answer a′ (line 22, first condition) whose other acyclic
supports are already marked (line 21) and mark(a’) event has been scheduled (line 22,
second condition) we remove the mark(a′) from the ready queue since a′ cannot be
deleted due to c′, meeting Requirement 2.

Mark. The mark event for an answer marks a given answer and propagates the effect
of marking (Figure 3(b)). If an answer is marked we move all consume answer events (in
the same SCC) which would consume the answer from the ready queue to the delay queue
(line 2-3). This is due to the fact that if the consumer corresponding to a consume answer
event is dependent on a deleted answer then it should not be scheduled (following Re-
quirement 1). The following definitions are used in the marking algorithm:

Definition 3 (Affected set of an answer) A consumer c is said to be affected by an an-
swer a (denoted by c ∈ a.affected) if c.depends on = a, or c.prev consumer is affected
by a.

Definition 4 (Marked consumer) A consumer c is marked (expressed as marked(c)) if
either of its premises is marked. A consumer is justmarked (expressed as justmarked(c))
if there exists one and only one answer ‘a’ such that a is marked and c ∈ a.affected.

Note that the consumers in an affected set of an answer are created due to the presence
of the answer. Thus, when an answer is deleted, all its affected consumers must be deleted
too. Thus when an answer a is marked we move any consume answer event associated
with an affected consumer c (in the same call graph component as a) from the ready queue
to the delay queue (lines 4–6). When the last acyclic support of an answer gets marked,
we mark the answer and also place a may rederive event for it in the ready queue (lines
7–11).

Scheduling of Events. We now describe the assignment of event ordinals. Based on Re-
quirement 1, we process a consume answer(a, c) only after processing all mark(a′) events
which can affect the consumer c. To ensure this we make the ordinal of consume answer
event no less than the ordinal of its consumer. Additionally we need to ensure that a con-
sumer does not consume an answer which can be potentially marked later on. First of
all, if an answer belongs to topologically lower SCC than its consumer’s SCC, the above
condition is satisfied as we process all events in components according to their increasing
SCC numbering. Secondly, we ensure that a new answer generated can never be marked

9

in the same incremental phase. The only remaining case is when the answer a in the same
SCC existed before the incremental phase (function resolve goal, lines 8–11), in which
case it can be potentially marked. We ensure that the event is processed after a’s marking
is processed by making the ordinal of consume answer(a, c) event no less than a.ord. The
SCC number of consume answer(a,c) is same as c.scc and its ordinal is given by

{

max{c.ord, a.ord} if (same scc(a,c)∧ existed answer(a))
c.ord otherwise

Also mark(a), may rederive(a), and rederive(a) events have SCC number same as a.scc
and ordinal a.ord. This assignment of ordinals is critical for the following properties of
the algorithm.

Property 1. If consume answer(a, c) is a scheduled event, then a is never marked in the
same incremental phase.

Property 2. If a′ is a new answer and s is a support for an unmarked answer generated
while processing consume answer(a, c) (lines 14 and 21, Figure 3(a)) then a′ and s are
never marked in the same incremental phase.

The correctness of our local algorithm is based on the above two properties. For formal
proof of these properties as well as the proof of correctness of the local algorithm refer
to [26].

Consider deleting f1 =e(1,2), and inserting f9 =e(2,6) and f10 =d(1,1)
to the example in Figure 2. This generates events e1 = consume answer(f10, c7), e2 =
consume answer(f9, c3), e3 = mark(a1), and e4 = may rederive(a1). Note that al-
though we can process event e1 before processing any other event (since c7 is not de-
pendent on any answer), we cannot process event e2 before processing the mark event e3.
This is because c3 is dependent on answer a1 which may be marked when e3 is processed.
We ensure this by making a consumer’s ordinal no less than that of any answer that affects
it.

In the above example, using these ordinal assignments we get e1.ord = c7.ord = 0,
e2.ord = c3.ord = a1.ord = 1, and e3.ord = e4.ord = a1.ord = 1.
As all four events belong to the same SCC we process e1 first which gener-
ates four events e5 = consume answer(a1, c8), e6 = consume answer(a2, c8),
e7 = consume answer(a3, c8), and e8 = consume answer(a4, c8). Processing the next
event e3 moves event e2 and e5 in the delay queue and generates events e9 = mark(a4)
and e10 = may rederive(a4). Event e6 is processed next without any effect. Event e9 is
processed next (since it has the lowest priority with ordinal 2) which moves event e8 to
the delay queue, followed by event e7. The ready queue now contains two may rederive
events (e4 and e10) and the delay queue contains e2, e5, and e8.

Rederivation. When processing a may rederive(a) event, we first check whether the
answer a has any unmarked supports left. Subsequently, we make all existing unmarked
supports acyclic by raising the ordinal of the answer a to the maximum ordinal of its
unmarked supports (Figure 3(e)). We then create rederive(a) event which rederives a and
propagates this further. The rederivation of a moves all consume answer(a, c) events with
an unmarked c from the delay queue to ready queue, thereby undoing the effect of marking
in a’s call-graph component. Also if any consumer c (in the same SCC that of a) got
unmarked due to rederivation of a then all consume answer(a′, c) events are moved from
the delay queue to the ready queue provided a′ is unmarked (Figure 3(e)). Rederivation of

10

answer a also updates the ordinal of the support that contains a and belongs to the same
call graph SCC as that of a.

In the above example, processing the next highest priority event e4 creates an event
e11 = rederive(a1) as the answer a1 has an unmarked support s7 which is made acyclic
by updating the ordinal of a1 to that of s7.ord + 1 = 3. Processing the next event e11
rederives a1, moves the events e2 and e5 to the ready queue, updates the ordinals of
supports s3, s4, and s5 to 3. Subsequent processing of remaining events does not reveal
any other interesting property of the algorithm and is not discussed here.

Figure 3(c) shows the pseudo code for the scheduling of events. After all events of a
component are processed, we propagate the effect of marked answers in the component to
topologically higher components. Note that the call graph can change during the evalua-
tion. In our algorithm we permit only addition of edges to the call graph. Hence only two
types of changes in the call graph are possible: (i) the topological order of components are
changed without changes in any component (Example 3, Appendix); and (ii) components
are merged into larger components (Example 4, Appendix). We employ incremental SCC
maintenance algorithm of [3, 17] to maintain the call graph SCCs. The correctness of our
algorithm depends on the maintenance of an invariant between ordinal numbers of an-
swers and supports within an SCC: that the ordinal of the primary support for an answer
is lower than that of the answer itself. Note that it is possible to have an answer a1 whose
ordinal is lower than that of its premise answer a2 if a2 belongs to lower topological com-
ponent than a1. Thus when multiple SCCs are merged, the ordinals of the answers and
the supports needs to be redistributed within the merged component (details are omitted;
see Example 4, Appendix).

4 Results
In this section we describe the optimality of the local algorithm for incremental attribute
evaluation and incremental functional program evaluation, and present experimental re-
sults on its effectiveness.

Optimal Incremental Attribute Grammar Evaluation. In [21] Reps has presented
an optimal algorithm for evaluation of non-circular attribute grammars. The dependency
between attribute instances are maintained using an acyclic dependency graph which re-
mains static during the change propagation. In such cases topological evaluation is suffi-
cient to produce an optimal change propagation which means that the number of evalu-
ated attributes is of the order of number of changed attributes. The local algorithm pre-
sented in this paper shows the same optimal behavior for non-circular attribute grammar
evaluation. In this case each update to an attribute instance is performed using a pair of
consume answer and mark event. When the dependency between attribute instances (es-
sentially acyclic) is represented by the call graph, topological evaluation of call graph
SCCs produces optimal change propagation. Otherwise, when the call graph is cyclic
(for left-recursive encoding of grammar), the dependencies between answers represent
attribute dependencies. In this case topological scheduling of consume answer and
mark events allows us to obtain the desired optimal behavior.

Optimal Incremental Evaluation of Functional Programs. We now discuss the op-
timality of our algorithm when the call graph is acyclic but dynamic. We encounter such
graphs when evaluating functional programs (hence non-recursive dependencies) incre-
mentally [1]. We can build an incremental functional program evaluator by writing an in-
terpreter for pure functional programs and evaluating it using our incremental algorithm.
Since the call graph is acyclic, topological evaluation suffices. However, since the graph
may change over time (due to different outcomes for the conditionals), [1] employs an

11

optimal dynamic topological order maintenance algorithm using Dietz and Sleator data
structures [10]. When the call graph considered in our algorithm is acyclic, our incre-
mental topological SCC maintenance algorithm converges to dynamic topological graph
maintenance [1]. Thus we obtain the optimal change propagation algorithm for functional
programs.

The complexity of the local algorithm for interpreting a pure functional program is no
worse than the complexity of adaptive algorithm for pure functional program evaluation
given in [1]. A formal statement and proof about the correspondence between the local
algorithm and adaptive functional program evaluation is beyond the scope of this paper.
However, we formally state and prove this correspondence in [26].

Experimental Results. The goals of our experiments are to determine the effective-
ness of the local algorithm to confine propagation of changes and to determine the run-
time overhead of maintaining additional data structures required for scheduling of events.
To determine the effectiveness of our algorithm, we measured its performance for flow-
sensitive data-flow analysis for C programs. The measurement of overhead is demon-
strated by the experiments with flow-insensitive pointer analysis where acyclic supports
are sufficient for confining propagation of deletion [24]. The local algorithm is imple-
mented by extending the XSB logic programming system [31] (ver. 2.7.1). Our imple-
mentation, experimental setup, benchmark characteristics, and detailed experimental re-
sults on parsing and pointer analysis are available in [26].

We evaluated the effectiveness of the local algorithm by performing reaching defini-
tion analysis [2] which can be easily encoded in logic programs. The experiments are per-
formed by deleting each assignment statement from the source which effectively deletes
all incoming and outgoing flow-edges to the statement and inserts flow-edges from its pre-
vious statements to the next statements. The local algorithm is expected to perform well
in this case as the effect of deletion of all reaching definitions resulted due to deletion of
flow-edges would be nullified by the insertion of flow-edges. We compared the perfor-
mance of the local algorithm with the performance of from-scratch evaluation and that
of deletes-first strategy. The implemented deletes-first strategy first performs all marking
and rederivations due to deletion of facts followed by insertion of facts. The marking and
rederivation of answers are performed in each call-graph component (in topological order)
before the effect of marking is propagated to answers and supports in other components.
Thus comparison of the local and the deletes-first strategy demonstrates the effectiveness
of insertion of facts to confine the changes due to deletion.

For each benchmark we deleted and restored 250 random assignment statements from
the source. The results presented in Figure 5 are averaged over each such deletion of
source statement. Note that, the number of inserted and deleted answers is considerably
less (8–20 times) for local algorithm compared to deletes-first strategy. Despite the extra
overhead of maintaining event priority queues, our preliminary implementation achieves
50-70% reduction in time compared to deletes-first strategy.

In cases where deletes-first strategy is extremely fast, such as pointer analysis, we
notice a maximum run-time overhead of 70% for maintaining the extra data structures for
topological evaluation in the local algorithm compared to deletes-first strategy. However,
we notice that the incremental time of local algorithm varies from 10% to 105% (when
all answers are recomputed) of from-scratch time depending on the position of changes.
Thus, in special cases for which it is optimal, the local algorithm demonstrates only 5-10%
run-time overhead.

12

6.0

1.6

assembler

11.7

4.8

diff

4.0

2.2

dixie

13.6

5.4

learn

6.3

3.1

gnugo

3.0

1.5

smail

Incremental Time Comparison

0

2

4

6

8

10

12

14
%

 o
f F

ro
m

-S
cr

at
ch

 T
im

e
delete-first
local

2.2

0.1

assembler

5.1

0.2

diff

1.1

0.1

dixie

5.6

0.2

learn

2.4

0.2

gnugo

0.8

0.1

smail

Comparison of number of changed answer

0

2

4

6

8

10

%
 o

f T
ot

al
 N

um
be

r o
f A

ns
we

rs

delete-first
local

(a) (b)

Fig. 5. Incremental Reaching Definition Analysis; Time comparison (a); Change compar-
ison (b).

5 Related Work
The problem of incremental evaluation of table logic program is closely related to the
problem of materialized view maintenance which has been extensively researched (see,
e.g. [11, 15] for surveys) in database community. Most of the works in recursive view
maintenance generate rules that are similar in spirit to those of DRed [12] and are sub-
sumed by DRed (as compared in [11]). DRed computes the dependencies between an-
swers using rules derived from the original program and does not maintain any depen-
dency structure. The algorithm processes multiple changes by first considering all deleted
facts followed by all inserted facts. Deletion of facts is handled in two phases - the dele-
tion phase marks an answer if any of its supports is deleted, thereby over-propagating
the effects of a deletion, and subsequently the rederivation phase rederives an answer if
it has an unmarked support. The DRed-like strategy is also used in incremental analysis
such as model checking [28], pointer analysis [33], MOD analysis [34], and data-flow
analysis [18].

Our primary-support-based algorithm [22] improved on the DRed strategy by sig-
nificantly reducing the need to propagate deletions. In [23] we extended the concept of
primary support by identifying acyclic supports for every answer, all of which should be
deleted before the answer can be marked. The space overhead due to the support graphs
is mitigated by representing them symbolically [24]. The local algorithm presented in this
paper further optimizes and extends the deletion mark propagation: (i) using the effect of
insertion of new facts and answers which is very useful in updates where insertion and
deletion occur hand-in-hand; and (ii) by scheduling rederivation of answers in each call
graph component, ensuring that topologically lower components are stabilized before the
effects are propagated to a higher component. In our earlier works, incremental insertion
was done by evaluating difference rules [16] (obtained by program transformation) which
are evaluated top-down. In contrast, in this paper we presented a combined bottom-up
algorithm to handle both insertions and deletions.

Recently, we developed an algorithm for incremental evaluation for arbitrary tabled
Prolog programs including those that use Prolog built-ins, cuts, aggregation and non-
stratified negation [25]. That algorithm maintained a much coarser dependency structure
based on calls. The algorithm presented in this paper maintains finer grained dependency
structures based on answers. The results of [25] show that answer-based approaches per-
form significantly better, but cannot be easily extended beyond pure programs. More-

13

over, as this paper shows, fine-grained dependencies are needed to achieve or at least ap-
proach optimal performance for incremental evaluation. Integrating the fine-grained local
algorithm so that it can be deployed wherever applicable within the more general setting
of [25] is an interesting open problem.

The idea of using SCC-reduced dependency graphs to optimize propagation
of changes has been seen in various past works [7, 13, 14, 19, 30]. Among these,
Hermenegildo et. al.’s works [13, 19] on re-analyzing (constraint) logic programs are
closest to our work. Our event based description for modeling the main aspects of
memoized logic program has been inspired by their work. These papers consider one
answer pattern per call, and propagation is controlled based on the call graph. In [19]
insertion events are processed in such a way that lower components are stabilized
before their effect is propagated to higher ones without explicitly computing the SCCs.
However, since the SCCs are themselves dynamic, the event ordering only approximates
the SCC ordering. In our approach we maintain call graph SCCs explicitly, similar
to [13]. However, we use event ordering to control propagation of changes within an
SCC, leading to finer-grained interleaving between insertion and deletion operations.

6 Concluding Remarks
We presented an efficient algorithm for incrementally evaluating definite logic programs
with the rules/facts of the program being changed: added, deleted, or updated. The key to
the algorithm is the interleaving of insertion and deletion operations based on an order that
generalizes those based on call dependency graphs. The algorithm naturally generalizes
techniques that were developed in settings where dependencies are non-recursive (e.g.
attribute grammars, functional programs).

The algorithm maintains dependencies between calls, answers and intermediate struc-
tures used for resolution and propagates insertions and deletions bottom-up through this
graph. This enables us to adapt our algorithm to handle programs with stratified negation,
processing one stratum at a time, and processing lower strata completely before propagat-
ing its effects to the higher ones.

We can also extend our technique to handle programs with non-stratified negation
under the well founded semantics as follows. With each consumer, we can keep the delay
list containing negative literals [5], mark a negative literal if an answer is added to its
corresponding positive literal and resolve the negated literal if all answers are deleted from
the positive literal. Note that interleaving of insertion and mark propagation is essential to
handle programs with non-stratified negation.

The focus of this paper has been on developing a uniform algorithm to treat all forms
of changes— additions, deletions and updates— to facts as well as rules in a logic pro-
gram. Although the algorithm maintains extensive dependency information, we believe
that techniques such as those used in symbolic support graphs [24] can be used to com-
pactly store the dependencies.

References
1. U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. In POPL,

volume 37, pages 247–259, New York, NY, USA, 2002. ACM Press.
2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and tools, pages

585–718. Addison-Wesley, 1986.
3. B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. K. Zadeck. Incremental evaluation

of computational circuits. In Symposium on Discrete algorithms, pages 32–42, 1990.
4. R. Bol and L. Degerstadt. Tabulated resolution for well-founded semantics. In ILPS, 1993.
5. W. Chen, T. Swift, and D. S. Warren. Efficient implementation of general logical queries. JLP,

1995.

14

6. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs. JACM,
43(1):20–74, 1996.

7. C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards. Incremental algorithms for
inter-procedural analysis of safety properties. In CAV, volume 3576 of LNCS, pages 449–461,
Edinburgh, Scotland, July 2005.

8. S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using general
purpose logic programming systems — a case study. In ACM PLDI, pages 117–126, 1996.

9. A. Demers, T. Reps, and T. Teitelbaum. Incremental evaluation for attribute grammars with
application to syntax-directed editors. In POPL, pages 105–116. ACM Press, 1981.

10. P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In STOC, pages 365–
372, New York, NY, USA, 1987. ACM Press.

11. A. Gupta and I. Mumick. Maintenance of materialized views: Problems, techniques, and app-
fications. IEEE Data Engineering Bulletin, 18(2):3–18, 1995.

12. A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In SIG-
MOD, pages 157–166, 1993.

13. M. Hermenegildo, G. Puebla, K. Marriott, and P. J. Stuckey. Incremental analysis of constraint
logic programs. ACM Trans. Program. Lang. Syst., 22(2):187–223, 2000.

14. L. G. Jones. Efficient evaluation of circular attribute grammars. ACM Trans. Program. Lang.
Syst., 12(3):429–462, 1990.

15. E. Mayol and E. Teniente. A survey of current methods for integrity constraint maintenance
and view updating. In ER Workshops, pages 62–73, 1999.

16. R. Paige and S. Koenig. Finite differencing of computable expressions. TOPLAS, 4(3):402–
454, 1982.

17. D. J. Pearce and P. H. J. Kelly. Online algorithms for topological order and strongly connected
components. Technical report, Imperial College, London, 2003.

18. L. L. Pollock and M. L. Soffa. An incremental version of iterative data flow analysis. IEEE
Trans. Softw. Eng., 15(12):1537–1549, 1989.

19. G. Puebla and M. V. Hermenegildo. Optimized algorithms for incremental analysis of logic
programs. In SAS, pages 270–284, 1996.

20. C. R. Ramakrishnan et al. XMC: A logic-programming-based verification toolset. In CAV,
number 1855 in LNCS, pages 576–580, 2000.

21. T. Reps. Optimal-time incremental semantic analysis for syntax-directed editors. In POPL,
pages 169–176, New York, NY, USA, 1982. ACM Press.

22. D. Saha and C. R. Ramakrishnan. Incremental evaluation of tabled logic programs. In ICLP,
volume 2916 of LNCS, pages 389–406, 2003.

23. D. Saha and C. R. Ramakrishnan. Incremental and demand-driven points-to analysis using
logic programming. In PPDP. ACM Press, 2005.

24. D. Saha and C. R. Ramakrishnan. Symbolic support graph: A space-efficient data structure for
incremental tabled evaluation. In ICLP, volume 3668 of LNCS, pages 235–249, 2005.

25. D. Saha and C. R. Ramakrishnan. Incremental evaluation of tabled prolog: Beyond pure logic
programs. In PADL, volume 3819 of LNCS, pages 215–229. Springer, 2006.

26. D. Saha and C. R. Ramakrishnan. A local algorithm for incremental evaluation of logic pro-
grams, 2006. Available at http://www.lmc.cs.sunysb.edu/˜dsaha/local.

27. R. Seljee and H. de Swart. Three types of redundancy in integrity checking; an optimal solution.
Journal of Data and Knowledge Enigineering, 30:135–151, 1999.

28. O. V. Sokolsky and S. A. Smolka. Incremental model checking in the modal mu-calculus. In
CAV, volume 818 of LNCS, pages 351–363, 1994.

29. H. Tamaki and T. Sato. OLDT resolution with tabulation. In ICLP, pages 84–98, 1986.
30. J. A. Walz and G. F. Johnson. Incremental evaluation for a general class of circular attribute

grammars. In PLDI, pages 209–221, New York, NY, USA, 1988. ACM Press.
31. XSB. The XSB logic programming system. Available at http://xsb.sourceforge.

net.
32. G. Yang and M. Kifer. FLORA: Implementing an efficient DOOD system using a tabling logic

engine. In International Conference on Computational Logic, volume 1861 of LNCS, pages
1078+, 2000.

33. J. Yur, B. G. Ryder, and W. Landi. An incremental flow- and context-sensitive pointer aliasing
analysis. In ICSE, pages 442–451, 1999.

34. J. Yur, B. G. Ryder, W. Landi, and P. Stocks. Incremental analysis of side effects for C software
system. In ICSE, pages 422–432, 1997.

15

A Appendix

The content of this section is not essential for reviewing this paper. The
examples presented in the section describes certain subtleties of the algo-
rithm developed in Section 3 which could not be explained by the main
example presented in the paper.

Example 3. We present another example to illustrate the handling of dynamic call graph
SCC by the algorithm. In Figure 6 we present the example of right recursive transitive clo-
sure. Note that each producer creates a trivial SCC in the call graph. The initial topological
ordering of the components is shown along with each call.

Consider a scenario of updating e(1,3) to e(1,2) and e(2,3) to e(4,3). This
effectively creates the following six events in the ready queue given below.
Event Ordinal SCC
[e1] consume answer(f4,c1) 0 2
[e2] consume answer(f4,c2) 0 2
[e3] mark(a1) 1 2
[e4] consume answer(f5,c10) 0 3
[e5] consume answer(f5,c11) 0 3
[e6] mark(a2) 1 4

Below we describe processing of each event step-by-step. An event is deleted from
the ready queue when it is chosen for processing.

Step 1: Processing event e1 generates a new answer r(1,2) (say a4) with a new
support s4 = 〈e(1, 2)〉.

Step 2: Processing event e2 generates a new consumer c12 = 〈p2, r(1, Y), r(2, Y), []〉.
This adds a new call edge from p3 to p2 which reassigns topological ordering of calls
p3 and p5 to 1.5 and 0.5 respectively. This makes the priority of the event e4, e5, and
e6 greater than that of e3. As answers a2 and a3 already existed in the answer tabled
of the call r(2,Y) (producer p3), two new events e7=consume answer(a2,c12)
and e8=consume answer(a2,c12) are created. The changed ready queue is shown
below.

:- table r/2.
r(X,Y) :- e(X,Y).
r(X,Y) :- e(X,Z), r(Z,Y).
e(1,3). % f1
e(2,3). % f2
e(2,4). % f3

Calls: Producers
factbase [p1]
r(1,Y) [p2]
r(2,Y) [p3]
r(3,Y) [p4]
r(4,Y) [p5]

Answers
r(1,3). [a1]
r(2,3). [a2]
r(2,4). [a3]

[c1] <p2,r(1,Y),e(1,Y),[]>
[c2] <p2,r(1,Y),e(1,Z),[r(Z,Y)]>
[c3] <p2,r(1,Y),r(3,Y),[]>
[c4] <p3,r(2,Y),e(2,Y),[]>
[c5] <p3,r(2,Y),e(2,Z),[r(Z,Y)]>
[c6] <p3,r(2,Y),r(3,Y),[]>
[c7] <p3,r(2,Y),r(4,Y),[]>
[c8] <p4,r(3,Y),e(3,Y),[]>
[c9] <p4,r(3,Y),e(3,Z),[r(Z,Y)]>
[c10]<p5,r(4,Y),e(4,Y),[]>
[c11]<p5,r(4,Y),e(4,Z),[r(Z,Y)]>

(a) (b) (c)

e(1,2) [f4] e(4,3) [f5]
(d)

p2

p4 p5

p3

1

2

3

4

(e)

Fig. 6. Example program (a), calls and answers (b), consumers (c), new facts (d), and call
graph (e).

16

Event Ordinal SCC
[e4] consume answer(f5,c10) 0 0.5
[e5] consume answer(f5,c11) 0 0.5
[e6] mark(a2) 1 1.5
[e7] consume answer(a2,c12) 0 2.0
[e8] consume answer(a3,c12) 0 2.0
[e3] mark(a1) 1 2
Step 3: Processing event e4 generates new answer a5=r(4,3) (a5.ord=1) with a new

support s5=e(4,3) (s5.ord=1). This generates a new event e9=consume answer(a5,c7)
(ordinal=0, SCC=1.5) which gets higher priority than e6.

Step 4: Processing of event e5 generates new consumer c13 = 〈p5, r(4, Y), r(3, Y), []〉.
Since the goal r(3,Y)’s producer is p4, this adds a new call-graph edge p4 to p5. By
applying incremental SCC maintenance the SCC of p4 is reduced from 1 to 0.25 (a
number lower than p5’s SCC number 0.5).

Step 5: The next event processed is e9. This generates a new support s6 =
〈e(2, 4), r(4, 3)〉 for an already existed answer a2 = r(2, 3). As both the parts of the
support s6 belong to different SCC from that of s5, s6.ord is 1. As a2.ord = 1, s6 is an
acyclic support of a2. As a2 can be derived using s6 we delete e6 = mark(a2) event
from the ready queue (Lines 16-20 Figure 3(a)).

Step 6: Processing event e7 generates a new support
s7 = 〈e(1, 2), r(2, 3)〉 for a1 = r(1, 3) with ordinal 1. This removes the event e3 =
mark(a1) from the ready queue as in previous step.

Step 7: Finally processing event e8 generates a new answer r(1, 4) with its primary
support s8 = 〈e(1, 2), r(2, 4)〉. The incremental phase stops here having no other events
in the ready queue to process. 2

Example 4.
We present another example to illustrate the handling of dynamic call SCC (where

SCCs are merged) by the algorithm. In Figure 7 we present the example of right recursive
transitive closure. The initial topological ordering of the components is shown along with
each call.

Consider a scenario of adding fact e(2,1)(f3). This effectively creates the following
two events in the ready queue given below.
Event Ordinal SCC
[e1] consume answer(f3,c4) 0 2
[e2] consume answer(f3,c5) 0 2

Below we describe processing of each event step-by-step. An event is deleted from
the ready queue when it is chosen for processing.

Step 1: Processing event e1 generates a new answer r(2,1) (say a4) with a new
support s4 = 〈e(2, 1)〉.

Step 2: Processing event e2 generates a new consumer c9 = 〈p3, r(2, Y), r(1, Y), []〉.
This adds a new call edge from p2 to p3. As there exists an edge from p3 to p2, adding
the new edge combines the two trivial SCCs of producer p2 and p3 to non-trivial SCC
containing p2 and p3. This changes the SCC attribute of c1-c6, a1-a3 and s1-s3 to 3.
The important point is to note that the attribute ordinal needs to be changed due to
the merging of the SCCs. For example, as s2 and a3 now belongs to the same SCC the
ordinal of s2 is increased to 1 and consequently the ordinal of a2 is also changed to 2.
This is done in the function calculate call graph incrementally. The attribute adjustment

17

:- table r/2.
r(X,Y) :- e(X,Y).
r(X,Y) :- e(X,Z), r(Z,Y).
e(1,2). % f1
e(2,3). % f2

Calls: Producers
r(1,Y) [p2]
r(2,Y) [p3]
r(3,Y) [p4]

Answers
r(1,2). [a1]
r(1,3). [a2]
r(2,3). [a3]

(a) (b)
e(2,1) [f3]
(c)

[c1] <p2,r(1,Y),e(1,Y),[]>
[c2] <p2,r(1,Y),e(1,Z),[r(Z,Y)]>
[c3] <p2,r(1,Y),r(2,Y),[]>
[c4] <p3,r(2,Y),e(2,Y),[]>
[c5] <p3,r(2,Y),e(2,Z),[r(Z,Y)]>
[c6] <p3,r(2,Y),r(3,Y),[]>
[c7] <p4,r(3,Y),e(3,Y),[]>
[c8] <p4,r(3,Y),e(3,Z),[r(Z,Y)]>

p2

p3 p4
2 1

3

(d) (e)

Fig. 7. Example program (a), calls and answers (b), new facts (c), consumers (d), and call
graph (e).

process increases the ordinals of a support s which belongs topologically higher SCC than
an answer a such that s.ord < a.ord and s ∈ a.affected. If the increase in s.ord makes
s.ord ≥ s.answer.ord and s is the only acyclic support of s.answer then we increase
s.answer.ord to s.ord+1, otherwise the ordinal of s.answer is not changed which means s

changes to non-acyclic support. Also note that the propagation of this increase of attribute
due to merging of SCCs can at most propagate to the boundary of new merged SCC.
The example shows this case. All the other steps are not further discussed as they do not
illustrate any further aspect of the algorithm.

2

18

