
Symbolic Support Graph: A Space Efficient Data
Structure For Incremental Tabled Evaluation

Diptikalyan Saha and C. R. Ramakrishnan

Department of Computer Science,
State University of New York at Stony Brook
Stony Brook, New York, 11794-4400, U.S.A.

E-mail: {dsaha, cram}@cs.sunysb.edu

Abstract. In an earlier paper, we described a data structure, called support graph,
for efficient incremental evaluation of tabled logic programs. The support graph
records the dependencies between answers in the tables, and is crucial for effi-
ciently propagating the changes to the tables when facts are deleted. Incremental
computation with support graphs are hundreds of times faster than from-scratch
evaluation for small changes in the program. However, the graph typically grows
faster than the tables themselves, making it impractical to maintain the full sup-
port graph for large applications. Storing only a partial support graph reduces the
space overhead, but significantly affects the incremental evaluation time.
In this paper we present a data structure, called symbolic support graph, which
represents support information compactly. For a variety of useful tabled logic pro-
grams, the size of the symbolic support graph grows no faster than the table size.
We demonstrate its effectiveness using a large application: a logic-programming-
based points-to analyzer for C programs. The incremental analyzer shows very
good scalability in terms of space usage, and is hundreds of times faster than
from-scratch analysis for small changes to the program.

1 Introduction

Tabled resolution [26, 5, 7] has become an important evaluation technique in logic pro-
gramming. Many implementations of tabling have now emerged [18, 29, 10, 27]. Tabling
has enabled us to construct many practical applications— program analysis and verifi-
cation systems [8, 16], in particular— by encoding them as high-level logic programs.

Tabled resolution-based systems evaluate programs by memoizing subgoals (re-
ferred to as calls) and their provable instances (referred to as answers) in a set of tables.
During resolution, if a subgoal is present in the call table, then it is resolved against the
answers recorded in the corresponding answer table; otherwise the subgoal is entered
in the call table, and its answers, computed by resolving the subgoal against program
clauses, are also entered in the answer table. For instance, the call and answer tables
created when evaluating the query r(6,X) over the program in Figure 1(a) is given in
Figure 1(b). (The answers in the figure are labeled a1, a2 etc.)

Tabling opens up the possibility of incremental evaluation: when some of a pro-
gram’s facts or rules change, we can recompute only the results affected by the changes,
instead of re-evaluating the program from scratch.

Background: Incremental evaluation of tabled programs is closely related to the well-
investigated problem of materialized view maintenance in databases [12, e.g.]. Most of
these works handle two kinds of changes to a program, namely, insertion and deletion
of facts; update is treated as deletion followed by insertion. Incremental processing of

:- table r/2.
%rule 1
r(X,Y) :- b(X,Y).
%rule 2
r(X,Y) :- c(X,Z), r(Z,Y).

b(1,2). %f1
b(6,2). %f2
b(6,4). %f3

c(1,6). %f4
c(3,6). %f5
c(3,1). %f6
c(6,3). %f7

Calls Answers Supports
r(6,X)

[a1] r(6,2) [s1] {b(6,2)}, [s10] {c(6,3),r(3,2)}
[a2] r(6,4) [s2] {b(6,4)}, [s11] {c(6,3),r(3,4)}

r(3,X)
[a3] r(3,2) [s3] {c(3,6),r(6,2)}, [s8] {c(3,1),r(1,2)}
[a4] r(3,4) [s4] {c(3,6),r(6,4)}, [s9] {c(3,1),r(1,4)}

r(1,X)
[a5] r(1,2) [s5] {b(1,2)}, [s6] {c(1,6),r(6,2)}
[a6] r(1,4) [s7] {c(1,6),r(6,4)}

(a) (b) (c)

Fig. 1. Example program (a); calls and answers generated when evaluating query r(6,X) (b); and supports for the query
evaluation (c).

s1 a1

a4

f3

a2a5

f2

f5

a3

f7

a6

f6

f1

f4

1

0

1

2
3

1

0

0

1

0

0

0

2

2

2
1

02

1

2

33

2

2

s3

s8

s6 s7

s9 s11

s4

s2
s5

s10

Fig. 2. Support graph for answers to query r(6,X) over example program in Figure 1(a).

deletion is more challenging than that of addition, especially for maintaining recursively
defined views. This paper focusses solely on incremental processing of deletion.

The DRed algorithm [11], which subsumes the other recursive view maintenance
algorithms, first deletes all answers that may be affected by the deleted facts (the dele-
tion phase). The second (rederivation) phase attempts to rederive the deleted answers
without using the deleted facts. For instance, consider the deletion of fact b(6,2)
from the program in Figure 1(a). Since there is one derivation of r(6,2) that con-
tains b(6,2), the DRed algorithm deletes r(6,2). Similarly, r(3,2) and r(1,2)
are also deleted. In the second phase, r(1,2) is rederived due to b(1,2). Conse-
quently, r(3,2) and r(6,2) are also rederived, thereby rederiving all the three orig-
inally deleted answers. The deletion-rederivation strategy appears to be universal for
handling incremental deletion: it also appears in independently-developed incremental
algorithms for program analysis [15, 28] and model checking [23].

Two factors make the DRed algorithm impractical. First, the deletion phase uses
program clauses to propagate the deletions. Second, many of the deleted answers are
rederived in the second phase, again by applying program clauses. In [19], we proposed
a solution to these two problems, as described below.

Support Graph: An instance of a rule that can be used to derive an answer is known
as a support for that answer. For instance, the supports for the answers used to evalu-
ate the query r(6,X) over the program in Figure 1(a), are given in Figure 1(c). The
supports in the figure are labeled s1, s2, etc. A support graph has answers, facts and

2

supports as vertices; the support graph corresponding to Figure 1(c) is shown in Fig-
ure 2. An “answer” edge connects a support with the answer it supports (shown with
white arrowheads in the figure). An answer/fact contained in a support is connected to
the support with a “uses-of” edge (filled arrowheads in the figure).

Our incremental algorithm [19] is based on DRed [11] and has two phases. In the
first phase, when a fact is deleted, the supports containing the fact are marked. When a
support is marked, the answers it supports are marked; the marks are then further prop-
agated, alternately marking supports and answers. Note that marking is done without
using the program rules. The propagation of marks is optimized by (i) annotating the
first support used to derive an answer as its primary support, and (ii) marking an answer
only when its primary support is marked. In Figure 1(c), the primary support is listed
first. In our running example, the deletion of b(6,2) will mark r(6,2), and conse-
quently r(3,2). The marked supports and answers due to this deletion are shown in
boldface in Figure 1(c). Note that r(1,2) is not even marked.

More importantly, support graphs significantly simplify rederivation. Observe that
after the marks have been completely propagated, if a marked answer has unmarked
supports, then it is derivable using any of those supports. Continuing with our running
example, we can thus remove the mark on r(3,2). Consequently, the marks on sup-
port {c(6,3),r(3,2)}, and hence r(6,2) are removed. Note that rederivation can
be done without using the program clauses.

The Problem: Our incremental algorithm in [19] based on support graphs shows very
good time performance: incremental evaluation times for small changes are typically
0.1% of the from-scratch evaluation time for most programs. However, support graphs
are usually very large, and the memory overhead makes it impossible to maintain the
full support graph for large applications.

In [20] we proposed an algorithm that kept only a limited number of supports for
each answer, making its space requirements linear in the number of answers. The space
savings and scalability however come at the price of increased rederivation time. Since
all supports are not stored, an answer may have a derivation even when all of its stored
supports are marked. Hence, we need to re-evaluate the program clauses to check if the
answer can be rederived. The time penalty can be high: incremental evaluation time (for
small changes) may be as much as 15% of that of from-scratch evaluation.

This raises an interesting question: Can we store the entire support graph, which
eases rederivation and significantly improves incremental evaluation time, without in-
curring a prohibitive space overhead? We address this problem in this paper.

Our Solution: The key to storing the entire support graph is to make use of explicit
sharing inherent in the supports. Consider the two answers to call r(3,X), r(3,2)
and r(3,4), and their supports s3 and s4 respectively. Observe that the two supports
share c(3,6). Also notice that the literals which make the two supports different, i.e.
r(6,2) and r(6,4), are answers to the call r(6,X). Thus two supports for answers
to r(3,X) can be represented in intensional form as: c(3,6), r(6,X). This inten-
sional form is represented in a symbolic support, which consists of three parts, namely,
the set of answers supported (e.g. r(3,X), the common part of all the supports (e.g.
c(3,6) , and the call whose answers distinguish the supports (e.g. r(6,X)). Now,
when an answer to r(6,X), say r(6,2) is deleted, we can compute, using the sym-
bolic support, that r(3,2) may be affected. A symbolic support captures dependen-
cies between certain calls while our earlier notion of supports captured dependencies

3

Call Symbolic Supports
r(6,X) 〈r(6,X), {}, b(6,X)〉, 〈r(6,X), {c(6,3)},r(3,X)〉
r(3,X) 〈r(3,X), {c(3,6)},r(6,X)〉, 〈r(3,X), {c(3,1)},r(1,X)〉
r(1,X) 〈r(1,X), {}, b(1,X)〉, 〈r(1,X), {c(1,6)},r(6,X)〉

Fig. 3. Symbolic supports for query evaluation over the example program in Figure 1(a).

between answers. By lifting this to the level of calls, a symbolic support compactly
represents multiple supports.

The symbolic supports for the evaluation of query r(6,X) over the program in
Figure 1(a) appears in Figure 3. Marking can be readily done using the symbolic sup-
ports. Given a marked answer (e.g. r(6,2)), we first compute the substitution for the
variables in a support corresponding to it (e.g. r(6,X), X = 2), and use this sub-
stitution to find the supported answer (e.g. r(3,2)). When the intensional form does
not contain any join operations, we can compute the answer dependencies from the
symbolic support in time proportional to the answer size.

Contributions: We propose Symbolic Support Graph (SSG), a data structure for
space-efficient and time-efficient incremental evaluation of tabled logic programs (Sec-
tion 3). We give efficient algorithms for incremental evaluation with SSGs (Section 4).
SSGs grow no faster than the tables for an important class of tabled programs and
queries (Section 5). In practice, SSGs take much less space than full support graphs,
and yet show time performance comparable to the latter (Section 6). We demonstrate
the scalability of incremental evaluation using a points-to analyzer for C programs as
an example. Our incremental analyzer scales to programs with over 60K lines of code.
In many cases, the size of SSG is even smaller than that of partial support graphs used
in [20]. Thus, SSGs enable incremental evaluation of large, realistic applications.

The relationship between this paper and the previous work is explored in Section 7.
In this paper, we describe SSGs for incremental evaluation when facts are deleted from
a definite tabled logic program. The use of SSGs is orthogonal to other issues in in-
cremental evaluation, such as the handling of insertion of facts/rules, deletion of rules,
updates, and stratified negation. A brief discussion of these issues appear in Section 8.

2 Preliminaries

We now formally define the notions of supports and support graph. We consider definite
logic programs, and partition the predicates into intensional and extensional predicates.
Extensional predicates are defined solely by facts. For simplicity of notation, we assume
that only the definitions of extensional predicates may be deleted. The techniques in this
paper can be generalized to handle the deletion of rules along the lines described in [19].

Definition 1 (Support) Let P be a definite logic program, and let T be a set of answer
tables obtained when evaluating a query γ over P . A set {b1, b2, . . . , bn} is called a
support of an answer a of γ if there exists a clause in P of the form α :− β1, β2, . . . , βn

and a substitution θ, such that αθ = a, and, for all i ∈ [1, n] βiθ = bi and bi is an
instance of an answer in T or a fact in P .

A support graph maintains the relationships between the answers and supports gen-
erated during query evaluation.

4

Definition 2 (Support graph) Let P be a definite logic program, and let T be a set of
answer tables obtained when evaluating a query γ over P .

The support graph for the evaluation of γ is a directed graph (V, E) where V con-
tains the facts in P , answers in T and their supports. The set of edges E is such that

– (bi, s) ∈ E for all supports s ∈ V such that s = {b1, b2, . . . bn}, and for all
i ∈ [1, n]. We say that s ∈ bi.uses of and bi ∈ s.part of .

– (s, a) ∈ E for all a ∈ T and s ∈ V such that s is a support of a. We say that
s.answer = a and s ∈ a.support.

The primary support of an answer is the first support used to derive the answer in
some least fixed point computation procedure. It follows from the property of least fixed
point computations that the primary support will be independent of the answer itself.
We generalized this to acyclic supports in [20], defined using the notion of derivation
length described below:

v.dl =







0 if v is a fact
1 + max{a.dl | v ∈ a.uses of} if v is a support
s.dl | s is the primary support of v if v is an answer

The derivation length represents the height of a proof tree for an answer. Note that
if the derivation length of a support s is no greater than its supported answer a, then s
has a derivation independent of a. A support s is acyclic if s.dl ≤ s.answer.dl. Thus an
answer need not be marked in the first phase until all of its acyclic supports are marked.
In our running example in Figure 2, we have annotated the vertices with their derivation
lengths. Based on the derivation lengths, we determine s1, s2, s3, s4, s5, s7 and s8 as
acyclic supports. Thus deletion of f2 causes only a1 to be marked. Note, however, an
acyclic support may not remain acyclic after rederivation. For instance, a1 is rederived
due to s10 which now becomes its acyclic support by updating a1.dl to 3. Consequently,
the derivation lengths s3 and s6 are changed to 4 making s3 non-acyclic.

3 Symbolic Support Graphs

We now formally define the notion symbolic supports, and describe the data structure
to represent symbolic support graphs.

Definition 3 (Symbolic Support) Let P be a definite logic program with a set of facts
F , and let C and A be a set of call and answer tables respectively, obtained when
evaluating a query ξ over P . The triple S = 〈h, s, d〉 is a symbolic support for a call
γ ∈ C if there is a clause in P of the form α :− β1, β2, . . . , βn−1, βn and a substitution
θ such that

1. h, called the head of S, is such that αθ = h;
2. s, called the static part of S, is such that s = {b1, b2, . . . bn−1}, and

∀i ∈ [1, n − 1], bi = βiθ and bi ∈ A ∪ F ;
3. d, called the dynamic part of S, is such that βnθ = d.

Note that a symbolic support is shared between a non-empty set of answers of a
call. The set of non-symbolic supports represented by a symbolic support S are called
embedded supports of S, defined below.

5

Definition 4 (Embedded Supports) Let P be a definite logic program with set of facts
F , and let A be answers in the tables obtained when evaluating a query γ over P . A
non-symbolic support s is embedded in a symbolic support S = 〈h, s′, d〉 if there is a
substitution σ such that s.answer = hσ ∈ A, s = s′ ∪ {dσ}, and dσ ∈ A ∪ F .

Given a symbolic support S = 〈h, s, d〉, then answer a′ is said to be a supported
answer for an answer/fact a w.r.t. S if there is a substitution σ such that a = dσ and
a′ = hσ. In that case, we also say that a is a supporting answer w.r.t. S.

When the mark on an answer is propagated, we need to find an embedded support
that contains this answer. For instance, consider our running example and its symbolic
supports in Figures 1(a) and 3 respectively. If r(6,2) is marked, since it is an instance
of r(6,X), we need to mark supports embedded in 〈r(1,X), {c(1,6)},r(6,X)〉
and 〈r(3,X), {c(3,6)},r(6,X)〉. This lookup can be efficiently done if the dy-
namic part of a symbolic support is a tabled call. Moreover, we can maintain, for each
tabled call, the set of symbolic supports that contain it. If the dynamic part of the sym-
bolic support is not a tabled call, then we need to maintain additional indexing struc-
tures to find the embedded supports. Hence we do not use a symbolic support when its
dynamic part is not a tabled call, and use non-symbolic supports instead.

Symbolic support graphs (SSG) are an extension of the support graphs that has calls,
answers, symbolic as well as non-symbolic supports as vertices and the relationships
between them as edges. The edges in an SSG are described below.

– uses of , part of , support, answer: as in Definition 2.
– set uses of : If a fact or an answer a is in the static part of a symbolic support SS

then there is a set uses of edge from a to SS.
– set uses of call and dynamic call: If a call C is the dynamic part of a symbolic

support SS then there is a set uses of call edge from C to SS. There is also a
dynamic call edge from SS to C.

– supported call and symsupport: If a symbolic support SS supports a nonempty set
of answers of a call C then there is a supported call edge from SS to C, and a
symsupport edge from C to SS.

– answers and subgoal: If A is the set of answers for call C, then there is a answers
edge from C to elements of A and a subgoal edge from each element of A to C.

The SSG corresponding to the supports in Figure 2 is shown in Figure 4. Note
that any tabling engine will give unique identities to each tabled call (e.g. the subgoal
frame in the SLG-WAM [7]) and tabled answers. We use these identifiers in our imple-
mentation of the SSG to denote calls and answers (we use terms to represent calls in
examples, for clarity). The information about the variables in the head and the dynamic
part, needed to compute the embedded supports, is also kept in a symbolic support. This
implementation detail is not shown in the examples.

The set uses of , set uses of call, and supported call edges in an SSG are required
for propagation of marks and rederivation. They are analogues of uses of and answer
in a support graph. The symsupport edges are used to adjust the derivation length of
an answer after rederivation. Finally, dynamic call is used to compute the embedded
supports of a symbolic support.

In addition, we maintain the following attributes with the answers in the support
graph. For each answer we maintain the total number of unmarked supports in total support count
and the number of unmarked acyclic supports in acyclic support count. These attributes

6

r(1,X)

r(3,X)

r(6,X)
2

4 4

2

2

4

supported_call
set_uses_of, set_uses_of_call
answer
uses_of

SS2

SS1

f5

f6

a1
a2

a5
a6

f1
s5

s1

f3

f4

s2

f2

a3
a4

SS3 f7

SS1
SS2

SS4

SS3
SS4

:: s8, s9
s6, s7
s10, s11
s3, s4

::

::

::

Fig. 4. Symbolic support graph for answers to query r(6,X).

count the number of embedded supports represented by a symbolic support. In Figure 4,
total support count and acyclic support count of a1 are 2 and 1 respectively.

4 The Incremental Table Maintenance Algorithm

We now describe the incremental algorithm for maintaining the tables using symbolic
supports. The algorithm extends the one in [19] and handles graphs with a mixture
of symbolic and non-symbolic supports. We have already seen in the previous section
how to compute the embedded (non-symbolic) supports for each symbolic support.
Note that information such as derivation length and marking are specific to the non-
symbolic embedded supports; computing this information based on symbolic supports
is the key issue in the algorithm. Note also that the static part of a symbolic support
is common to all its embedded supports. Hence we associate the information due to
the static part in the symbolic support. For each symbolic support node we maintain an
attribute static maxdl that stores the maximum of derivation lengths of the answers and
facts in its static part. We use this information to compute the derivation length of each
embedded support. Similarly, with each non-symbolic support we maintain an attribute
falsecount which counts the number of marked answers/facts in the support. With each
symbolic support, we maintain static falsecount which counts the number of marked
answers and facts in its static part.

The algorithm has two phases analogous to the two phases of DRed and other in-
cremental recursive-view maintenance algorithms.

Marking Phase. The algorithm for the marking phase is shown in the Figure 5. The
falsecount attributes of symbolic and non-symbolic supports are initialized to zero be-
fore the marking phase. An answer is marked by setting its marked flag to true; this
attribute is initialized to false. The answers to be marked are placed in a queue, and the
marking phase ends when the queue is empty. The marked answers are placed in a set
marked set for processing in the rederivation phase.

The functions mark answer and mark fact propagates the effect of marking an an-
swer/fact to the supports containing it. The function mark fact propagates the effect of
deleting a fact to the supports containing it. In addition mark answer places a mark on

7

mark()
mark queue = empty
∀ deleted facts f
mark fact(f)

while (mark queue != empty)
a = dequeue(mark queue)
mark answer(a)

mark fact(f)
∀ Support s ∈ f.uses of
mark support(s)
∀ SymbolicSupport S ∈ f.set uses of
mark static(S)

mark answer(a)
a.marked = true
∀ s ∈ a.uses of

mark support(s)
∀ S ∈ a.set uses of

mark static(S)
subg = a.subgoal
∀ S ∈ subg.set uses of call

mark dynamic(S, a)

mark support(s)
s.falsecount++
if (s.falsecount == 1)

tans = s.answer
propagate mark(tans, s.dl)

mark dynamic(S, sans)
(* Propagate via dynamic part *)
if (S.static falsecount == 0)

tans = supported answer of sans w.r.t. S
support dl =

1 + max(S.static maxdl, sans.dl)
propagate mark(tans, support dl)

mark static(S)
(* Propagate via static part *)
S.static falsecount++
if (S.static falsecount == 1)
∀ sans ∈ answers(S.dynamic call)

if (! sans.marked)
tans = supported answer of sans w.r.t. S
support dl =

1 + max(S.static maxdl, sans.dl)
propagate mark(tans, support dl)

propagate mark(tans, support dl)
tans.total support count−−
if (tans.dl ≥ support dl)

tans.acyclic support count−−
if (tans.acyclic support count == 0)

enqueue(mark queue, tans)
marked set = marked set ∪ { tans }

Fig. 5. Algorithm for Marking Phase

the answer. Function mark support marks a support and propagates this mark to the
answer supported by it; functions mark static and mark dynamic mark a symbolic sup-
port and if needed propagate this mark to the answer(s) supported by it. Note that a
(symbolic) support is marked if its (static) falsecount is nonzero.

We illustrate the working of the marking phase using the deletion of f2 and f4
from Figure 4 as an example. A call to mark fact(f2) will call mark support(s1), and
subsequently propagate mark(a1, 1). This will decrement a1’s total and acyclic support
counts (to 1 and 0, resp.), and place a1 in the queue. We will call mark fact(f4) next.
Since f4 is in the static part of symbolic support SS2, we call mark static(SS2). This
sets static falsecount of SS2 to 1, iterates over the answers of the dynamic part of SS2,
i.e. r(6,X). The supported answers of a1 and a2 w.r.t SS2 are a5 and a6, resp., and
a6 is added to the queue as a5 has an unmarked acyclic support s5. Note this is equiv-
alent to propagation of marking through s6 and s7 in support graph based algorithm.
Continuing further, we pick up a1 for processing from the queue. Since a1 appears in
the dynamic parts of SS2 and SS4 mark dynamic is called for both the symbolic sup-
ports. However, mark dynamic(SS2,a1) has no effect as its static falsecount is already
1; mark dynamic(SS4,a1) will call propagate mark(a3, 2) which reduces the total and

8

rederive()
∀ ans ∈ marked set

if (ans.total support count > 0)
ans.acyclic support count

= ans.total support count
recalculate dl(ans)
enqueue(rq, ans)

∀ Answer ans ∈ rq
rederive ans(ans)

recalculate dl(tans)
spt max=max{s.dl | s = tans.support ∧

s.falsecount == 0}
espt max=max{max(S.static maxdl,ans.dl)+1
| S ∈ tans.subgoal.symsupport
∧ S.static falsecount=0
∧ ans is a supporting answer of tans w.r.t S
∧ !ans.marked

tans.dl=max(spt max,espt max)

rederive answer(ans)
ans.marked = false
∀ s ∈ ans.uses of
rederive support(s, ans.dl)
∀ S ∈ ans.set uses of
rederive static(S, ans.dl)

subg=get subgoal(ans)
∀ S ∈ subg.set uses of call
rederive dynamic(S, ans)

rederive support(s, dlen)
s.dl = max(s.dl, dlen+1)
s.falsecount−−
if (s.falsecount == 0)

propagate rederive(s.answer of, s.dl)

rederive dynamic(S, sans)
if (S.static falsecount == 0)

tans = supported answer of sans w.r.t. S
dlen = max(S.static maxdl, sans.dl)+1
propagate rederive(tans, dlen)

rederive static(S, dlen)
S.static maxdl = max(S.static maxdl, dlen)
S.static falsecount−−
if (static falsecount(S) == 0)
∀ sans ∈ S.supported call.answers

if (!sans.marked)
tans = supported answer of sans w.r.t. S
dlen’ = max(S.static maxdl, sans.dl)+1
propagate rederive(tans, dlen’)

propagate rederive(ans, dlen)
ans.total support count++
if (ans.acyclic support count==0)

ans.acyclic support count = 1
ans.dl = dlen
enqueue(rq, ans)

else
if (ans.dl ≥ dlen)

ans.acyclic support count++

Fig. 6. Algorithm for Rederivation

acyclic support counts of a3 to 1 (due to acyclic embedded support s8 in SS1). Sim-
ilarly, processing a6 from the queue does not mark a4 as it has an acyclic embedded
support in SS4. Thus at the end of marking phase a1 and a6 are marked.

Rederivation Phase. Each marked answer that has some unmarked support at the
end of the marking phase is known to have a proof not involving its previously known
acyclic supports. In addition to resetting its mark, we need to compute its new deriva-
tion length (due to the new proofs). In our running example we compute the new
derivation length of a1 by computing derivation length of its unmarked support (s10
in SG) embedded in SS3. This is done by finding the supporting answer for a1 w.r.t.
SS3, i.e. answer a3 (dl = 3), and computing the dl of the embedded support. When
some of the marked answers are rederived, we propagate rederivation using the function
rederive answer. Figure 6 gives the rederivation algorithm, which is very similar to the
marking algorithm.

9

5 Space Complexity of Symbolic Support Graphs

In this section we compare the asymptotic size of SSGs with respect to table size and
the size of non-symbolic support graphs for a number of useful tabled programs. For
purposes of this comparison, we assume that all supports in the SSG are symbolic. The
selected programs and the complexity measures are shown in Figure 7. The apparently
simple transitive closure programs (lreach/2 and rreach/2) lie at the heart of a
remarkable number of applications of tabled logic programming. For instance, verifica-
tion of safety properties of systems and implementation of inheritance in object-oriented
logics reduce to reachability problem. Context-free language reachability, which is the
basis for the verification of push-down systems, has rules that resemble the definition of
the simpler same-generation (sg/2) predicate. A class of useful tabled logic programs
not in the figure are those involving negation and aggregation (e.g. dynamic program-
ming problems). In principle, symbolic supports can be used in these cases also, but
other aspects of our implementation (e.g. handling of insertions/updates) need exten-
sion (see Section 8). Hence we do not include this class in the comparison.

For the graph traversal examples, we assume that the edge/2 relation defines a
graph with v vertices and e edges. We first consider left-recursive transitive closure
(lreach/2 in Figure 7), with a bound-free query, say lreach(a, X). Tabled eval-
uation of this query will result in only one tabled call, the query itself, and all vertices
reachable from a will be answers to this call. Thus, the table size for this query is O(v).
Answer lreach(a, b) has supports of the form {lreach(a, Y),edge(Y, b)}. The
number of supports of this form are bounded by the in-degree of b. Hence the total num-
ber of supports is O(e). The symbolic supports associated with call lreach(a,X)
are {edge(a,X)} and those of the form {lreach(a,Y), edge(Y ,X)}. Thus the
number of symbolic supports is O(v), i.e. linear in the number of answers.

Now consider a bound-free query to right-recursive transitive closure, say rreach(a,X).
Tabled evaluation makes O(v) distinct tabled calls to answer this query. Each of these
call tables can have O(v) answers, and hence the table size is O(v2). Each answer
rreach(b,c) has supports of the form {edge(b,Y), rreach(Y ,b)} where Y
ranges over neighbors of b. The number of supports for this answer is bounded by the
out-degree of b. Since there are O(v2) answers, the total number of supports is O(v∗e).
The symbolic supports associated with call rreach(a,X) are {edge(a,X)} and
those of the form {edge(a,Y), rreach(Y ,X)}. Thus there are two symbolic sup-
ports for each edge and hence the number of symbolic supports is O(e). Note that SSG
grows slower than the tables for this example.

The asymptotic space complexity for the other examples and queries in Figure 7 are
computed along the same lines. The figure shows two versions of the same generation
predicate: the naive sg/2, and an optimized version sg opt/2 obtained by supplementary
tabling (i.e. tabling an intermediate join). The latter has better time complexity; observe
from the figure that the size of SSG for this program is proportional to table size. For
such programs, the space needed for SSG is less than three times the table space in the
worst case. In practice the constant factor is close to 1.5 (see next section).

6 Experimental Results

The aim of symbolic support graphs is to make incremental evaluation scale to large
applications. To determine the effectiveness of our new data structure and algorithm,

10

Example programs Query Space Complexity
Modes Table SG SSG

lreach(X,Y):- edge(X,Y).
lreach(X,Y):- lreach(X,Z), edge(Z,Y).

bb, bf O(v) O(e) O(v)
fb, ff O(v2) O(v ∗ e) O(v2)

rreach(X,Y):- edge(X,Y).
rreach(X,Y):- edge(X,Z), rreach(Z,Y).

bf, ff O(v2) O(v ∗ e) O(e)
bb, fb O(v) O(e) O(e)

sg(X,X).
sg(X,Y):- edge(X,Y1),sg(Y1,Y2),edge(Y2,Y). all O(v2) O(e2) O(v ∗ e)

sg opt(X,X).
sg opt(X,Y) :- aux(X,Z),edge(Y,Z).
aux(X,Y):- edge(X,Z),sg opt(Z,Y).

all O(v2) O(v ∗ e) O(v2)

Context-Free Language Reachability
(see Appendix): N=|nonterms|,G=grammar size all O(N ∗ v2) O(G ∗ v3) O(G ∗ v2)

Fig. 7. Space complexity of symbolic support graphs

Rep. From Scratch All Points-to
Programs LOC Factor Avg. Size Time(s) Space(MB)

Table Total
smail 3850 15 24.5 1.45 13 22
parser 11391 15 5.8 1.20 17 32
vpr 17729 15 1.8 0.37 15 33
m88ksim 19093 15 6.0 0.25 10 22
twmc 24951 1 16.7 0.87 9 14
nethack 33993 1 35.0 2.55 6 21
vortex 67110 1 69.8 12.90 31 57

Table 1. Benchmark Characteristics

we measured their performance on a points-to analyzer for C programs. The analyzer
itself is a tabled logic program which encodes Anderson’s points-to analysis [2, 20].
We measured the performance of the analyzer on programs taken from C benchmarks
available with PUF compiler suite and SPEC95 benchmarks. The symbolic support
graph based incremental evaluation algorithm was implemented by extending the XSB
logic programming system [27] (v2.6). Our incremental points-to analysis system, the
benchmarks, and detailed experimental results are available at [22].

We preprocessed the C source code using CIL [14] into Prolog facts representing
the primitive assignment statements. Each library function was replaced by a stub repre-
senting the data flow between its formal parameters and return value and preprocessed
in the same manner. Performance measurements were taken on a PC with 1.4Ghz Pen-
tium M processor with 512MB of physical memory running Linux (Debian) 2.6.7.

We performed All Points-to Analysis (APA), which computes the points-to relation
for all program variables. The characteristics of the benchmarks as well as the results of
performing the analysis without any support for incremental evaluation are given in Ta-
ble 1. In the table, “LOC” refers to the number of lines of source code in the benchmark;
“Avg. size” shows the average number of of the points-to tuples per variable. The first
four benchmarks in the table are relatively small; to remove noise from the results, we
replicated the programs, generating new variable names as appropriate. The remaining
three benchmarks are large enough to permit stable measurements without replication.

11

Support Graph Partial Support Gr. Symbolic Support Gr. mem%
Benchmark supports memory supports memory support symspt memory sym/com
smail 3,159.4K 92.2 560K 22.8 42.2K 163.0K 15.5 16.8
parser 1,355.7K 44.2 518K 21.8 130.0K 159.2K 17.9 40.5
vpr 213.1K 9.7 172K 8.7 56.2K 51.9K 8.5 86.9
m88ksim 303.5K 11.8 206K 9.2 34.3K 47.9K 7.1 60.5
twmc 5,727.8K 158.5 396K 16.2 90.5K 105.0K 12.6 8.0
nethack 2,074.8K 59.4 269K 11.2 34.9K 60.4K 8.1 13.6
vortex 33,334.5K 912.0 1,714K 65.2 215.3K 361.4K 46.1 5.1

Table 2. Comparison of support graph sizes for pointer analysis

Benchmark Table SG SSG
smail 0.8 0.9 0.8
allroots 0.5 0.5 0.4
assembler 47.7 67.6 48.6
compiler 51.1 154.0 53.7
compress 7.0 9.2 7.0
loader 5.9 6.9 6.0

Graphs
Programs chain complete tree

2000 nodes 50 nodes 10000 nodes
Table SG SSG Table SG SSG Table SG SSG

lreach 0.3 0.2 0.2 0.1 0.2 0.1 1.6 0.8 0.9
rreach 47.0 96.0 40.2 0.1 3.6 0.3 5.4 5.7 3.2
sg opt 1.1 0.4 0.4 0.3 7.2 0.5 5.7 1.8 1.9

(a) (b)
Table 3. Support graph sizes (in MB) for: push-down model checking (a); and synthetic bench-
marks from Table 7

Space. Table 2 shows the number of supports, and space (in MB) taken by, support
graphs [19], partial support graphs with maximum of 2 supports per answer [20], and
symbolic support graphs for each benchmark. Observe from the table that the symbolic
support graph takes the least space among the three. Note that the symbolic support
graph may contain non-symbolic supports; while it is possible to make all supports
symbolic, we find that it usually increases space requirements by 20%. Finally, the
table shows that the symbolic support graph can be considerably smaller than the (non-
symbolic) support graph of [19]. Since symbolic supports keep dependencies between
calls instead of answers, the reduction in space is proportional to the number of answers
per call (the average points-to size).

Table 3(a) shows the sizes of non-symbolic (SG) and symbolic (SSG) support graphs
for performing automata-based dead variable analysis of C programs using the push

benchmark from Incr- Support Graph
scratch complete partial symbolic % % %

(a) (b) (c) (d) b/a c/a d/a
smail 1.45 0.0178 0.1073 0.0433 1.22 7.4 2.98
parser 1.19 0.0025 0.0916 0.0108 0.21 7.7 0.90
vpr 0.37 0.0001 0.0048 0.0005 0.03 1.3 0.14
m88ksim 0.25 0.0005 0.0028 0.0015 0.20 1.1 0.60
twmc 2.49 0.0039 0.2092 0.0125 0.16 8.4 0.50
nethack 0.87 0.0005 0.0487 0.0028 0.06 5.6 0.32
vortex 12.80 0.0040 1.9200 0.0200 0.03 15.0 0.16

Table 4. Comparison of running times

12

down model checker of [4]. The model checker has few answers per call, consequently
we see a reduction in space due to SSGs, but not as much as in the points-to analysis.

Recall from Section 5 the size of the symbolic support graph grows at or near the
same rate as the table size for bound-free queries to left-recursive and right-recursive
transitive closure and same generation programs (from Table 7). Table 3(b) shows that
not only the growth rates, but the total space requirements of symbolic supports are also
close to those of the tables themselves.

Time. The effectiveness of the incremental techniques were evaluated by removing
one (source-level) statement from the benchmark programs, and measuring the time
and space taken to redo the analysis from scratch and to maintain the points-to rela-
tion incrementally. Deleting one source level assignment statement may delete multiple
primitive assignment statements and hence multiple facts.

The results are shown in Table 4. The incremental analysis timings were obtained
by repeating the incremental evaluation a number of times to obtain measurable running
times. The table shows the incremental evaluation times using the non-symbolic support
graph [19] (complete), the partial support graph with at most 2 supports per answer [20]
(partial), and the symbolic support graph (symbolic). Observe that the SSG-based al-
gorithm is on average 5 times slower than the complete support graph based one, but is
still two orders of magnitude faster than the from-scratch analysis for small changes.

7 Related Work

The idea of recording the evaluation process as a graph to guide incremental change
propagation has been used in various fields viz. AI, view maintenance, program analy-
sis, model checking, functional programming, and logic programming.

Structures similar to support graph was seen in truth maintenance system [9] (TMS),
and later in belief revision systems [3]. With each belief node in TMS a justification
set, which represents the reasons for the belief, is kept. This is analogous to the support
graph with beliefs as answers and justifications as their supports.

Among the works on materialized view maintenance, we reviewed the relationships
between our work and the DRed algorithm [11] in the introduction. The Straight Delete
(StDel) [13] algorithm keeps the entire proof associated with every answer, thereby
eliminating the rederivation phase. While this approach may be feasible in constraint
databases, its space complexity is worse than the support graph-based algorithm.

The product graph generated during the model checking process is used by incre-
mental model checking algorithm (MCI) of [23]. The complete graph is kept explicitly
and the space issues are not addressed. As mentioned in [19] we have adopted MCI’s
use of counts to efficiently compute truth values of nodes during incremental evaluation.

Incremental attribute grammar evaluation [17] generates a dependency graph to
record the functional dependencies among attributes in the grammar. The dependency
graph is acyclic since only non-circular attribute grammars are considered. Another in-
stance of an acyclic dependency graph is the augmented dependency graph [1] which
records dependencies between input and output values in the execution of pure func-
tional programs. These graphs also record the ordering among their edges which is used
for efficient change propagation.

None of the above works address the scalability issues related to storing the de-
pendencies between computations. The SSG proposed in this paper grows at or near
the rate at which tables grow for many tabled logic programs and queries; in the worst

13

case, however, SSG’s size is not bounded by table size. In [20] we proposed an approach
to keep a bounded number of supports with each answer, thereby making the support
graph size proportional to the table space for arbitrary tabled logic programs.

In [25, 24] Binary Decision Diagrams (BDDs) [6] are used to represent transition
relation and reachable states of a state transition graph in the context of logic synthesis
and formal verification of digital circuits. To incrementally maintain reachable states
in response to changes in the transition relation, a spanning graph is generated during
reachability analysis as the evidence for all the reachable states. This can be considered
as an acyclic support graph for the reachable states. BDDs are used to represent the
edge relation of the spanning graph, thereby making it space efficient. We attempted to
keep the support graph using BDDs. However, an inordinate amount of time was taken
to build the support graph BDDs: there appears to be no way to use the efficient set-at-
a-time operations of the BDDs to construct the support graph when the query evaluation
is done tuple at a time.

8 Conclusion

We presented a space-efficient data structure and incremental algorithms for maintain-
ing tables in the presence of deletion of facts. The techniques can be readily extended
to handle deletion of rules by keeping rule information in supports as done in [19]. The
symbolic support graph maintains dependencies between certain calls, but in such a way
that the dependencies between answers can be readily computed whenever needed. The
ease of computation is ensured by keeping the symbolic supports in a “join-free” form,
keeping only the last literal of a support as a call. This can be easily extended to keep-
ing as calls the right-most literal in a clause that is followed by simple computations
(such as comparison operations). This extension of the notion of symbolic supports will
permit us to represent programs with aggregation operations using symbolic supports,
thereby enabling incremental evaluation of dynamic programming problems.

In this paper, we considered only definite logic programs, where all predicates are
either tabled or defined by facts. We can extend this to programs containing a mixture of
tabled and non-tabled predicates along the same lines as in [19]: accumulating support
information from non-tabled predicates and storing them with answers. In [21] we give
a support-graph-based bottom-up algorithm that interleaves insertion and deletion that
permits efficient handling of incremental updates, and programs with stratified negation.
We can make the algorithm in [21] space-efficient by using symbolic support graph as
its support data structure.

References

1. U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. In POPL,
volume 37, pages 247–259, 2002.

2. L. O. Anderson. Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, Unversity of Copenhagen, 1994.

3. K. Apt and J. M. Pugin. Maintenance of stratified databases viewed as a belief revision
system. In Principles of Database Systems, pages 136–145. ACM Press, 1987.

4. S. Basu, K. N. Kumar, L. R. Pokorny, and C. R. Ramakrishnan. Resource-constrained model
checking of recursive programs. In TACAS, volume 2280 of LNCS, pages 236–250, 2002.

5. R. Bol and L. Degerstadt. Tabulated resolution for well-founded semantics. In ILPS, 1993.

14

6. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8):677–691, 1986.

7. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.
JACM, 43(1):20–74, 1996.

8. S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using general
purpose logic programming systems — a case study. In PLDI, pages 117–126. ACM Press,
1996.

9. J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.
10. H. Guo and G. Gupta. A simple scheme for implementing tabled logic programming systems

based on dynamic reordering of alternatives. In ICLP, pages 181–196. Springer, 2001.
11. A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In

SIGMOD, pages 157–166, 1993.
12. A. Gupta and I.S. Mumick. Maintenance of materialized views: Problems, techniques, and

appfications. IEEE Data Engineering Bulletin, 18(2):3–18, 1995.
13. J. Lu, G. Moerkotte, J. Schue, and V. S. Subrahmanian. Efficient maintenance of materialized

mediated views. In ACM SIGMOD, pages 340–351, 1995.
14. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools

for analysis and transformation of C programs. In Compiler Construction, pages 213–228.
Springer-Verlag, 2002.

15. L. L. Pollock and M. L. Soffa. An incremental version of iterative data flow analysis. IEEE
Trans. Softw. Eng., 15(12):1537–1549, 1989.

16. C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, Y. Dong, X. Du, A. Roychoudhury,
and V.N. Venkatakrishnan. XMC: A logic-programming-based verification toolset. In CAV,
2000.

17. T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis for
language-based editors. TOPLAS, 5(3):449–477, 1983.

18. R. Rocha, F. Silva, and V. Santos Costa. YapTab: A Tabling Engine Designed to Support
Parallelism. In TAPD, pages 77–87, Vigo, Spain, September 2000.

19. D. Saha and C. R. Ramakrishnan. Incremental evaluation of tabled logic programs. In ICLP,
volume 2916 of LNCS, pages 389–406, 2003.

20. D. Saha and C. R. Ramakrishnan. Incremental and demand-driven points-to analysis using
logic programming. In Principles and Practice of Declarative Programming (PPDP), 2005.
To Appear. Available at http://www.lmc.cs.sunysb.edu/˜dsaha/.

21. D. Saha and C. R. Ramakrishnan. A local algorithm for efficient incremental evaluation
of tabled logic programs, 2005. Available at http://www.lmc.cs.sunysb.edu/
˜dsaha/local.

22. D. Saha and C. R. Ramakrishnan. Symbolic support graph: A space efficient data structure
for incremental tabled evaluation, 2005. Downloads are available at http://www.lmc.
cs.sunysb.edu/˜dsaha/symspt.

23. O. V. Sokolsky and S. A. Smolka. Incremental model checking in the modal mu-calculus. In
CAV, volume 818 of LNCS, pages 351–363, 1994.

24. G. Swamy. Incremental Methods for Formal Verification and Logic Synthesis. PhD thesis,
University of California at Berkeley, 1996.

25. G. Swamy, R. K. Brayton, and V. Singhal. Incremental methods for FSM traversal. In Intl.
Conference on Computer Design (ICCD), page 590. IEEE Computer Society, 1995.

26. H. Tamaki and T. Sato. OLDT resolution with tabulation. In ICLP, pages 84–98, 1986.
27. XSB. The XSB logic programming system. Available from http://xsb.

sourceforge.net.
28. J. Yur, B. G. Ryder, and W. Landi. An incremental flow- and context-sensitive pointer alias-

ing analysis. In ICSE, pages 442–451, 1999.
29. N. Zhou, Y. Shen, L. Yuan, and J. You. Implementation of a linear tabling mechanism.

Journal of Functional and Logic Programming, 2001(10), October 2001.

15

9 Appendix

We provide the tabled logic program for context free language (CFL) reachability prob-
lem. The CFL reachability problem determines whether the language generated by a
finite state automaton has a non-empty intersection with a given context free language.

The CFL is specified using a context free grammar in Chomsky Normal Form
(CNF), as a set of grammarrule/2 facts. A fact of the form grammarrule(A,
B) specifies a grammar rule with A as the left hand side non-terminal symbol, and B
as a list of grammar symbols on the right hand side. Note that, since the grammar is in
CNF, the list will be in one of three forms: [], signifying an epsilon rule; [T] where
T is a single terminal symbol; or [S1,S2] where S1 and S2 are two non-terminal
symbols.

The automaton is given in form of trans/3 facts where trans(s,l,d) repre-
sents a transition from source state s to destination state d labeled with l.

The CFL reachability problem is encoded by the predicate cfreach/3 defined be-
low. The two given languages has a non-empty intersection iff the querycfreach(sg,
sa, F), where sg is the start symbol of the grammar and sa is the start state of the au-
tomaton, succeeds with F bound to one of the final states of the automaton.

:- table cfreach/3.
cfreach(S,A1,A2):-

grammarrule(S,[]),
A1=A2.

cfreach(S,A1,A2):-
grammarrule(S,[X]),
trans(A1,X,A2).

cfreach(S,A1,A2):-
grammarrule(S,[S1,S2]),
cfreach(S1,A1,A3),
cfreach(S2,A3,A2).

16

