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Abstract. Tabling has emerged as an important evaluation technique
in logic programming. Currently, changes to a program (due to addi-
tion/deletion of rules/facts) after query evaluation compromise the com-
pleteness and soundness of the answers in the tables. This paper presents
incremental algorithms for maintaining the freshness of tables upon ad-
dition or deletion of facts. Our algorithms improve on existing material-
ized view maintenance algorithms and can be easily extended to handle
changes to rules as well. We describe an implementation of our algorithms
in the XSB tabled logic programming system. Preliminary experimental
results indicate that our incremental algorithms are efficient. Our imple-
mentation represents a first step towards building a practical system for
incremental evaluation of tabled logic programs.

1 Introduction

Tabled resolution [19, 1, 3] removes some of the best-known shortcomings of Pro-
log’s evaluation strategy, especially its susceptibility to infinite looping. The XSB
system [20] has become a stable platform for evaluating tabled logic programs,
and several alternative implementations are emerging [4, 22, 9]. The added power
of tabling has been crucial to the construction of many applications— such as
practical program analysis and verification systems (e.g., [5, 14]), object-oriented
knowledge bases (e.g. Flora-2 [21]) and ontology management systems— by en-
coding them at a high level as logic programs.

Tabled resolution-based systems evaluate programs by memoizing subgoals
(referred to as calls) and their provable instances (referred to as answers) in a
set of tables. Traditionally, the systems keep all calls in a call table. For each
subgoal in the call table, its provable instances are kept in an answer table.
During resolution, if a subgoal is present in the call table, then it is resolved
against the answers recorded in the corresponding answer table; otherwise the
subgoal is entered in the call table, and its answers, computed by resolving the
subgoal against program clauses, are also entered in the answer table.
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0072927, CCR-0205376, CCR-0311512, and ONR grant N000140110967. We would
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1: reach(X,Y) :- edge(X,Y).
2: reach(X,Y) :- reach(X,Z), edge(Z,Y).

edge(0,1).
edge(0,2).
edge(1,1).
edge(1,2).

edge(0,1).
edge(0,2).
edge(1,1).
edge(1,2).
edge(2,3).

(a) (b) (c)

Fig. 1. Example reachability program (a) and two edge/2 relations (b & c).

The Problem: The answers in the tables represent conclusions that can be in-
ferred from the set of facts and rules in the program. When the program changes
(either by addition or deletion of facts/rules), the tables become stale: they may
not have all the answers or the answers in the tables may be incorrect.

For instance, consider the evaluation of query reach(0,X) over the program
in Figure 1(a) using the definition of edge/2 relation in Figure 1(b). Tabled
evaluation will create an answer table for reach(0,X) with {X=1, X=2} as the
answers. Subsequent invocation of reach(0,Y) will simply resolve the subgoal
against the answers in the table, returning {Y=1, Y=2} as answers.

Now let a new tuple edge(2,3) be added to the edge/2 relation. Note that
the answer table for call reach(0,X) contains only answers {X=1, X=2} and hence
is stale. Invocation of, say reach(0,Z), will return only answers Z=1 and Z=2,
and miss the answer Z=3. The problem becomes worse if tuples can be deleted. If
the tuple edge(0,1) is deleted from the edge/2 relation, the query reach(0,Z)

will still return answers Z=1 and Z=2, even though reach(0,1) is no longer true!
Tabling systems currently provide no mechanism to refresh the tables after

a change to the program. In fact, in the applications we have built so far, we
remove all affected tables after an update to the program and then reissue the
query. This approach is clearly wasteful, especially if the changes to the program
are small. For instance, in the above example, after the addition of edge(2,3),
the subgoal reach(0,Z) and its answer table must be removed and recomputed,
deriving answers {Z=1, Z=2, Z=3}, in effect rederiving answers Z=1 and Z=2.

The above example illustrates the need to incrementally maintain the “fresh-
ness” of the tables. We address this problem in this paper. This problem, consid-
ered as the materialized view maintenance problem, has been extensively studied
in the deductive database community (see, e.g. [8, 12] for extensive surveys in
this area). Most existing solutions have been derived in the context of bottom-
up (semi-naive) evaluation; we address this problem in the context of top-down
tabled evaluation. See Section 5 for further discussion on the related work.

Our Solution: In this paper we first consider definite logic programs where all
non-tabled1 user-defined predicates are defined by facts. We consider recursive
rules but permit only additions and deletions of facts and rules in a program. We
subsequently describe straightforward extensions that remove these restrictions.

1 Systems such as XSB permit a programmer to mark specific predicates as tabled ;
calls and answers involving other predicates (called non-tabled predicates) are not
stored in the table.
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Handling Addition: Top-down goal-oriented evaluation systems (such as
those based on the SLGWAM) inherently process answers incrementally. A sub-
goal that causes answers to be added to the tables is called a producer, and
a subgoal which is resolved against answers already in the tables is called a
consumer. The evaluation engine maintains auxiliary data structures to ensure
that no consumer sees an answer more than once: e.g. environments to pro-
duce and consume answers and control structures linking answer producers to
answer consumers. These data structures are torn down when all answers to a
call have been derived, an operation that is crucial to memory efficiency of top-
down evaluators. Retaining these after query evaluation to support incremental
additions imposes unacceptable overheads; e.g., the space usage for evaluating
left-recursive reachability queries increases by 2-6 times.

An alternative, similar to the approach used in prior works such as [7], is to
generate rules to capture the new answers due to addition of facts. For instance,
the changes to the reach/2 relation can be computed by evaluating the predicate
reach’/2 defined as follows (where the additions to edge/2 are given by the
edge’/2 relation):

reach’(X,Y) :- edge’(X,Y).

reach’(X,Y) :- reach’(X,Z), edge(Z,Y).

reach’(X,Y) :- (reach(X,Z); reach’(X,Z)), edge’(Z,Y).

Direct tabled evaluation of the auxiliary rules will lead to two distinct tables
for reach and reach’. Consequently, the same answer may be stored in both the
tables, and the two tables must be merged after the incremental evaluation. In
Section 2 we describe a data structure that enables the two predicates to share
the same table, eliminating most of the overheads of incremental evaluation.

Handling Deletion: Deletion of facts in a program pose a more complicated
problem, especially in the presence of recursive rules. Algorithms that incre-
mentally maintain recursive views typically follow the two-phase delete-rederive
approach best exemplified by the DRed algorithm [7]. The first phase deletes all
answers which can be derived from the deleted facts. For instance, consider the
answers to reach(0,X) after the deletion of edge(0,1) from Figure 1(c). Us-
ing DRed, we will delete the answers reach(0,1), reach(0,2), and reach(0,3)

since all of them can be derived using edge(0,1). The second phase rederives
answers deleted in the first phase that have alternative derivations not involving
the deleted facts. Continuing with our example, we will now rederive reach(0,2)
(due to edge(0,2)) and consequently reach(0,3). It must be noted that the
MCI algorithm for incremental model checking [17] follows a strikingly similar
approach (see Section 5).

The delete-rederive algorithms have relatively high overheads. As the above
example illustrates, these algorithms hastily delete a number of answers in the
first phase, only to rederive many of them (with considerable additional effort)
in the second phase.

Our technique handles the deletion of facts as well as rules but achieves con-
siderable savings compared to the delete/redeive algorithms by carefully control-
ling the deletion of answers in the first phase. Note that, in the above example,
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reach(0,2) need not even be considered for deletion since it has an alternative
derivation (due to edge(0,2)) when reach(0,1) is deleted. We keep a succinct
representation of all possible derivations of an answer by keeping a set of sup-
ports for the answer. Informally, a support for an answer is a set of atoms such
that there is a rule α :− β1, . . . βn where the answer is an instance of α and
the support is an instance of {β1, . . . , βn}. For instance, the supports for answer
reach(0,2) are {edge(0,2)} and {reach(0,1), edge(1,2)}.

The following key observation permits the use of support sets to control the
first phase. An answer α is valid whenever there is a valid support s such that
s does not depend on α, and a support is valid whenever all answers in it are
valid. However, short of maintaining strongly connected components, there is no
efficient mechanism to determine the interdependencies between supports and
answers. But it turns out that the first support that adds an answer to the table
will always be independent of the answer. We use this as a heuristic to control the
propagation of deletions. In the above example, deletion of reach(0,1) does not
delete reach(0,2) since the latter is supported by {edge(0,2)}. Consequently,
reach(0,3) is also retained without additional work.

Support sets are also central to the efficiency of the rederivation phase where
we attempt to rederive each answer deleted in the first phase. Using support
sets, an answer can be rederived by simply checking the validity of supports
(analogous to proof checking) instead of launching a full-fledged proof search.

We have implemented our incremental techniques in the XSB tabling engine.
Preliminary experiments with our implementation indicate that our support-
based technique is superior to standard delete-rederive techniques. Furthermore,
the overheads for generating and maintaining supports are negligible compared
to the benefits. Our implementation also indicates the ease of deployment, effi-
ciency, and practicality of our techniques.

Summary: We present, to the best of our knowledge, the first techniques for in-
cremental evaluation of tabled logic programs. We describe efficient data struc-
tures and algorithms for incremental maintenance of tables in the presence of
addition (see Section 2) and deletion (see Section 3) of rules/facts. We also de-
scribe how to handle non-tabled predicates and stratified negation. We present
preliminary experimental results which show the effectiveness of our techniques
(see Section 4). We compare of our work with previous works in incremental view
maintenance in Section 5. Further research problems are sketched in Section 6.

2 Addition

Preliminaries The XSB system uses trie-based data structures for storing terms
in call and answer tables [15]. Tries permit efficient lookup and one-pass check-
insert operations. However, tries do not maintain the terms in the order of inser-
tion. When resolving answers against an incomplete table (where new answers
may be added), XSB maintains and uses an answer list, which links leaf nodes
in the trie in their order of insertion. When a table is complete, which means
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no new answers can be added to the table with respect to a given set of facts,
answer resolution is done by backtracking through the trie top-down; the answer
list is no longer needed and is deleted.

Incremental Evaluation after Additions: Let P be a definite logic program and
γ be a query. We denote the answers to γ with respect to P by ansP (γ). Let δp

be a set of facts and rules added to the program P . The problem of incremental
evaluation of query γ then is one of computing the smallest set ∆ of answers
such that ansP∪δp

(γ) = ∆ ∪ ansP (γ). That is, ∆ is the set of new answers for
γ.

Given a definite logic program P and an added program δp we derive a
transformed program P ′ used for incremental evaluation as follows. For each
predicate p/n defined in the program P ∪ δp, we introduce an incremental pred-
icate p′/n. If γ is an atom with p at its root, we denote by γ ′ the atom ob-
tained by replacing the p in γ by p′. The transformed program P ′ is such that
ansP (γ) ∪ ansP ′(γ′) = ansP∪δp

(γ).

First of all, P ′ contains all the clauses in P . For each fact α in δp we add α′

to P ′. For every clause of the form γ :− β1, β2, . . . βn in the program P ∪ δp, we
add the clause γ′ :− (β1;β

′
1), . . . , (βi−1;β

′
i−1), β

′
i, βi+1, . . . , βn for each i ∈ [1, n].

The i-th clause computes new answers of γ due to new answers of βi. The
incremental predicate reach’ defined in the introduction is derived from the
original definition of reach by the above transformation. The transformation
is a straightforward application of finite differencing [13], and its variants have
been widely used for materialized view maintenance [7, 10].

Direct evaluation of the transformed program has two sources of inefficiency.
Firstly, the new answers of a query γ are actually added as answers to the
new query γ′; consequently, we must merge the two answer tables after the
incremental evaluation is complete. Secondly, to ensure that γ ′ computes only
the new answers, each derived answer must be first checked against answers to
the original query γ (e.g. using the goal ¬γ [18]), causing an extra table lookup.

We overcome these problems by sharing the call table entry and the answer
tables between the incremental goal and the original goal, although the calls
access the answer table in different ways. Let γ be an original goal and γ ′ be
its incremental counterpart. The first call to γ ′ creates a new subgoal frame.
Answers to γ′ are computed by program clause resolution, are added to the
answer table of γ, and also kept in a separate answer list. Subsequent calls to γ ′

consume from this answer list (even after completion of γ ′)— exactly the same
way answers are currently consumed from incomplete tables.

In order to prevent answers to γ′ from being accessed when backtracking
through the answers of γ, we mark all the newly added answers as “deleted”.
This exploits the current implementation of tries in XSB which provides a flag
to mark terms as deleted without physically removing them. This flag is used
in XSB for maintaining dynamic asserted data using tries. Finally, when the
incremental evaluation is complete, we reset the deleted flag of all answers in
the answer list of γ′, thereby adding these answers to γ. Figure 2 shows the states
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answer trie

answer substitutions (for  X)

answer list for
reach’(0,X)

1 32

subgoal frame of
reach(0,X)

reach(0,X)
call table entry of

reach’(0,X)
subgoal frame of

Fig. 2. Example of the data structure to maintain tables for incremental predicates.

of the answer tables of reach(0,X) and its incremental version reach’(0,X),
just before the completion of the incremental evaluation.

Discussion: The data structure described above enables us to incrementally
evaluate queries without changing any other part of the tabling engine. Moreover,
in contrast to bottom-up techniques, we refresh a table only on demand when a
query is made. Note, though, that we maintain only two versions of answers, and
hence cannot maintain tables with varying “staleness”. For instance, if γ1 and
γ2 are two queries, when γ1 is incrementally evaluated after changes to facts,
observe that γ1 has consumed all the new facts while γ2 has not. However, since
after this evaluation we merge all new answers with the old, γ2 will remain stale.
A promising approach for solving this problem is to associate timestamps with
the added facts and answers, and drive the incremental computation based on
the timestamps. With the time-stamp based solution, we can maintain multiple
versions of tables within the same data structure and hence handle tables with
different degrees of staleness. This is a topic of future research.

3 Deletion

Let P be a definite logic program, γ be a query and δp be a set of facts F and set
of rules Rd to be deleted from the program. For notational purposes, we assume
that every rule is associated with an unique identifier (e.g see Figure 1(a)).
Following the notation used in Section 2, the problem of incremental evaluation
of query γ after the deletion is that of computing a set ∆ of answers such that
ansP−δp

(γ) = ansP (γ)−∆. We develop an algorithm to efficiently compute the
set ∆ in this section and describe its implementation in terms of tabling data
structures.

Formulation: Clearly, the only answers that can be in ∆ are those that depend
on δp. The algorithms based on the delete-rederive approach [7, 17] first over-
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edge(0,1)

edge(0,2)

edge(1,1)

edge(1,2)

Answer Supports

reach(0,1) 〈1,{edge(0,1)}〉, 〈2,{reach(0,1),edge(1,1)}〉
reach(0,2) 〈1,{edge(0,2)}〉, 〈2,{reach(0,1),edge(1,2)}〉

(a) (b)

Fig. 3. Example edge relation (a); and supports for answers to query reach(0,X) over
that relation (b).

approximate ∆ by the set of all answers that depend on δp. We use a better
approximation based on the notion of support for an answer defined below.

Definition 1 (Support) Let P be a program, and let T be a set of answer tables
obtained when evaluating a query γ over P . A tuple s = 〈k, {β1, β2, . . . , βn}〉 is
called a support of an answer α of γ if there exists a clause k of the form
α′ :− β′

1, β
′
2, . . . , β

′
n and a substitution θ, such that α′θ = α, and for all i ∈ [1, n]

β′
iθ = βi and βi is an instance of an answer in T or a fact in P .

For instance, consider the query reach(0,X) over the reachability program
in Figure 1(a) and edge/2 relation in Figure 3(a).

Note that each support for an answer represents one step in some derivation of
that answer. We can construct a derivation of an answer by picking a support and
constructing derivations for all the atoms in that support. However, the choice
of support picked at each step is crucial to the construction of a valid (i.e. finite)
derivation. For instance, picking the support 〈2,{reach(0,1),edge(1,1)}〉 each
time to derive reach(0,1) will not lead to a finite derivation; for finiteness we
must eventually pick the support 〈1,{edge(0,1)}〉. The key to quickly deter-
mining whether an answer is still derivable is to distinguish supports which can
be selected without regard to the history and yet build finite derivations. This
is done using the notion of a primary support, defined below.

Definition 2 (Primary Support) Let α :− β1, β2 . . . , βn be the instance of a
rule k that is used by tabled resolution to derive the answer α for the first time.
Then 〈k, {β1, β2 . . . , βn}〉 is called the primary support of α, and is denoted by
ps(α).

In Figure 3(b) the first support listed for each answer is its primary support. We
use primary supports to (over)approximate the set ∆ of answers to be deleted
as follows.

Definition 3 (Candidates for Deletion) Let P be a program, γ be a query,
and A be the answers computed during the evaluation of γ. Let ps(α) = 〈k, S〉
be the primary support α ∈ A. The set of candidates for deletion due to the
deletion of the program δp from P , denoted by Γ (P, δp) is the smallest set such
that α ∈ Γ (P, δp) whenever ∃β ∈ S such that β ∈ F ∪ Γ (P, δp) or rule k ∈ Rd.
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It is easy to establish that the set of candidates for deletion overapproximates
the set of deleted answers. Formally,

Proposition 1. The set of answers for a query γ over a program P , ansP (γ)
is such that ansP (γ) − ansP−δp

(γ) ⊆ Γ (P, δp).

Traditional delete-rederive algorithms such as [7, 17] use a coarser approxima-
tion. Also the effect of deletion of rules is not addressed in any view maintenance
literature. The answers they delete in the first phase, which we denote by Γ ],
can be characterized as follows. The set Γ ] which is the smallest set such that
α ∈ Γ ](P, δp) if there is some support s = 〈rk, S〉 of α such that ∃β ∈ S and
β ∈ δp∪Γ ](P, δp). It can be easily shown that Γ (P, δp) ⊆ Γ ](P, δp). Note that the
coarser approximation has a cascading effect: an answer marked incorrectly as
a candidate, in turn, leads to (incorrect) marking of other answers. Our approx-
imation reduces such propagation and hence is considerably less coarse. Note
that the notion of primary support is not specific to tabled evaluation and can
be easily extended to any least fixed point computation.

Although only primary supports are used to obtain candidates for deletion,
we still keep the set of all supports for an answer. First of all, note that due
to the approximation, some candidates for deletion may be still derivable. We
check this in the second rederivation phase. Traditional algorithms in the view
maintenance literature pose rederivation in terms of rule evaluation. In contrast,
we avoid the proof search using an algorithm based on keeping counts and the set
of all supports with each answer. Secondly, when a primary support is removed
in incremental evaluation but the answer is still valid, we need to identify the
new primary support; the new support can be easily generated from the set of
all supports. Lastly, we can improve our approximation by finding all supports
of an answer which are not dependent on the answer itself and falsify the answer
when all such supports are falsified. Below we describe the data structures and
algorithms for computing the candidates for deletion and for rederiving answers.

Data Structures: Supports for an answer are maintained using a bipartite graph,
called the support graph. Its vertices are partitioned into two sets: or-nodes and
and-nodes. Every or-node in a support graph corresponds to an answer, a fact
or a rule and every and-node corresponds to a support.

Edges in the support graph are placed as follows. Whenever s is a support
for answer α, we place an edge from s to α. These edges define the ‘support
of’ relationship. The edges are represented by an attribute support of of and-
nodes such that s.support of = α. Whenever a support s contains a fact or an
answer or a rule β, we place an edge from β to s. These edges define the ‘part
of’ relationship. These edges are represented by a (set-valued) attribute part of
of or-nodes such that s ∈ β.part of . At first the direction of edges may appear
to be counter-intuitive. However, it coincides with the flow of information in
our algorithm: we propagate deletion and rederivation from an or-node β to all
and-nodes s that contain β; and from an and-node s to or-nodes α for which s
is a support. For illustration, Figure 4 shows the support graph for answers to
query reach(0,X) for the support sets listed in Figure 3(a).
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support of part of

reach(0,1) o1 1,{edge(0,1)}

edge(0,1)

edge(0,2)

edge(1,1)

reach(0,2)

n0

o2

f1

f2

f3

n1

n2 2,{reach(0,1),edge(1,1)}

1,{edge(0,2)}

2,{reach(0,1),edge(1,2)}n3

f5

f4

f0

edge(1,2)

1: reach(X,Y):− edge(X,Y)

2: reach(X,Y):− reach(X,Z),edge(Z,Y)

Fig. 4. Support graph for answers to query reach(0,X).
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f4

f5

1

1

Fig. 5. Counts in support graph: at start (a); after deletion (b); after rederivation (c).

We also maintain the following additional attributes with each or-node o: (i)
supportlist : the list of all supports of o; (ii) answer : the answer corresponding to
o; and (iii) primary support : the primary support of o.

In the rederivation phase, we need to check if candidates for deletion identified
in the first phase have alternative derivations. We do so efficiently by maintaining
counts with each node in the support graph. The meaning of the counts is
different for or-nodes and and-nodes. For an or-node representing an answer α,
its count denotes the number of supports that α must lose before it becomes
false. For example, in Figure 5(a) the count of or-node o1 and o2 is 2. The count
of an or-node representing true fact or a rule is initially 1; it is decreased by 1
when the fact or the rule is deleted. For an and-node representing a support s,
its count denotes the number of false answers and facts in s; in other words, the
count is the number of answers that must become true before the support itself
becomes true. An and-node’s count enables us to quickly determine the truth
value of a support without evaluating its constituents.

In Figure 5(a) the count of and-nodes n0, n1, n2 and n3 are all zero. When-
ever an or-node o becomes false, we increment the count of all and-nodes that
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delete:

1. foreach unprocessed o ∈ dlist

2. foreach s in o.part of

3. s.count + +;
4. if (s.count = 1) then
5. /* s just became false */
6. o′ := s.support of ;
7. o′.count − −;
8. if (o′.primary support = s) then
9. o′.leaf node.deleted := true;

10. dlist := dlist + {o′};

rederive:

1. /* 1. Find the basis for rederivation. */
2. rlist := {};
3. foreach o ∈ dlist

4. if (o.count > 0) then
5. o.leaf node.deleted := false;
6. rlist := rlist + {o};
7. let s ∈ o.supportlist
8. such that s.count = 0;
9. o.primary support := s;

10. /* 2. Propagate rederived answers. */
11. foreach unprocessed o ∈ rlist

12. foreach s ∈ o.part of

13. s.count − −;
14. if (s.count = 0) then
15. o′ := s.support of ;
16. o′.count + +;
17. if (o′.count = 1) then
18. o′.primary support := s;
19. o′.leaf node.deleted := false;
20. rlist := rlist + {o′};

Fig. 6. Algorithm for incremental evaluation after deletion.

contain o (given by o.part of ). Similarly, when an and-node s becomes false, we
decrement the count of the or-node that is supported by s (given by s.support of ).

The Algorithm: The algorithm for incremental evaluation after deletion of facts
is shown Figure 6 and has two phases as described below.

Deletion Phase: The algorithm starts in the deletion phase, with the variable
dlist initialized to the set of or-nodes corresponding to the deleted facts and rules.
When the phase ends, the variable dlist represents the candidates for deletion
(Γ in Definition 3). We explain the algorithm by using the support graph in
Figure 5(a) as an example. Consider the deletion of two facts edge(0,2) (or-
node f1) and edge(1,1) (or-node f2). We enter the deletion phase with dlist
set to {f1, f2}. Observe from Figure 5(a) that f1.part of = {n1}; hence we
increment n1.count to 1. Now, n1.support of is the or-node o2, and o2.count is
decremented to 1. Moreover, n1 is the primary support o2. So o2 is a candidate
for deletion and is added to dlist .

We then process or-node f2. We increment n2.count to 1. Since n2.support of
is the or-node o1, we decrement o1.count . However, n2 is not the primary support
of o1, and hence nothing is added to dlist . Finally we pick the unprocessed
node o2, but since o2.part of is empty, the processing ends. It must be noted
that traditional delete-rederive algorithms would have picked both o1 and o2 as
candidates for deletion. In contrast, we have been able to approximate the set
of deleted answers better, and not even consider o1 as a candidate for deletion.

Rederivation Phase: The rederivation phase, invoked with the set of candi-
dates for deletion in dlist , proceeds in two steps. In the first step we determine,
among all nodes in dlist , those that have alternative supports. In the second step
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we propagate the rederived answers through the support graph. We explain the
rederivation phase by continuing our earlier example.

In Figure 5(b), after the deletion phase, dlist contains {f1, f2, o2}. Among
these the counts of f1 and f2 (which correspond to the deleted facts) are zero
and hence lead only to trivial processing. The count of o2 is 1 indicating that
it is actually true. Hence we add o2 to rlist ; its support n3 has a zero count
indicating that it is valid. Hence we make n3 as the primary support of o2. We
begin the second step with rlist set to {o2}. Note that o2 is not a part of any
support in the graph and hence the processing ends.

Discussion: Supports for an answer are constructed based on the rule that gen-
erated the answer. In our implementation, when inserting an answer in a table
we determine its supports by using the consumer choice points and other struc-
tures used to generate the answer. Hence the construction of the support graph
does not increase the time complexity of query evaluation. However, the space
requirements for the support graph typically exceed that of the answer tables.
For instance, the number of answers for query reach(X,Y) is O(n2) where n
is the number of vertices in the graph. For each answer, there may be up to n
supports, and hence the support graph has O(n3) nodes.

4 Experimental Results

We implemented our incremental algorithms by modifying XSB (version 2.5).
In the following we present results of our preliminary experiments designed to
measure (i) the effectiveness of our techniques, (ii) their overheads, (iii) the effect
of repeated incremental evaluation, and (iv) the effectiveness of using supports to
control deletion. All measurements were made on an Intel Xeon 1.7GHz machine
with 2GB RAM running RedHat Linux 7.2. For nonincremental evaluation, we
used the standard release of XSB version 2.5. We used left-recursive reachability
and same generation predicates over trees and complete graphs as benchmarks.

Effectiveness: Figures 7(a) compare the incremental and non-incremental
evaluation time of one query after the addition of a set of facts to the edge
relations. The figures do not include the times for evaluating the initial query.
Observe that when the size of addition is small (less than 5% of the total size of
the edge relation), incremental evaluation is 20–60 times faster than nonincre-
mental evaluation. Moreover, as the size of the addition increases, incremental
evaluation time approaches that of nonincremental evaluation, but remains lower
even when the size of addition is over 90% of the original edge relation.

Figure 7(b) compares the times of one query after the deletion of a set of
facts from the edge relation. Incremental deletion on this benchmark takes very
little time (less than 0.1s for all deletion set sizes) and far outperforms its non-
incremental counterpart. The two are comparable only when the input graph
becomes very small due to deletion of a large number of edges.

Overheads: We find that the initial query evaluation time for incremental
evaluation is at most 8% greater than that for nonincremental evaluation. How-
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Fig. 7. Experimental results

ever, since the support graph size may be much larger than the answer set size,
we do observe significant memory overheads. Memory overheads range from a
factor of 1.9 (49MB incremental vs. 26MB nonincremental) for same generation
queries over binary trees, to as much as 131 (2.5MB incremental vs. 19KB nonin-
cremental) for reachability over complete graphs. Note that the space overhead
is due to the support graph alone, and is incurred only if we handle deletions.
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Effect of repeated evaluation: We now compare the performance of the
incremental engine for sequences of query evaluations and changes (additions/
deletions) such that the changes are interspersed between evaluations. In all the
runs, the total number of changes is the same; the number of changes between
two query evaluations is the step size of the run. For instance, a run with step size
10 means that after every 10 changes we issue an incremental query to refresh
the table. Figure 7(c) and (d) show the total evaluation times for additions and
deletions, respectively, for runs with different step sizes. Observe from the figure
that batching changes together (i.e. querying infrequently, and hence allowing
tables to go stale) usually takes less time than maintaining the tables fresh all
the time (i.e. step size 1). Nevertheless, consistently maintaining freshness is only
only 3 to 5 times slower than refreshing the table only after all changes are done.
This reflects the low overheads for incremental query evaluation.

Role of support-based control of deletion: Finally, we compare the ef-
fectiveness of selecting the candidate answers for deletion based on primary
supports. Figure 7(e) compares the performance of the incremental engine with
control based on primary support turned off, with that of the full algorithm.
Both versions used support graphs for rederivation. We measured the perfor-
mance of the two versions for a sequence of deletions from a complete graph,
issuing a query after each deletion. Observe from Figure 7(e) that use of primary
supports results in a more than 3-fold reduction in evaluation time.

5 Related Work

The materialized view maintenance problem has been extensively researched
(see, e.g. [8, 12] for surveys). Most of the works in recursive views maintenance
generate rules that are similar in spirit to those of DRed [7] and are subsumed
by DRed (as compared in [8]).

The relationship of our work to the DRed algorithm [7] has been explained
in sections 2 and 3. We handle programs with stratified negation in the same
way as DRed algorithm. It should be noted that the idea of counts has been
used in other works such as [6, 17] but has not been used to avoid recomputing
subgoals in recursive rules. The transformation rules for supporting addition are
similar to those of [7, 18] but we evaluate the incremental rules top-down and
on-demand. We also use specialized data structures to efficiently generate new
answers and avoid propagation of generation of old answers.

Our techniques are also closely related to the incremental model checking
algorithm (MCI) of [17]. We have adopted MCI’s use of counts to efficiently
compute truth values of nodes during incremental evaluation. The MCI algo-
rithm constructs a product graph where each node is associated with a truth
value, and the edges denote the dependencies between the nodes’ values. Its
product graph corresponds to propositional logic program. MCI algorithm fal-
sifies and rederives same number answers as DRed does with respect to this
program. Hence, our improvement over DRed carries over to MCI also.
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Straight Delete (StDel) algorithm [11] eliminates the rederivation phase of
DRed by keeping the entire proof with every answer. While such an approach
may be feasible for constraint databases, it is prohibitively expensive for logic
programs. For instance, while the support set size for a context free grammar
parser is cubic in the length of the string, the number of distinct proofs may be
exponential. Thus a succinct representation such as a support graph is essential.
However, since we do not keep all the proofs, we cannot avoid rederivation.

A top-down algorithm for incrementally checking integrity constraints (which
can be seen as views) is presented in [16]. This algorithm first computes the set
of integrity constraints that are possibly affected by the changes to the facts. It
then evaluates the integrity constraints top-down. The method works only for
non-recursive predicates. However, the idea of using a bottom-up propagation
phase to mark the goals that may need to be evaluated is an interesting aspect
that we plan to study in the future.

6 Concluding Remarks

We presented, to the best of our knowledge, the first techniques for incrementally
evaluating tabled logic programs. Our implementation shows that incremental
evaluation in the presence of addition of facts and rules can be added without
any overhead whereas there is a tradeoff between memory overhead and perfor-
mance in presence of deletion of facts and rules. This work opens up numerous
interesting research questions, a few of which are enumerated below.

We handle deletions in a purely bottom-up fashion. It would be interesting
to propagate answer deletions lazily, only on demand. Furthermore, the support
sets that we use to handle deletion can be very large, and we seek ways to reduce
the storage requirement. First of all, we need to design clever data structures to
share components of different supports. Secondly, we can let the support sets be
incomplete (i.e. not store all the supports), thereby trading space for time (for
proof searches on rederivation). Thirdly, certain base facts may be “indelible”:
i.e., can never be deleted. Answers derived solely based on such facts can be also
be simply marked “indelible”, and we need not keep any supports for them.

For handling deletion in the presence of non-tabled predicates, we can build
supports for a non-tabled answer, say β, on the stack, and include these supports
whenever a tabled answer α is generated based on β. This approach mimics the
way delay lists are propagated across non-tabled predicates when evaluating the
well-founded model of a non-stratified program [2].

Finally, we have not considered updates to rules and facts as an independent
operation. For instance, consider the problem of incremental parsing. A change
in the input string can be considered in terms of a set of deletions and additions.
However, such a formulation results in the reparsing of a large segment of the
string: deletions “cut” the string into pieces which has a profound effect on the
parse tree; additions “join” the pieces back, making large-scale changes to the
parse tree again. Designing incremental evaluation techniques by considering
update as a basic operation is an interesting and important open problem.
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