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Abstract Data-independent systems are an important class of infinite-
state systems which can be subject to model checking by first building
finite-state property-preserving abstractions. Exploiting data indepen-
dence in practice involves user guidance, either in terms of the abstrac-
tion itself or in terms of symmetry properties of the system. In this paper
we present a constraint-based verification technique that automatically
handles data-independent systems. Our technique introduces a unified,
automata-based model for infinite-state systems and LTL formulas. The
technique can be seen as a generalization of explicit state model checker
for reachability and LTL properties. We have implemented our tech-
nique using logic programming with tabulation and constraints. We also
describe an extension to the automata model that permits verification of
a richer class of systems. We show its power by analyzing configuration
(security) vulnerabilities in a computer system.

1 Introduction

Many real-world systems and designs are naturally modeled as systems with in-
finite state space. Systems that have a finite number of control locations (anal-
ogous to program counter values) but manipulate data ranging over arbitrary
unbounded domains are used to model software artifacts and control systems
such as communication protocols or hardware controllers. Such systems can be
modeled as extended finite automata (EFA) where each control location has a
set of local variables and the transitions have (i) a guard that tests the val-
uation of variables in the source location and (ii) a relation that maps values
of variables in the source location to the variables in the destination location.
For instance, Figure 1 shows an EFA model for a two-place FIFO buffer. Many
infinite-state systems use only operations such as input, output and copy that
do not inspect the individual values themselves. Notice for instance, that input
values to the buffer in Figure 1 do not affect the system’s observable behavior
except for the corresponding changes to the output values. Such infinite-state
systems are called data-independent [25].
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s0 s1(x)
out !x

in?x x := x
in?y

x := y
out !x

s2(x, y)

Figure 1. Example EFA for 2-place FIFO buffer.
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¬out !x

t2(x, y)t0

in?x in?y out !y
y 6= x

¬out !x

Figure 2. Automaton representing a run with “out of order” message delivery.

The State of the Art: Since the control behavior of data-independent systems
does not depend on the actual values of the data, such systems can be verified us-
ing traditional model checking techniques as follows. First, temporal properties of
such systems can be specified using only data values drawn from a finite domain.
Then a data-independent system can be abstracted to a finite-state system by re-
stricting the data variables to take values only over this finite data domain. The
crucial problem in verifying data-independent systems is, then, to identify the
appropriate (finite) data domain that makes the abstraction property-preserving.
In the seminal work of [25], this abstraction is performed manually. Since then,
several techniques [12,10,13,17] for identifying the appropriate abstraction have
been developed. However, existing techniques either require user guidance or
expect the temporal properties to be solely about the control behavior of the
system. (These issues are explored in more detail in Section 7.)

Summary of Our Approach: We model data-independent systems, as well as
their temporal properties, as extended finite automata. For instance, Figure 2
shows an EFA representing runs that deliver messages “out-of-order”, i.e. where
there are two data objects, x and y, such that x is read before y, but y is written
out before x. The structure of EFAs is such that a product of two two such
automata is also an EFA. Following the automata-based approach we can verify
properties of systems by looking for particular runs in their product EFAs: safety
and liveness can be verified using reachability analysis, while LTL properties can
be checked by good cycles detection.

We represent EFAs as constraint logic programs; analyzing the runs can
be then posed as query evaluation over these programs. Note that, resolution,
the widely-used query evaluation mechanism, ensures that the variables in the
EFA are bound only to the extent necessary to answer the query. This follows
our earlier approaches to constructing model checkers of finite and infinite-state
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systems based on query evaluation over (constraint) logic programs. Moreover,
the EFA product construction itself can be encoded as a constraint logic pro-
gram, meaning that the product automaton itself is constructed on demand:
only portions of the product automaton needed to answer the particular query
are materialized. Finally, interpreting the query over a domain of equalities and
disequalities ensures that we can verify temporal properties of data-independent
systems without attempting to enumerate specific valuations of the data vari-
ables. This approach can be used to automatically verify the data-independent
systems that have been reported in the literature [25,10,13] without needing any
user intervention or annotations. Our approach can also automatically verify
correctness properties of cache-memory systems which have not been amenable
for automatic treatment using the existing techniques (see Section 4).

Extensions and Applications: We initially define EFAs such that they manipulate
only equality and disequality constraints (Section 3). Even these relatively simple
models are expressive enough to represent data-independent systems as defined
in [25], as well as their extensions [13]. We describe the verification of cache-
memory systems using such EFAs in Section 4. We further extend EFAs to
use membership constraints (e.g. x ∈ y) in order to represent a richer class of
systems (Section 5). With these constraints, the model checking problem is no
longer decidable. We hence devise abstractions that ensure termination of the
analysis but with very little loss of information in practice. We use this technique
to verify properties of a generalized cache-memory system, as well as to detect
vulnerabilities in computer system configurations (Section 6).

The technique presented in this paper provides a way for direct and auto-
matic verification of data-independent systems. The system models may in fact
be specified in a familiar process algebraic notation that can be automatically
translated to the underlying EFAs. This enables direct application of our tech-
nique on system models constructed for use in finite-state model checkers such
as XMC [22]. The systems handled by the model checker include those that
compare data variables using equality (e.g. x = y where x and y are data vari-
ables) and disequality (e.g., x 6= y) tests. The temporal properties can naturally
express both data and control behaviors of these systems. Furthermore, our im-
plementation of this technique can be seen as an extension to an explicit-state
model checker for LTL properties [2,20].

2 Preliminaries

We assume the standard notion of variables, function symbols, predicates, terms,
substitutions, and unification [16]. Variables range over an enumerable set V; we
use x, y, . . . to denote variables. Function symbols range over F ; 0-ary function
symbols are called constants (denoted by the set C). We use T to denote the set
of all terms constructed from V and F ; σ, θ to denote substitutions; and mgu to
denote the most general unifier of a set of terms. A term t under a substitution
σ is denoted by tσ. By σ[t/x] we denote a substitution σ′ that maps x to t and
is identical to σ everywhere else.
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Constraints, Constraint Languages and Assertions: A formal definition of ex-
tended finite automata (see Section 3) is based on a language of constraints.
Constraint languages are parameterized with respect to a set of primitive con-

straints PC . For instance, equality and disequality constraints are defined using
the following set of primitive constraints:

PC{=} = {v1 = v2, v1 6= v2}

where v1, v2 ∈ V ∪ C. A constraint language L defined with respect to PC is
built using the constraints in PC , Boolean connectives ∧ and ∨, and existential
quantification ∃ over variables. Elements of L are also called assertions and are
denoted by ϕ (possibly primed and/or subscripted). Formally, Ls, the language
of constraints defined over PCs is the smallest set such that (i) PC s ⊆ Ls; (ii)
ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 ∈ Ls if ϕ1, ϕ2 ∈ Ls; and (iii) ∃v. ϕ ∈ Ls if ϕ ∈ Ls and v ∈ V.
We assume that PC is closed with respect to negation, and hence do not have
an explicit connective for negation.

The set of variables in an assertion ϕ is denoted by vars(ϕ). We use the
standard notion of bound and free variables (due to quantifiers) in assertions.
The set of bound variables in an assertion is denoted by bv(ϕ) and the set of free
variables by fv(ϕ). We also use the standard notion of meaning of assertions in
L{=}, by interpreting them over the data domain C. With each assertion ϕ we

associate a set [[ϕ]] of substitutions mapping fv(ϕ) to C. Note that we define the
meaning by substituting only the free variables of an assertion. Each substitution
σ in [[ϕ]] is said to “satisfy” ϕ (written as σ |= ϕ).

In the first part of the paper, we use only equality and disequality constraints,
since they suffice to describe and analyze data-independent systems. We subse-
quently expand our techniques to analyze systems whose control behaviors are
dependent on certain infinite-domain values. We model such systems using an
expanded constraint language L{=,∈} which considers two distinguished set

constants, {} (empty set) and U (the universal set) in C, and has the following
set of primitive constraints:

PC{=,∈} = {v1 = v2, v1 6= v2, v1 ∈ v2, v1 6∈ v2}

where v1, v2 ∈ V ∪ C. Assertions in L{=,∈} are interpreted by first classifying

variables into many sorts: base variables that take values over C, first-order set
variables that take values over 2C , etc.

Expressions and Assignments: Given a substitution that associates values with
variables, expressions compute new values. For data-independent systems, we
consider the constraint language L{=} and the set of expressions E{=} = V ∪C.

When considering the constraint language L{=,∈}, we will use a richer expres-

sion language E{=,∈} which is the smallest set such that (i) V ∪ C ⊆ E{=,∈};

(ii) 2V ∪ 2C ⊆ E{=,∈}; and (iii) if e1, e2 ∈ E{=,∈} then e1 ∪ e2, e1 ∩ e2, e1 − e2
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are all in E{=,∈}. The value of an expression e with respect to a substitution σ

is denoted by eσ.
Assignments are written as x := e where x ∈ V and e ∈ E . The meaning of

an assignment x := e can be captured as a binary relation between substitutions
such that (σ, σ′) ∈ [[x := e]] iff σ′ = σ[eσ/x]. Simultaneous assignments are de-
noted by V̄ := Ē where V̄ and Ē are (equal-length) sequences of variables and
expressions respectively. An assignment can also be seen as transforming asser-
tions: from one that is satisfied before the assignment to another that is satisfied
after the assignment. This assertion mapping corresponding to an assignment ρ
is denoted by Ξρ.

Standard Forms and Equivalence: We say that two assertions are identical if
they differ only in the names of bound variables. Two assertions are equivalent
if and only if they are satisfied by the same set of substitutions. Note that while
identical assertions will be equivalent, the converse does not always hold: e.g.
ϕ1 = (x = y ∧ y = z) and ϕ2 = (x = y ∧ x = z) are equivalent but not identical.

When processing assertions, it is often useful to reduce them to equivalent
standard form, defined as follows:

Definition 1 [Standard Form of Assertions] An assertion ϕ ∈ L{=} is said to

be in standard form if the following hold:

– Structure: ϕ is in disjunctive normal form, i.e., is of the form ϕ1 ∨ ϕ2 · · ·ϕn

such that each ϕi itself is of the form ∃V.ϕi,1 ∧ ϕi,2 ∧ · · · ∧ ϕi,ki
where

ϕi,j ∈ PC{=}; the assertions ϕi are called the conjuncts of ϕ.

– Non-redundancy: A primitive constraint occurs at most once in any conjunct
in ϕ.

– Naming: bv(ϕ) ∩ fv(ϕ) = {};
– Order: For each conjunct ϕi in ϕ, if x = y occurs in ϕi then there are no

primitive constraints of the form y = z, z = y, y 6= z or z 6= y in ϕi for any
variable z.

2

Given a conjunction ϕ of primitive constraints over PC {=}, it is easy to

see that we can group its variables in several equivalence classes (x = y in ϕ
means that x and y belong to the same class). Moreover, ϕ is satisfiable (when
interpreted over an infinite data domain) if only if whenever x 6= y occurs in
ϕ, x and y belong to different classes. These observations immediately yield a
procedure to convert every assertion into an equivalent standard form.

Proposition 1 For every satisfiable assertion ϕ ∈ L{=} there is an equivalent

assertion ϕ′ such that ϕ′ is in standard form.

An assertion ϕ in standard form is said to be quantifier-free if it has no bound
variables. For any conjunct ∃V. ϕ let ∃V. ϕ′ be an equivalent standard form such
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that for every x = y in ϕ′, x ∈ V implies y ∈ V . Let ϕ′′ be the assertion obtained
by dropping from ϕ′ every primitive constraint that contains a variable in V .
It can then be shown that ϕ′′ is equivalent to ∃V ϕ whenever the assertions are
interpreted over an infinite domain of constants.

Example 1 Consider ϕ : ∃y.x = y ∧ y 6= z ∧ z 6= w ∧ y 6= w.

– The assertion ϕ1 : ∃y.x = y ∧ x 6= z ∧ z 6= w ∧ x 6= w is in standard form,
and is equivalent to ϕ.

– Shrinking the scope of the quantifier yields the assertion ϕ2 : (∃y.x = y)∧x 6=
z ∧ z 6= w ∧ x 6= w which is equivalent to ϕ1 and hence ϕ.

– Since (∃y.x = y) is satisfiable (under interpretation over any domain), the
assertion ϕ3 : x 6= z ∧ z 6= w ∧ x 6= w, and ϕ2 are equivalent.

In the above example, the assertion (∃y. x = y) is always satisfiable and hence
the final quantifier-free form ϕ3 is always equivalent to the initial assertion ϕ.
In general, however, the dropped assertion may be satisfiable only over domains
that are sufficiently large. For instance, ∃y, z. x 6= y∧x 6= z ∧ y 6= z is satisfiable
only when the data domain has at least two elements. However, the dropped
assertions are always satisfiable when interpreted over an infinite data domain.
Hence we have:

Proposition 2 For every satisfiable assertion ϕ ∈ L{=} there is assertion

ϕ′ such that ϕ and ϕ′ are equivalent over infinite data domains and ϕ′ is in

quantifier-free standard form.

Quantifier-free standard forms are important since they allow us to finitely
represent all possible assertions over a finite set of free variables.

Proposition 3 Let V be a set of variables and Φ ⊆ L{=} be the set of all

assertions in quantifier-free standard form such that fv(ϕ) = V for all ϕ ∈ Φ.
Then the set Φ is finite.

3 Extended Finite Automata

We now describe an automata-based model to specify infinite-state systems with
finite number of control locations. The automaton’s behavior can be observed
based on the labels, called actions, on the transitions taken by the automaton.
We distinguish between input actions (denoted by c?x), output actions (denoted
by c!e) and internal actions (denoted by special symbol τ) where c ∈ C, x ∈ V,
and e ∈ V ∪ C. The set of actions is denoted as Act ; we use α to range over
actions. We refer to the sets of free and bound variables involved in an action α
as fv(α) and bv(α), respectively. These sets are defined as follows: fv(c?x) = ∅,
bv(c?x) = {x}, fv(c!e) = vars(e), bv(c!e) = ∅.
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Definition 2 [Extended Finite Automaton (EFA)] An extended finite automa-

ton over the constraint language L{=} is defined by the sextupleA = 〈L, δ, ι, `0, %,F〉

where:

– L is a finite set of (control) locations;
– δ = L × 2V , the variable map, is a function that maps each location `i to a

finite set of variables local to `i;
– ι is a function that maps each location to an assertion (invariant) such that

ι(`i) ∈ L{=} and ι(`i) must be satisfied by δ(`i) whenever `i is reached;

– `0 ∈ L is the initial location;
– % is the transition relation such that for all (`i, `j , 〈γ, α, ρ〉) ∈ %,

• `i, `j ∈ L are the source and destination locations of the transition,
respectively

• 〈γ, α, ρ〉 is the label on the transition consisting of:
∗ γ ∈ L{=}, the enabling condition: an assertion over δ(`i) which

specifies the condition under which the transition may be taken
∗ α ∈ Act , the action associated with the transition, such that bv(α)∩

δ(`i) = ∅
∗ ρ, the update relation: a set of simultaneous assignments defining the

values assumed by the variables δ(`j) of the destination location in
terms of values of variables δ(`i) in the source location;

– F ⊆ L, is the set of final locations.

2

Example 2 The 2-place FIFO buffer shown in Figure 1 is formally represented
as the EFA S = 〈L, δ, ι, `0, %,F〉 where L = {s0, s1, s2}, the variable map
δ(s0) = ∅, δ(s1) = {x} and δ(s2) = {x, y}; the invariants ι(s0) = ι(s1) =
ι(s2) = true, the initial location `0 = s0, the transition relation is defined as % =
{(s0, s1, 〈true, in?x, {}〉), (s1, s0, 〈true, out !x, {}〉), (s1, s2, 〈true, in?y, {x := x}〉),

(s2, s1, 〈true, out !x, {x := y}〉)}, and the set of final locations F = ∅.

Behaviors of an EFA: Note that an EFA is analogous to a program: control
locations correspond to program counter values (program points) and the local
variables correspond to the data variables live at each program point. We call
q = 〈`, θ〉 a concrete state of an automaton if ` is a location and θ is a ground
substitution of variables in δ(`) defined over a data domain D. We can define
behaviors of an EFA with respect to specific valuations of its variables, as follows.

Definition 3 [Concrete run of an EFA] A concrete run ωD of A is a (possibly in-
finite) sequence of alternating concrete states and actions 〈`0, θ0〉 α0 〈`1, θ1〉 α1 . . .
such that:

– `0 is the initial location of A and θ0 is a ground substitution of variables in
δ(`0) to D such that θ0 |= ι(`0)

– for all i (`i, `i+1, 〈γ, α, ρ〉) ∈ % such that:
• Transition is enabled: θi |= γ
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reach(A, Ls,Ss, Ld,Sd) :-

gtrans(A, Ls,Ss, Act, Ld,Sd).

reach(A, Ls,Ss, Ld,Sd) :-

gtrans(A, Ls,Ss, Lm,Sm),

reach(A, Lm,Sm, Ld,Sd).

gtrans(A, Ls,Ss, Ld,Sd) :-

inv(A, Ls,Ss),

trans(A, Ls,Ss, Act, Ld,Sd),

ground(Act),

inv(A, Ld,Sd).

Figure 3. Relation describing the reachability of concrete states in an EFA

• Input Value is bound: θ′i is a ground extension of θi to vars(α) such that
αi = α[θ′i]

• Data is transferred from source to destination: (θi, θ
′′
i ) ∈ [[ρ]]

• Input value is transferred: θ′i+1 = θ′′i ◦σ where σ is such that θ′i = θi ◦σ,
and

• Destination invariant holds: θi+1 |= ι(`i+1).

2

EFA as a Logic Program: An EFA can be readily represented as a set of Prolog
rules. The following relations specify an EFA A:

– init(A, L): a relation with a single tuple, specifying the initial location L.
– inv(A, L,V): a relation specifying the invariants at each location.
– trans(A, Ls,Vs, Act, Ld,Vd): a relation defining transitions from source

location Ls, with the list Vs representing Ls’s variables, to destination loca-
tion Ld, with variables Vd. Act denotes the action taken by the automaton.
The body of each rule corresponds to transition’s enabling condition γ (i.e.
facts imply γ = true). Finally, the update relation is specified either by uni-
fying corresponding variables in Vs and Vd or using additional predicates in
the body of the rule.

– final(A, L): a relation specifying the final locations.

Example 3 The EFA S = 〈L, δ, ι, `0, %,F〉 from Example 2 can be represented
as the following logic program:

init(S, s0).

inv(S, s0,[]).

inv(S, s1,[X]).

inv(S, s2,[X,Y]).

trans(S, s0,[], in(X), s1,[X]).

trans(S, s1,[X], out(X), s0,[]).

trans(S, s1,[X], in(Y), s2,[X,Y]).

trans(S, s2,[X,Y], out(X), s1,[Y]).

The reachability of a concrete state of an EFA can be computed using the
transitive closure relation over the transitions of A shown in Figure 3. In the
figure, the relation gtrans nondeterministically selects an applicable transition
and binds any variables in its action (i.e. if Act is an input action, binds the input
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variable to some value in the data domain), and ensures that the invariants at the
source and destination states hold. The set of all concrete states of an automaton
A that are reachable from a given concrete state 〈`, θ〉 can be computed as answers
to the query reach(A, `,δ(`)θ, Ld,Sd) over the concrete reachability program.
It can be easily shown that evaluating the above query using resolution is step-
wise equivalent to computing concrete runs using Definition 3.

A run that reaches a concrete state can be easily computed based on the
resolution steps needed to establish the reachability of the state using the above
program (e.g. using the notion of justification of a logic programming proof [23]).

Abstracting the Behaviors of an EFA: To ensure that behaviors of an EFA can
be analyzed even when it has an infinite number of concrete states, we use an
alternative representation of the behaviors. For this, we introduce the notion of
an abstract state: a pair 〈`, ϕ〉 where ` is a control location and ϕ ∈ L{=} is an

assertion (representing constraints on the valuations of the local variables at `)
such that fv(ϕ) ⊆ δ(`).

Definition 4 [Abstract run of an EFA] An abstract run ω ofA is a (possibly infi-
nite) sequence of alternating abstract states and actions 〈`0, ϕ0〉 α0 〈`1, ϕ1〉 α1 . . .
such that:

– `0 is the initial location of A and ϕ0 = ι(`0).
– for all i (`i, `i+1, 〈γ, α, ρ〉) ∈ % such that:

• Transition is enabled: ϕi ∧ γ is satisfiable
• Constraint is transferred to destination: ϕ′

i = Ξρ(ϕi) and ϕi+1 =
(∃V ϕ′

i) ∧ ι(`i+1) where V = vars(ϕ′
i)− δ(`i+1)

2

An abstract state q = 〈`, ϕ〉 of an EFA corresponds to a (possibly infinite) set
S of concrete states over value domain D such that ∀〈`, θ〉 ∈ S.θ |= ϕ; in other
words, ϕ cannot distinguish between the valuations of the concrete states. We
say that each element 〈`, θ〉 of S is a concretization of q, and q is an abstraction

of S.
Given the relationship between abstract and concrete states, we can construct

an abstract run from a concrete run and vice versa. The close correspondence
between abstract and concrete states is formalized by the following theorem:

Theorem 4 A concrete state 〈`n, θn〉 is reachable in a concrete run ωD of an

extended finite automaton, iff there exists an abstract state 〈`n, ϕn〉 which is

reachable in an abstract run ω such that θn |=D ϕn.

Finiteness: Two abstract states 〈`, ϕ〉, 〈`′, ϕ′〉 are equivalent iff ` = `′ and ϕ and
ϕ′ are equivalent. Since all assertions at location ` can be written in quantifier-
free standard form with free variables from δ(`), from Proposition 3 we know
that there are only finite number of abstract states involving `. This immediately
leads to the following result:
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reach(A, Ls,Ss, Ld,Sd) :-

atrans(A, Ls,Ss, Act, Ld,Sd).

reach(A, Ls,Ss, Ld,Sd) :-

atrans(A, Ls,Ss, Lm,Sm),

reach(A, Lm,Sm, Ld,Sd).

atrans(A, Ls,Ss, Ld,Sd) :-

inv(A, Ls,Ss),

trans(A, Ls,Ss, Act, Ld,Sd),

inv(A, Ld,Sd).

Figure 4. Abstract reachability relation for EFAs

Proposition 5 Reachability of any abstract state of an EFA is decidable.

From Theorem 4 and Proposition 5 we have:

Corollary 6 Reachability of a concrete state of an EFA is decidable.

Data Domain Size: Note that the finiteness results above used quantifier-free
standard forms for assertions, and hence are valid when we interpret EFAs over
infinite data domains. These results also carry over to finite domains that are
“large enough”. A domain size above which the results always hold can be es-
timated as follows. Consider all the quantifier elimination steps applied while
computing an abstract run. At each step, say to eliminate the quantifier in ∃V ϕ,
let ϕ be in standard form, and let ND be the number of variables of V in dis-
equality constraints. Then the quantifier-free form is equivalent to the original
assertion for all domains of size ND or greater. Thus the above correctness re-
sults hold for domains of size N or greater, where N is the largest ND among
all quantifier elimination steps used in computing the run.

Query Evaluation for Abstract State Reachability: Reachability of abstract states
can be computed using the reachability relation shown in Figure 4. The rela-
tion atrans in the figure selects an applicable transition and ensures that the
invariants at source and destination states hold. However, in order to ensure
that query evaluation using resolution w.r.t. the abstract reachability program
is equivalent to computing abstract runs using Definition 4, we need to first
augment the evaluation mechanism with constraint solving. Traditional logic
programming systems resolve queries by keeping track of substitutions. When
a subgoal such as x 6= y is encountered, these mechanisms will fail if x and y
are not already bound to specific values in the data domain. Constraint Logic
Programming (CLP)[11] provides a very expressive framework to resolve such
queries by generalizing substitutions to assertions in a constraint language. We
can check for reachability of abstract states by resolving queries w.r.t. the reach-
ability program in a CLP system that handles constraints over L{=}. Tabled

resolution [24] can be used to ensure the termination of query evaluation. We
built such a query evaluation system as a tabled constraint meta-interpreter that
handles constraints over L{=}.
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Verification using EFAs

When an EFA is interpreted as an automaton over finite words, a (concrete/abstract)
run of an EFA is said to be accepting if the run is finite and ends in a final state.
For EFAs that model systems to be verified, we are typically interested in all
possible runs. Hence all locations in an EFA representing system models will be
final locations. Such automata can be seen as equivalent to Symbolic Transition
Systems (STS [3]) and generalizations of Symbolic Transition Graphs (STGs [9])
and STGs with Assignments (STGAs [14]).

Property Specification using EFAs: Liveness properties and negations of safety
properties can be simply encoded as EFAs.

Example 4 Consider the “ordered message delivery” property which states that
for any two messages x, y such that x is read before y, x will be written out
before y. Note that this is a safety property and hence has to hold throughout
a run. The negation of this property, called “out-of-order delivery” is expressed
by the nondeterministic EFA in Figure 2. Note that “out-of-order delivery” is a
liveness property that is satisfied on a run if it is satisfied at some point in the
run. Liveness properties can be simply verified by checking for reachability of
final states.

When an EFA is interpreted as an automaton over finite words, a (con-
crete/abstract) run of an EFA is said to be accepting if it is finite and ends in
a final state. Using this interpretation, we can verify safety and liveness proper-
ties of EFA models. We can easily expand this framework to verify linear-time
properties with data values, by using the Büchi acceptance condition: a run is
accepting only if it is infinite and visits a final state infinitely often. We call
EFAs with Büchi acceptance condition as constraint Büchi automata (CBA).
The problem of determining whether a CBA has an accepting abstract/concrete
run is decidable, since the reachability of abstract/concrete states is decidable.

The definition of CBA is apparently similar to Pnueli’s Büchi Automaton
with Data (BAD) [19] but differs mainly by treating data variables as local to a
control location. Moreover, a CBA allows finite number of data variables to be
introduced (new or temporary locals) into states during system execution. Data
variables in a CBA have the following properties:

– they may be generated in the states or introduced by the transitions: for any
`i, `j ∈ L such that (`i, `j , 〈γ, α, ρ〉) ∈ %, δ(`j) ⊆ δ(`i) ∪ vars(α);

– whenever a variable x is introduced to `, it overwrites the value of x pre-
viously assigned to `; another way to say this is that the interpretation of
x is different upon every visit to a location containing x (this in particular
applies to self loops);

– initial location `0 may contain a non-empty, finite set of variables.
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init((A1,A2), (L1,L2)) :-

init(A1, L1), init(A2, L2).

inv((A1,A2), (L1,L2), V) :-

inv(A1, L1,V1), inv(A2, L2,V2),

append(V1,V2,V).

trans((A1,A2), (Ls1,Ls2),Vs, Act, (Ld1,Ld2),Vd) :-

trans(A1, Ls1,Vs1, Act, Ld1,Vd1),

trans(A2, Ls2,Vs2, Act, Ld2,Vd2),

append(Vs1,Vs2,Vs), append(Vd1,Vd2,Vd).

final((A1,A2), (L1,L2)) :-

final(A1, L1), final(A2, L2).

Figure 5. Relations describing the product of two EFAs

Product Construction: Automata-based model checkers pose the verification
problem in terms of checking whether the intersection of two automata’s lan-
guages is empty. Critical to this formulation is the construction of a product
automaton A = (A1 × A2) whose language corresponds to the intersection of
the languages of A1 and A2. We can construct the product of two EFAs such
that the result is also an EFA. In fact, given two EFAs A1 and A2 represented as
logic programs, the product EFA (A1, A2) can be computed using a logic program
given in Figure 5. Each location in the product automaton is defined as a pair
(L1, L2) consisting of the locations of the component automata. The non-trivial
part of the encoding is the handling of action labels: the label on a transition in
the product automaton is obtained by unifying the action labels the two compo-
nent automata. It is easy to show that two automata A1 and A2 have a common
run if and only if their product has a run.

4 Example: Verifying a Write-Back Cache

Below we describe an EFA model of a memory system with a write-back cache.
We use this model to verify that a memory read at an arbitrary but specific ad-
dress retrieves the value previously written to that address. The model captures
the behavior of a memory system with potentially infinite memory addresses
and an infinite domain of data values. We first build a model for a system with
a single-line cache: exactly one address-value pair is stored in the cache. We
generalize this model to cache with an arbitrary size in Section 5.

The data state of a single-line cache is denoted as a triple (CA,CV,CD) rep-
resenting the address CA in the cache, a current data value CV at that address,
and a “dirty bit” CD that is 1 if the value in the cache has been modified (and
hence possibly different from the value in the main memory) and 0 otherwise.
The cache services read and write requests received from the processor.
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% receive request to write value V to address A

trans(cm, c0,[CA,CV,CD, MA,MV], write?(A,V), c1,[CA,CV,CD, MA,MV, A,V]).

% A is in cache: update cache value to V and set dirty bit to 1

trans(cm, c1,[CA,CV,CD, MA,MV, A,V], tau, c0,[CA,V,1, MA,MV]) :-

A = CA.

% A is not in cache, but either cache value has not been modified,

% or cache address is different from that in the memory:

% replace cache contents with the tuple (A,V,1)

trans(cm, c1,[CA,CV,CD, MA,MV, A,V], tau, c0,[CA,V,1, MA,MV]) :-

A 6= CA, (CD 6= 1; CA 6= MA).

% A is not in cache, cache value has been modified,

% and cache address is the same as the address in the memory:

% update value in the memory to current cache value

trans(cm, c1,[CA,CV,CD, MA,MV, A,V], tau, c2,[CA,CV,CD, MA,CV, A,V]) :-

A 6= CA, CD = 1, CA = MA.

% write new tuple, with dirty bit set to 1, to the cache

trans(cm, c2,[CA,CV,CD, MA,MV, A,V], tau, c0,[A,V,1, MA,MV]).

Figure 6. Transition rules for handling writes in the cache-memory system

Upon a request write?(A,V) to write value V to address A, if A is in the
cache (i.e. A = CA), then the value in the cache is replaced with V (i.e. CV :=

V) and CD is set to 1. Otherwise, the current cache entry is flushed to memory
if CD is 1, and the data state of the cache is set to (A,V,1). Read requests are
processed similarly (flushing the current cache contents to memory on a cache
miss); details are omitted.

Note that we are interested in verifying whether a read to a specific memory
address returns the previously written value. This enables us to model a memory
of arbitrary capacity by a single memory cell with a distinguished address. The
data state of the memory is represented by a tuple (MA,MV). The memory re-
sponds to read and write requests from the cache. A write to (A,V) changes the
data state to (MA,V) if A = MA, and leaves the data state unchanged otherwise.
A read request to address A returns MV if A = MA; otherwise the read returns an
arbitrary value.

The cache-memory system can be readily modeled as an EFA; Figure 6 shows
the a fragment of a logic program that represents the transition relation of the
EFA model (more specifically, the portion of the relation that pertains to write
requests). Note that all locations in the EFA for the system model are final
locations.

The correctness condition for the cache-memory system is that after a read
from an arbitrary address A will return V where V is most recent value written
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read addr?A

t2(A, V )

write?(A, V )

t1(A, V )

¬write?(A, V ′)

t0(A) t3(A)
V ′ 6= V

read val !V ′

τ

Figure 7. EFA for the correctness condition of cache-memory system

to address A. We represent the negation of this safety property by the EFA in
Figure 7.

To verify whether the cache-memory system observes the correctness condi-
tion, we check whether a final location in the product of the system EFA and
the property EFA is reachable. This check is done using the query

reach( (cm,p), (c0,t0),[CA,CV,CD, MA,MV, PA], ( ,t3), ), MA=PA.

over a program consisting of the abstract reachability relation (Figure 4), the
product construction relations (Figure 5) and the relations representing the sys-
tem and property EFAs. In the query, PA is the address of interest to the property.
Note that the unification MA=PA in the query ensures that the address of interest
to the property is same as the address maintained by the memory. From the
results of Section 3, we know that the above query evaluation will terminate and
hence we can verify the given correctness property of the cache-memory model.

Comparison with Other Work: It should be noted that the verification of the
cache-memory system as described above is not possible with any of the methods
of [25,12,10,13,15]. Specifically, the definition of data independence in [25,12]
does not admit any comparisons between data objects, so neither of them can
handle a problem that requires equality tests.

The cache can be modeled in the scalarset-based approach of [10] as an array
storing data values and indexed by the memory addresses. However, since they
are used as array indices, the domain of memory addresses themselves cannot
be reduced to a small, finite set of elements required for automatic verification.

The method of [13] is applicable to the problem only after a series of man-
ual transformations of its specification that reduce memory addresses and data
values to range over finite domains.

Finally, the system as specified above cannot be directly encoded as a sym-
bolic transition graph with assignments [15], as STGAs require all variables in
output transitions from a state to be present in the source state; note that the
behavior of a memory cell upon receiving a read request needs the ability to
output arbitrary values.

5 EFAs: Beyond Equalities

EFAs have been defined only using the constraint language L{=}. This choice

turns out to be crucial in being able to accurately verify systems and properties
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specified as EFAs. However, this choice also restricts the class of systems that
can be modeled using DFAs. Below we describe the consequences of augmenting
EFAs with richer constraint languages such as L{=,∈}.

Computational Aspects of using Assertions over L{=,∈}: The ability to finitely

represent the potentially infinite set of assertions using quantifier-free stan-
dard forms in L{=} is a key factor that makes the verification problem of

EFAs decidable. Assertions over L{=,∈}, in contrast, do not have equivalent

quantifier-free representations in general. For example, consider the assertion
ϕ = ∃x. x 6= y ∧ x ∈ z ∧ y ∈ z which states that y ∈ z and there is another
element distinct from y that is also in z. This assertion cannot be expressed
using only variables y and z without bound variables. The assertion y ∈ z is an
approximation of ϕ but fails to capture the fact that z has at least two elements.

This example illustrates that one can maintain counts (as number of elements
in a set) in L{=,∈} and hence there is no finite representation of assertions in

L{=,∈}. For instance, consider the assignment z := z∪{x} evaluated under the

constraint x 6∈ z. This assignment increases the cardinality of the set represented
by z and hence simulates counting.

A classic approach to deal with problems due to counts is to approximate the
counts: for instance, a widely-used approach is to maintain counts using the finite
domain {0, 1,many}. This abstraction corresponds to representing assertions in
L{=,∈} using at most one bound variable. We call assertions with a fixed ceiling

on the number of bound variables as assertions in limited quantifier form. We
can represent every ϕ ∈ L{=,∈} by an assertion ϕ[ in limited quantifier form

such that ϕ =⇒ ϕ[ (i.e. by “relaxing” the meaning of the assertion). The
direction of the approximation ensures that for every concrete run in an EFA
there is an abstract run, but converse may not hold. Consequently, identifying
an accepting abstract run during verification simply means that the property
“may” hold; conversely, failure to find an an accepting abstract run means that
the property “definitely” does not hold.

Extended Data Types: As the primitive constraints of L{=} involve only vari-

ables and constants, all data elements we have been considering so far are taken
from V ∪C. When modeling systems with membership constraints and sets, it is
useful to consider non-recursive compound terms (e.g. tuples) to represent data
records. This improves the expressiveness without unduly complicating its formal
framework. Therefore, in the following, we assume that constraints in L{=,∈}
are built over variables, constants, and shallow, non-recursive compound terms.
Such structures are used in both examples presented below.

Application: Mutli-line Cache: We augment the EFA model of cache-memory
system (Section 4) to handle cache with an arbitrary number of cache lines.
The contents of the cache are now represented as a set Cs of tuples (CA, CV, CD)
each corresponding to one cache line, where CA, CV and CD are address, value

15



and dirty bit of that cache line. There are several modifications necessary for
the transition rules to accommodate the extended specification. Checking for a
presence of a tuple in the cache will now use membership constraints rather than
equality. Upon cache miss, the line to be flushed to memory is chosen from the
set nondeterministically (again using membership constraints). Finally, updating
value in the cache upon a write hit requires first locating the appropriate cache
line (using a membership constraint), and then updating its data value and dirty
bit (using set difference and union operations, and equality constraints).

6 Example: Detecting Vulnerabilities in Computer

Systems

A computer system consists of concurrent, interacting processes and services
and users. Unexpected interactions between these entities often lead to subtle
vulnerabilities that can be exploited to compromise system security. For example,
comsat is a mail notification program, which prints the initial lines of incoming
mails on a user’s terminal. It obtains the user’s terminal information from a
system file /etc/utmp (terminal information is stored as records in this file).
Misconfiguration of this file may permit any system user to obtain root privileges,
as follows. If records in /etc/utmp can be changed by a user, then an attacker
can replace their terminal in the file with ‘/etc/passwd’. The attacker can then
send mail to self, thereby overwriting the password file. By choosing the mail
message appropriately, the user can obtain root privileges.

In [21] we presented a model of this system in a value-passing process algebra
with four processes: a user, the mailer service, comsat, and the file system fs.
The first three processes interact via the file system. The model of the file system,
thus, is central and most interesting. There are several distinct infinite-domain
data types involved in these model: names of files and users, contents of files, etc.
Some of the components of the system, such as the mailer and comsat are data-
independent (in the type of message contents) in the sense of [25]. Similarly, the
file system’s control behavior is independent of the contents of the files. Below
we describe an EFA model of the file system using assertions from L{=,∈}.

Figure 8 shows a logic program encoding the transition relation of an EFA
model of the file system. In the model, the variable FS holds the current state
of the file system — the files and their contents. Its value is represented as a set
of triples (FN ,FPerm,FCont), each triple expressing the state of a particular
file with name FN , permissions FPerm, and contents FCont . File’s permissions,
in turn, are given by a set of pairs (U,P ), denoting that user U has permission
P (P ∈ {w, r}). The contents of a file are defined as a set of data records.

The program in Figure 8 uses several predicates representing the following
assertions:

– exists(FS , N) checks for existence of file named N in the file system FS :

∃P,C . (N,P,C) ∈ FS
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trans(fs, s0,[FS], read?(U,N), s1,[FS,U,N]).

trans(fs, s1,[FS,U,N], tau, s0,[FS]) :-

not(exists(FS,N), access(FS,U,N,r)).

trans(fs, s1,[FS,U,N], tau, s2,[FS,U,R]) :-

exists(FS,N), access(FS,U,N,r), r rec(FS,U,N,R).

trans(fs, s2,[FS,U,R], read return!(U,R), s0,[FS]).

trans(fs, s0,[FS], write?(U,N,D), s3,[FS,U,N,D]).

trans(fs, s3,[FS,U,N,D], tau, s0,[FS]) :-

not(access(FS,U,N,w)).

trans(fs, s3,[FS,U,N,D], tau, s0,[FS’]) :-

access(FS,U,N,w), add rec(FS,U,N,D,FS’).

Figure 8. Transition relation for an EFA model of a file system.

– access(FS , U,N, T ) verifies that user U has access of type T to file named
N in the file system:

∃P,C . (N,P,C) ∈ FS ∧ (U, T ) ∈ P

– r rec(FS , U,N,R) extracts record R from file named N in the file system:

∃P,C . (N,P,C) ∈ FS ∧ (U, r) ∈ P ∧ R ∈ C

– add rec(FS , U,N,D,FS ′) adds record D to file named N in the file system
FS , giving the modified file system in FS ′:

∃P,C,C ′ . (N,P,C) ∈ FS ∧ (U,w) ∈ P ∧ C ′ = C ∪ {D}
∧ FS ′ = FS − {(N,P,C)} ∪ {(N,P,C ′)}

One of the simplest safety properties expected to hold in a model of a com-
puter system is that there are no unauthorized writes to /etc/passwd. We be-
gin by checking a straightforward reachability property: whether there are any
writes to /etc/passwd in the above EFA model. The analysis shows that writes
to /etc/passwd are indeed possible, but many of the runs that are witnesses to
this property show “normal” behavior that does not reveal the vulnerability.
For instance, one of the runs corresponds to root issuing an explicit write to
/etc/passwd. Hence we refine the property to rule out expected runs (called
the “intentions model” [21]). We then observe writes to /etc/passwd using a
sequence of operations — overwriting /etc/utmp and then sending mail — that
exploit the vulnerability described earlier.

Note that the EFA model uses assertions over L{=,∈} and hence abstract

runs may not have corresponding concrete runs. Thus a detected vulnerability
may not, in general, actually exist in the model. However, given an abstract run,
we can estimate whether or not the abstract states represent approximations;
for instance, loss of accuracy in manipulating assertions in L{=,∈} occurs when
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we eliminate bound variables to derive assertions in limited quantifier form. We
can therefore modify the order in which transitions are taken during reachability
analysis, preferring transitions that involve no loss of information. Abstract runs
composed solely of transitions whose effects are computed losslessly always have
corresponding concrete runs. Using this heuristic, we can isolate vulnerabilities
that exist in the model despite using an expressive constraint language. This
heuristic is not limited to reachability analysis alone and can be readily extended
to good cycle detection in CBA.

7 Related Work and Discussion

In this paper we presented an automata-based approach to the analysis of behav-
ior of infinite-state systems. We used EFAs as a unified model for infinite-state
systems and their properties. Our technique can be used to automatically verify
properties of data-independent systems, and can be extended to analyze more
general infinite-state systems as well.

Considerable research has been done on generating a finite-state, property-
preserving abstraction of data-independent systems. The method of [25] relies
on the user to identify a data-independent program and manually transform its
specification. A similar method was suggested in [1] to verify the alternating bit
protocol. An automatic abstraction is proposed in [12] where a special countable
set of values, called schematic names are used to bind data variables. However,
this method is applicable only to programs that do not have tests on the values
of data variables. A similar set of “symbolic values” is used in [15] which gives an
algorithm for model checking data-independent value-passing processes. Because
of working on process variables rather than inventing an extra set of values, we
can claim our approach more directly implementable than the one presented
in this work. Data independence is considered as a form of symmetry in [10]
where a method is given to reduce the size of the data domain. The reduction is
automatic once the user identifies a data-independent program and specifically
annotates data-independent types (“data scalarsets”). Moreover, the approach
works only for safety properties.

In [13], algorithms for refinement checking among data-independent systems
are developed. They are based on the notion of threshold collections: finite col-
lections of data types such that if the refinement holds for each of these types
substituted for the data domain of the processes, it holds for an arbitrary data
domain. The threshold collections must be identified manually before applying
the appropriate refinement algorithms. Finally, an automatic method to abstract
a large class of systems including data-independent systems is developed in [17].
That method is analogous to predicate abstraction [8] and constructs a finite-
state system by introducing Boolean variables for every predicate in the original
system. It is shown that for data-independent systems the method will termi-
nate, producing a finite Boolean program which simulates the original system
(with respect to control behaviors).
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Our technique is most closely related to the abstraction method of [17]: the
constraints in our case correspond to the Boolean variables introduced by [17].
However, note that [17] abstracts only the system and preserves only control flow
properties. Thus, given an arbitrary property ϕ of a data-independent system
S, one must first construct a product system S ′ and pose the verification of ϕ
in S in terms of an appropriate control flow property of S ′. In contrast, our
technique constructs the product space, performs the necessary abstraction, and
verifies the appropriate property on the product system, all in one phase. Such
“on demand” abstraction is especially advantageous when the properties can be
proved without constructing the entire abstract state space of the system.

There have been several works on constraint-based model checking and the
use of constraint (logic) programming for verification of infinite-state systems
(e.g. [5,4,6]). We have developed verification techniques for infinite-state systems
based on tabled resolution and constraint processing: for timed systems [7,18],
systems with mobility [26], and for symbolic bisimulation of systems [3]; each of
those techniques can be seen as a conservative extension to our finite state model
checker, XMC [22]. This paper presents a model checker for data-independent
systems using a similar approach, but uses an LTL-based logic to specify proper-
ties. We are currently investigating easy-to-implement tableau-based techniques
to verify a general class of value passing systems (to model mobility as well as
data independence). Our current work also includes modeling other security-
related problems to further the application and development of infinite-state
verification techniques.

References

1. S. Aggarwal, R.P. Kurshan, and K. Sabnani. A calculus for protocol specification
and validation. Protocol Specification, Testing and Verification, III, 1983.

2. S. Basu, K. Narayan Kumar, L.R. Pokorny, and C.R. Ramakrishnan. Resource-
constrained model checking of recursive programs. In TACAS, 2002.

3. S. Basu, M. Mukund, C.R. Ramakrishnan, I.V. Ramakrishnan, and R.M. Verma.
Local and symbolic bisimulation using tabled constraint logic programming. In
ICLP, 2001.

4. T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state
systems using presburger arithmetic. In CAV, 1997.

5. W. Chan, R.J. Anderson, P. Beame, and D. Notkin. Combining constraint solving
and symbolic model checking for a class of systems with non-linear constraints. In
CAV, 1997.

6. G. Delzanno and A. Podelski. Model checking in CLP. In TACAS, 1999.
7. X. Du, C. R. Ramakrishnan, and S. A. Smolka. Tabled resolution + constraints:

A recipe for model checking real-time systems. In RTTS, 2000.
8. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV,

1997.
9. M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science,

138:353–389, 1995.
10. C. Norris Ip and D. L. Dill. Better verification through symmetry. FMSD, 1996.
11. J. Jaffar and J.-L. Lassez. Constraint logic programming. In POPL, 1987.

19



12. B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of non-
finite-state programs. Information and Computation, 107(2), December 1993.
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