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Abstract

We present the ω-calculus, a process calculus for formally modeling and reason-
ing about Mobile Ad Hoc Wireless Networks (MANETs) and their protocols.
The ω-calculus naturally captures essential characteristics of MANETs, includ-
ing the ability of a MANET node to broadcast a message to any other node
within its physical transmission range (and no others), and to move in and
out of the transmission range of other nodes in the network. A key feature
of the ω-calculus is the separation of a node’s communication and computa-
tional behavior, described by an ω-process, from the description of its physical
transmission range, referred to as an ω-process interface.

Our main technical results are as follows. We give a formal operational
semantics of the ω-calculus in terms of labeled transition systems and show
that the state reachability problem is decidable for finite-control ω-processes.
We also prove that the ω-calculus is a conservative extension of the π-calculus,
and that late bisimulation equivalence (appropriately lifted from the π-calculus
to the ω-calculus) is a congruence. Congruence results are also established
for a weak version of late bisimulation equivalence, which abstracts away from
two types of internal actions: τ -actions, as in the π-calculus, and µ-actions,
signaling node movement. We additionally define a symbolic semantics for the
ω-calculus extended with the mismatch operator, along with a corresponding
notion of symbolic bisimulation equivalence, and establish congruence results for
this extension as well. Finally, we illustrate the practical utility of the calculus
by developing and analyzing formal models of a leader-election protocol for
MANETs and the AODV routing protocol.
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1. Introduction
A Mobile Ad Hoc Network (MANET) is a network of autonomous mobile nodes
connected by wireless links. Each node N has a physical transmission range
within which it can directly transmit data to other nodes. Any node that falls
within N ’s transmission range is considered a neighbor of N . Nodes can move
freely in a MANET, leading to rapid changes in the network’s communication
topology.

Two aspects of MANETs make them especially difficult to model using exist-
ing formal specification languages such as process algebras. First, MANETs use
wireless links for local broadcast communication: a MANET node can trans-
mit a message simultaneously to all nodes within its transmission range, but
the message cannot be received by any node outside that range. Secondly, a
node’s neighborhood can change unpredictably due to node movement, thereby
altering the set of nodes that can receive a transmitted message.

Ideally, the specification of a node’s control behavior should be independent
of its neighborhood information. Since, however, the eventual recipients of a
local broadcast message depend on this information, a model of a MANET-based
protocol given in a traditional process calculus must intermix the computation
of neighborhood information with the protocol’s control behavior. This tends
to render such models unnatural and unnecessarily complex.

In this paper, we present the ω-calculus, a conservative extension of the
π-calculus that has been designed expressly to address the MANET modeling
problems outlined above. A key feature of the ω-calculus is the separation of a
node’s communication and computational behavior, described by an ω-process,
from the description of its physical transmission range, referred to as an ω-
process interface. This separation allows one to model the control behavior of
a MANET protocol using ω-processes independently from the protocol’s under-
lying communication topology, which is modeled using process interfaces. (A
similar separation of concerns has been achieved in several recently introduced
process calculi for wireless and mobile networks [13, 10, 9, 6], but not, as we
argue in Section 8, as simply and naturally as in the ω-calculus.)

As discussed further in Section 2, ω-process interfaces are comprised of
groups, which operationally function as local broadcast ports. Mobility is cap-
tured in the ω-calculus via the dynamic creation of new groups and dynamically
changing process interfaces. The group-based abstraction for local broadcast in
a wireless network is a natural one; it appears also in [7], where it is shown how
to model MANETs in the UPPAAL model checker for timed automata.
Main Contributions. The rest of the paper is organized around our main
technical results, which include the following:
• Section 2 provides an informal introduction to the basic features of the ω-

calculus.
• Section 3 presents the formal operational semantics of the ω-calculus in terms

of labeled transition systems and structural-congruence rules. The calculus
is presented in three stages: ω0, the core version of the calculus, focuses on
local broadcast and mobility; ω1 extends ω0 with unicast communication
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Figure 1: Multiple views of a MANET network.

and scope extrusion; ω2 extends ω1 by allowing multi-threaded behavior at
the process level. We shall henceforth use the term “ω-calculus” to refer to
ω2, the most general version of the calculus. We in fact show in Section 4
that ω2 is a conservative extension of the π-calculus. Comment

(2a) Done.
Throughout
the paper:
“Bisimulation
is not a congru-
ence in general,
bisimilarity,
i.e. the largest
bisimulation
instead is”

• Section 4 defines bisimulation equivalence for the ω-calculus and proves that
it is a congruence. We obtain similar results for a weak version of bisimula-
tion, which treats as unobservable two types of internal actions: τ -actions,
as in the π-calculus, and µ-actions, signaling node movement.
• Section 5 extends the transitional semantics of the ω-calculus to a symbolic

one in the presence of a mismatch operator. Symbolic bisimulation equiva-
lence is also defined and is shown to be a congruence.
• Sections 6 presents our Prolog encoding of the transitional semantics of the
ω-calculus.
• Section 7 illustrates the practical utility of the calculus by developing and

analyzing formal ω-calculus models for two algorithms for MANETs, namely Comment (2b)
Done. Line too
longa leader-election algorithm [20] and the AODV routing protocol [16].

Section 8 considers related work and Section 9 offers our concluding remarks.

2. The ω-Calculus: An Informal Introduction
As an illustrative example of the ω-calculus, consider the MANET of Fig. 1(a)
comprising the four nodes N1, N2, N3, N4. The dotted circle centered around a
node indicates the node’s transmission range. Thus, N1 is within the transmis-
sion range of N2, N3, and N4 and vice versa, and N2 and N4 are in each other’s
transmission range. We assume that the transmission ranges of all nodes are
identical, and hence connectivity is symmetric. The assumption of symmetry
makes the notation cleaner, although the assumption can be readily removed, as
discussed later in this section. Fig. 1(b) highlights the maximal sets of neighbor- Comment

(2c) Done.
Connectivity
is assumed to
be symmetric.
State/discuss
this assump-
tion

ing nodes in the network, one covering N1, N2, and N4, and the other covering
N1 and N3. A maximal set of neighboring nodes corresponds to a maximal
clique in the network’s node connectivity graph (Fig. 1(c)), and, equivalently,
to an ω-calculus group (local broadcast port), as illustrated in Fig. 1(d). The
set of groups to which a node is connected is specified by the interface of the
underlying process; i.e. the process executing at the node. Thus, the ω-calculus
expression for the network is the parallel composition N1|N2|N3|N4, where N1

= P1 : {g1, g2}, N2 = P2 : {g1}, N3 = P3 : {g2}, N4 = P4 : {g1}, for process
expressions P1, P2, P3 and P4. Comment (1a)

Done. About
removing
redundant
groups

Note that process interfaces may contain groups that do not correspond
to maximal cliques. Groups that do not represent any additional connectivity
information are redundant. Group g2 of Fig. 2 is an example of a redundant
group. A canonical form for ω-calculus expressions can be defined in which
redundant groups are elided.

Fig. 1 provides multiple views of the topology of the MANET at a particular
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Figure 2: (a) Node Connectivity Graph after N3’s movement and (b) View in ω-calculus.

moment in time. As discussed below, the network topology may change over
time due to node movement, a feature of MANETs captured operationally in
the ω-calculus via dynamic updates of process interfaces.
Local Broadcast in the ω-calculus. The ω-calculus action to locally broad-
cast a value x is bx, while r(y) is the action for receiving a value y. Thus, when
a process transmits a message, only the message x to be sent is included in
the specification. The set of possible recipients depends on the process’s cur-
rent interface: only those processes that share a common group with the sender
can receive the message and this information is not part of the syntax of local
broadcast actions. In the example of Fig. 1, if P2 can broadcast a message and
P1, P3, P4 are willing to receive it, then the expression

N = r(x).P ′1 :{g1, g2} | bu.P ′2 :{g1} | r(y).P ′3 :{g2} | r(z).P ′4 :{g1}

may evolve to

N = P ′1{u/x} :{g1, g2} | P ′2 :{g1} | r(y).P ′3 :{g2} | P ′4{u/z} :{g1}

Observe that P3 does not receive the message since N3 is not in N2’s neigh-
borhood. It should be noted that communication is assumed to be lossy, and Comment (2d)

Done. Mention
that even nodes
in the trasmis-
sion range may
not receive
messages.

hence even nodes that are within a sender’s transmission range may not receive
a message.

When the interfaces of two nodes share a group name, the nodes are in
each others’ transmission ranges. We can remove the assumption of symmetric
connections by partitioning the interface into transmission and reception parts.
Then a node N1 can send a message that can be received by node N2 if the
transmission interface of N1 overlaps with the reception interface of N2. Note
that N2’s transmission interface and N1’s reception interface may be disjoint.
This captures the scenario where N2 is in N1’s transmission range, but N1 is
not in N2’s transmission range. While assymmetric connections can be handled
in principle, this introduces notational clutter. Consequently, our technical
development in this paper assumes symmetric connections.
Node mobility in the ω-calculus. Node mobility is captured through the
dynamic creation of new groups and dynamically changing process interfaces.
Fig. 2 shows the topology of the network of Fig. 1 after N3 moves away from N1’s
transmission range and into N4’s transmission range. N3’s movement means
that the ω-calculus expression

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} | P3 :{g2} | P4 :{g1})

evolves to

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} | (νg3)(P3 :{g3} | P4 :{g1, g3}))
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The new group g3 in the above expression represents the new maximal set of
neighboring nodes N3 and N4 that arises post-movement. We use the familiar
νg notation for group-name scoping. Added about

mobility invari-
ance; revised
by CR

When process interfaces are allowed to change arbitrarily, the network topol-
ogy may change without any restriction. Correctness properties of many MANET
algorithms and protocols may hold only in certain restricted class of topologies.
We equip the ω calculus to restrict node movement by imposing an invariant
over a network’s topology, called the connectivity invariant, which must be pre-
served whenever the topology changes. Note that a connectivity invariant of
“true” will allow arbitrary node movement.
Nodes vs. Processes. In an ω-calculus specification, nodes typically repre-
sent physical devices; as such, the calculus does not provide a primitive for node
creation. Process creation, however, is supported, as processes model programs
and other executables that execute within the confines of a device.

3. Syntax and Transitional Semantics of the ω-Calculus
We begin this section by presenting the syntax and semantics of ω0, our core
calculus for MANETs. We then introduce the extensions to ω0 that result in
the more expressive ω1- and ω2-calculi.

3.1. Syntax of ω0

A system description in the ω0-calculus comprises a set of nodes, each of which
runs a sequential process annotated by its interface. We use N and P to denote
the sets of all nodes and all processes, respectively, withM,N ranging over nodes
and P,Q ranging over processes. We also use names drawn from two disjoint
sets: Pn and Gn. The names in Pn, called pnames for process names, are used
for data values. The names in Gn, called gnames for group names, are used for
process interfaces. We use x, y, z to range over Pn and g (possibly subscripted)
to range over Gn. The ω0-calculus has a two-level syntax describing nodes and
processes, respectively.

The syntax of ω0-calculus processes is defined by the following grammar:

P ::= nil | Act .P | P + P | [x = y]P | A(
⇀
x)

Act ::= bx | r(x) | τ

Action bx represents the local broadcast of a value x, while the reception
of a locally broadcasted value is denoted by r(x). Internal (silent) actions are
denoted by τ . Process nil is the deadlocked process; Act .P is the process that
can perform action Act and then behave as P ; and + is the operator for nonde-
terministic choice. Process [x = y]P (where x and y are pnames) behaves as P
if names x and y match, and as nil otherwise. A(

⇀
x) denotes process invocation,

where A is a process identifier (having a corresponding definition) and
⇀
x is a

comma-separated list of actual parameters (pnames) of the invocation. A pro-
cess definition is of the form A(

⇀
x) def= P , and associates a process identifier A

and a list of formal parameters
⇀
x (i.e. distinct pnames) with process expression

P . Process definitions may be recursive.
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The following grammar defines the syntax of ω0-calculus node expressions:

M ::= 0 | P :G | (νg)M | M |M

0 is the inactive node, while P :G, where G ⊆ Gn, is a node with process P Added G ⊆
Gn.having interface G. The operator (νg) is used to restrict the scopes of gnames.

M |N represents the parallel composition of node expressions M and N . Node
expressions of the form P :G are called basic node expressions, while those con-
taining the restriction or parallel operator are called structured node expressions.
Note that gnames occur only at the node level, capturing the intuition that, in
an ad hoc network, the behavioral specification of a (basic) node (represented
by its process) is independent of its underlying interface. Comment

(2f) Done.
“can G be
empty? If yes,
then strange
labels are
produced when
it broadcasts
something,
and the only if
part of Th. 1
(conservative
extension of
the pi-calculus)
is false since
P : {g} µ−→
P : {} can be
derived using
congruence
(with N1) and
MOBILITY”

Comment (2g)
Done. “please
add that names
in x are free in
A(x)”.

Free and Bound Names. For a process expression P , the set of free names
and bound names of P , denoted as fn(P) and bn(P), respectively, are defined
as follows:

fn(nil) = ∅
fn(bx.P ) = fn(P ) ∪ {x}

fn(r(x).P ) = fn(P ) \ {x}
fn(τ.P ) = fn(P )

fn(P +Q) = fn(P ) ∪ fn(Q)
fn([x = y]P ) = fn(P ) ∪ {x, y}

fn(A(x1, . . . , xn)) = {x1, . . . , xn}

bn(nil) = ∅
bn(bx.P ) = bn(P )
bn(r(x).P ) = bn(P ) ∪ {x}

bn(τ.P ) = bn(P )
bn(P +Q) = bn(P ) ∪ bn(Q)

bn([x = y]P ) = bn(P )
bn(A(x1, . . . , xn)) = ∅

In a process definition of the form A(
⇀
x) def= P ,

⇀
x are the only names that

may occur free in P . The set of all names in a process expression P is given
by n(P ), where n(P ) = fn(P ) ∪ bn(P ). Similarly, the set of all pnames and
gnames in a node expression M are denoted by pn(M) and gn(M), and those
that occur free are denoted by fpn(M) and fgn(M), respectively. Gname g is
bound in (νg)M , and all gnames in G are free in P :G. The set of all free names
in a node expression M is given by fn(M) = fpn(M)∪ fgn(M). An expression
without free names is called closed. An expression that is not closed is said to
be open. The theory developed in the following sections is applicable to both
open and closed systems (expressions).

3.2. Transitional Semantics of ω0 Comment (2e)
Done. “ I will
present P rules
before N rules
(and move the
table where it is
referenced)”

The transitional semantics of the ω0-calculus is defined in terms of a structural
congruence relation ≡ (Table 1) and a labeled transition relation −→⊆ N× L×
N, where L = {Gx,G(x), τ, µ | G ⊆ Gn, x ∈ Pn} is a set of transition labels.
A labeled transition (M,α,M ′) ∈−→, is also represented as M α−→ M ′.
As such, only node expressions have transitions. When a node of the form
P :G broadcasts a value x, it generates a transition labeled by Gx. When P :G
receives a broadcast value x, the corresponding transition label is G(x). Actions
µ and τ also serve as transition labels, with µ, as explained below, indicating
node movement, and τ representing internal (silent) actions.

For transition label α, the sets of bound names and gnames of α are denoted
bn(α) and gn(α), respectively, and defined as follows:

bn(Gx) = ∅, bn(G(x)) = {x}, bn(µ) = ∅, bn(τ) = ∅.

6



P1. P + Q ≡ Q + P
P2. (P + Q) + R ≡ P + (Q + R)
P3. P ≡Q, if P ≡αQ

N1. M ≡ M |0
N2. M1 |M2 ≡ M2 |M1

N3. (M1 |M2) |M3 ≡ M1 | (M2 |M3)
N4. (νg)M ≡ M, if g /∈ fgn(M)
N5. (νg)M |N ≡ (νg)(M |N), if g /∈ fgn(N)
N6. (νg1)(νg2)M ≡ (νg2)(νg1)M
N7. M ≡N, if M ≡αN
N8. P :G≡Q :G, if P ≡Q
N9. P :G≡ (νg)(P :G ∪ {g}), if g /∈ G

Table 1: Structural congruence relation for the ω0-calculus.

gn(Gx) = G, gn(G(x)) = G, gn(µ) = ∅, gn(τ) = ∅.
We define a label restriction operation α\G that makes visible only those group
names in α that are not in set G as follows: Defined α \G

τ \G = τ
µ \G = µ
G1x \G2 = G1 −G2 x
G1(x) \G2 = (G1 −G2)(x)

where we use G1 −G2 to denote the set {g ∈ G1 | g 6∈ G2}. Added side-
condition
G 6= ∅ to
MCAST and
RECV rules.
Also add this
side-condition
to unicast
rules.

We use the standard notion of substitution for names, viz. a mapping σ :
Pn × Pn. We also use the standard notation for application of substitution
to terms. The expression M{y/x} denotes the node expression in which all
free occurrences of x are replaced by y in M , with a change of bound names if
necessary to avoid any of the new name y from becoming bound in M .

Moved the
discussion of
invariance
condition here.
Changed mo-
bility invariant
to connectivity
invariant.
Alternatively,
topology invari-
ant

Process interfaces provide an abstract specification of network topology in
terms of node connectivity graphs. Formally, the node connectivity graph of a
node expression M , denoted by χ(M), is an undirected graph (V,E) such that
V , the set of vertices, are the basic nodes of M (i.e. subexpressions of M of the
form P : G) and E, the set of edges, is defined as follows. There is an edge
between two vertices P1 :G1 and P2 :G2 of χ(M) only if P1 and P2’s interfaces
overlap; i.e. G1 ∩G2 6≡ ∅ (assuming bound names of M are unique and distinct
from its free names). The node connectivity graph for the ω0 node expression
of Fig. 1(d) is given in Fig. 1(c). Comment (1g)

Done. “You
should better
motivate the
need for the no-
tion of mobility
invariance.”.

We use the notion of connectivity invariant, to impose different models of
node movement on the calculus. A connectivity invariant is a decidable prop-
erty over undirected graphs. For example, k-connectedness, for a given k, is a
candidate connectivity invariant, as is true, indicating no constraints on node
movement. We write I(U) to indicate that undirected graph U possesses prop-
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Rule Name Rule Side Condition

MCAST
(bx.P ):G Gx−→ P :G

G 6= ∅

RECV
(r(x).P ):G

G(x)−→ P :G
G 6= ∅

CHOICE P :G α−→ P ′:G
(P +Q):G α−→ P ′:G

MATCH P :G α−→ P ′:G
([x=x]P ):G α−→ P ′:G

DEF
P{⇀y /⇀x}:G α−→ P ′:G
A(

⇀
y ):G α−→ P ′:G

A(
⇀
x)

def
= P

Table 2: Transition rules for ω0-calculus basic node expressions.

erty I. We also use I(M), thus overloading I, to denote I(χ(M)) which means
that the connectivity graph of node expression M satisifies connectivity invari-
ant I. Added that we

define late se-
mantics.The transitional semantics of the ω0-calculus is given by the inference rules

of Tables 2 and 3, with the former supplying the inference rules for basic node
expressions and the latter for structured node expressions. Rules CHOICE,
MATCH, and DEF of Table 2 are standard. Rules MCAST and RECV of
Table 2, together with COM of Table 3, define a notion of local broadcast com-
munication. RECV states that a basic node with process interface G can receive
a local broadcast on any gname in G. This, together with COM, means that a
local-broadcast sender can synchronize with any local-broadcast receiver with
whom it shares a gname (i.e. the receiver is in the transmission range of the
sender). Note that a node with an empty in interface cannot perform send or Added that

send/receive
actions are
not permitted
on empty
interface.

receive actions. Note also that the above definition corresponds to late semantics
due to the late instantiation of received names.

Local-broadcast synchronization results in a local-broadcast transition label
of the form Gx, thereby enabling other receivers to synchronize with the original
send action. PAR rule indicates the interleaving semantics for actions of nodes Added about

PAR(I) rule
and modi-
fied text for
GNAMES-RES
rules.

in parallel. The first side condition is standard and is used to avoid name
capture. The second side condition permits only those node movements that
preserve a connectivity invariant I in a larger network context.

Comment
(1c), (2h)
for GNAME-
RES1 (Done).
“Shouldn’t
there be a
side condi-
tion stating
gn(α) 6= {g}”.
“Adding the
condition
gn(α) 6= {g}
will simplify
the definition
of \”.

GNAME-RES1 and GNAME-RES2 define the effect of closing the scope of
a gname. GNAME-RES1 states that a restricted gname cannot occur in a tran-
sition label. GNAME-RES2 states that when all gnames of a local-broadcast-
send action are restricted, it becomes a τ -action. MCAST, GNAME-RES1
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Rule Name Rule Side Condition

STRUCT N ≡M M
α−→ M ′ M ′≡N ′

N
α−→N ′

MOBILITY(I)
M |P :G

µ−→ M |P :G′

G′ 6= G,
G′ ⊆ G ∪ fgn(M),
I(M |P :G) =⇒

I(M |P :G′)

PAR(I) M
α−→ M ′

M |N α−→ M ′ |N
bn(α) ∩ fn(N) = ∅
I(M |N) =⇒ I(M ′ |N)

COM M
Gx−→ M ′ N

G′(y)−→ N ′

M |N Gx−→ M ′ |N ′{x/y}
G ∩ G′ 6= ∅

GNAME-RES1 M
α−→ M ′

(ν g)M
α\{g}−→ (ν g)M ′

α ∈ {τ, µ}, or
gn(α) \ {g} 6= ∅

GNAME-RES2 M
Gx−→ M ′

(ν g)M τ−→ (ν g)M ′
G = {g}

Table 3: Transition rules for ω0-calculus structured node expressions.

and GNAME-RES2 together mean that a local-broadcast send is non-blocking;
i.e., it can be performed on a set of restricted groups even when there are no Comment

(1e) Done.
Explain why
local-broadcast
is non-blocking
but receive is
not.

corresponding receive actions. In contrast, other actions containing gnames,
such as local-broadcast receive, are not covered by GNAME-RES2, and hence
have blocking semantics: a system cannot perform actions involving restricted
gnames unless there is a corresponding synchronizing action.

In contrast to the broadcast calculi of [5, 13], a node that is capable of receiv-
ing a local broadcast is not forced to synchronize with the sender. The semantics
of local broadcast in the ω-calculus allows a receiver to ignore a local-broadcast
event even if this node is in the transmission range of the broadcasting node. A
semantics of this nature captures the lossy transmission inherent in MANETs.
The semantics of local broadcast can be modified to force all potential receivers Comment (1b)

Done. Seman-
tics of local
broadcast to
force non-lossy
broadcast.

to receive a local broadcast, as done in other broadcast calculi [5, 13]. This
would require the addition of a side-condition to the PAR rule, allowing au-
tonomous broadcast/receive actions only when the context (node expression N
in the PAR rule) is incapable of synchronizing with that action.

The notion of structural congruence (Table 1) considered in rule STRUCT
is defined for processes (rules P1-P3) in the standard way—P and Q are struc-
turally congruent if they are alpha-equivalent or congruent under the associa-
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(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} |P3 :{g2} |P4 :{g1})
µ−→

MOBILITY

(νg1)(νg2)(P1 :{g1, g2} |P2 :{g1} |P3 :{g2} | (νg3)(P4 :{g1, g3}))
µ−→

(νg1)(νg2)(P1 :{g1, g2} |P2 :{g1} | (νg3)(P3 :{g3} |P4 :{g1, g3}))

GNAME-RES1 (thrice)

(P1 :{g1, g2} |P2 :{g1} |P4 :{g1, g3}) |P3 :{g2}
µ−→

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} | (νg3)(P3 :{g3} |P4 :{g1, g3}))

(P1 :{g1, g2} |P2 :{g1} |P4 :{g1, g3}) |P3 :{g3}

P1 :{g1, g2} |P2 :{g1} |P3 :{g2} |P4 :{g1, g3}
µ−→

P1 :{g1, g2} |P2 :{g1} |P3 :{g3} |P4 :{g1, g3}

(νg1)(νg2)(νg3)(P1 :{g1, g2} |P2 :{g1} |P3 :{g3} |P4 :{g1, g3})

(νg1)(νg2)(νg3)(P1 :{g1, g2} |P2 :{g1} |P3 :{g2} |P4 :{g1, g3})
µ−→

STRUCT

STRUCT

STRUCT

Figure 3: Derivation for movement of N3 from its position in Fig. 1 to that in Fig. 2.

tivity and commutativity of the choice (‘+’) operator—and then lifted to nodes
(rules N1-N9). Two basic node expressions are structurally congruent if they
have identical process interfaces and run structurally congruent processes (rule
N8). Rules N4-N6 are for restriction on gnames. Rule N9 allows basic nodes to
create and acquire a new group name or drop a local group name. Structural
congruence of nodes includes alpha-equivalence (rule N7) and the associativity
and commutativity of the parallel (‘|’) operator (rules N2 and N3). Comment (2i)

Done. “rule
MOBILITY:
checking the
mobility invari-
ant only when
rule mobility
is applied is
not enough,
since then rule
PAR may allow
to break the
invariant (not
all invariants
are preserved
by parallel
composition)”

Semantics of mobility. The semantics of node movement is defined by
the MOBILITY rule, which states that the process interface of node P :G can
change from G to G′ whenever the node is in parallel with another node M .
In particular, the side condition G′ ⊆ G ∪ fgn(M) stipulates that P may drop
gnames from its interface or acquire free gnames from M .

Comment (1f)
related to
comment (1n)
about case of
mobility in
the congruence
proof case 8
(Done in our
REMARKS).
Address the
comment that
“in MOBIL-
ITY(I) a node
cannot connect
to a node
in its envi-
ronment but
only to nodes
in network
specification” .
CR: This com-
ment is better
addressed after
the congruence
result.

The MOBILITY rule reflects the fact that P ’s interface may change when
node P :G, or the nodes around it, are in motion. A change in P ’s interface may
further result in a corresponding change in the overall network topology. Note
that the rule does not specify which nodes moved, only that the topology has
been updated as the result of movement of one or more nodes. The third side
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condition to the MOBILITY rule, decrees that whenever M
µ−→ M ′ is derived

using the MOBILITY rule, the resulting transition must preserve a connectivity
invariant.

We thus have that the MOBILITY and PAR rules in particular, and the
calculus’s semantics in general, are parameterized by the connectivity invariant,
thus taking into account the constraints on node movement.

An example derivation of node movement is shown in Figure 3. This deriva-
tion was obtained using the structural congruence and transition rules defining
the semantics of the ω-calculus, and “connectedness” as the connectivity invari-
ant.

3.3. The ω1-Calculus

The ω1- and ω2-calculi are defined in a modular fashion by adding new syntactic
constructs, and associated inference rules for their semantics, to the ω0-calculus.
In this subsection, we consider the extension ω1.

Extending ω0 to ω1. Syntactically, we obtain ω1 from ω0 as follows:
• We add restriction operators for pnames for both process-level and node-

level expressions. We use the standard notation of (νx)P for a pname x
restricted to a process expression P , and (νx)N for a pname x restricted to
a node expression N . As usual, x is bound in (νx)P and (νx)N .
• We introduce unicast communication as a prefix operator for process expres-

sions. Although unicast in principle can be implemented on top of broadcast,
we prefer to give it first-class status, as it is a frequent action in MANET
protocols. Doing so also facilitates concise modeling and deterministic rea-
soning (only the intended recipient can receive a unicast message). We use
the standard notation of xy to denote the sending of name y along x, and
x(y) to denote the reception of a name along x that will bind to y. As usual,
x and y are free in the expression xy.P , and x is free and y is bound in
x(y).P .

Unlike in ω0 where pnames are used strictly as data values, in ω1, pnames (the
set Pn) can be used as communicable data as well as communication (unicast)
channels.

Semantically, the introduction of scoped pnames needs new inference rules
to handle scope extrusion. We add OPEN and CLOSE rules (as in the π-
calculus [12]) and, in addition to the broadcast communication rule (COM) of
ω0, a rule for communication of bound names. We also add RES rules at the
process and node levels to disallow communication over a restricted name. These
additional rules follow closely the standard rules for handling scopes and scope
extrusion in the π-calculus; details are omitted. New structural congruence
rules are added to take the restriction of pnames into account. For instance,
restriction of pnames and gnames commute (i.e. (νx)(νg)N ≡ (νg)(νx)N), and
the restriction operator can be pushed into or pulled out of node and process
expressions as long as free names are not captured. At first glance, it may appear
that the structural congruence rules for scope extension of pnames are redundant
in the presence of the scope-extrusion rules (OPEN/CLOSE). However, the

11



Rule Name Rule Side Condition

UNI-SEND
(zx.P ):G z:Gx−→ P :G

G 6= ∅

UNI-RECV
(z(x).P ):G

z:G(x)−→ P :G
G 6= ∅

UNI-COM M
z:Gx−→ M ′ N

z:G′(y)−→ N ′

M |N τ−→ M ′ |N ′{x/y}
G ∩ G′ 6= ∅

Table 4: Transition rules for unicast communication in ω1-calculus.

OPEN/CLOSE rules are essential for reasoning about open systems, and the
scope extension rules are essential for defining normal forms (see Definition 3).

The addition of unicast communication raises certain interesting issues with
respect to mobility. Recall that groups encapsulate the locality of a process.
When two processes share a private name, they can use that name as a channel
of communication. However, after establishing that link, if the processes move
away from each other, they may no longer be able to use that name as a channel.
In summary, unicast channels should also respect the locality of communication.
We enforce this in the ω1-calculus by annotating unicast action labels with the
interfaces of the participating processes, and allowing synchronization between
actions only when their interfaces overlap (meaning that the processes are in
each other’s transmission range). Hence, the execution of a unicast send action
of value x on channel z by a basic node with process interface G is represented
by action label z :Gx; the corresponding receive action is labeled z :G(x).

The semantic rules for unicast send (UNI-SEND), receive (UNI-RECV), and
synchronization (UNI-COM) are given in Table 4. Scope extrusion via unicast
communication is accomplished by naturally extending their π-calculus counter-
parts (OPEN/CLOSE) rules as follows. Bound-output actions (due to OPEN)
are annotated with the interface of the participating process, and the CLOSE
rule applies only when the interfaces overlap. These extensions are straightfor-
ward, and the details are omitted. Comment (2j)

Done. “I will
present P rules
before N rules”

Done. Define
bn for transi-
tion labels due
to unicast

The set of bound names and gnames for the transition labels introduced by
the ω1-calculus are given below:
bn(z : Gx) = ∅, bn(z : G(x)) = {x}, bn((νx)z : Gx) = {x}, bn((νx)Gx) = {x}.
gn(z : Gx) = G, gn(z : G(x)) = G, gn((νx)z : Gx) = G, gn((νx)Gx) = G.

Note that the scope of a name may encompass different processes regardless
of their interfaces, and hence two processes may share a secret even when they
are outside each others transmission ranges. The restriction we impose is that
shared names can be used as unicast channels only when the processes are within
each others transmission ranges.

12



P4. (νx)P ≡ P, if x /∈ fn(P )
P5. (νx)(νy)P ≡ (νy)(νx)P
P6. P |Q ≡ Q |P
P7. (P |Q) |R ≡ P | (Q |R)
P8. (νx)P1 |P2 ≡ (νx)(P1 |P2) if x /∈ fn(P2)

N10. (νx)M ≡ M, if x /∈ fpn(M)
N11. (νx)M1 |M2 ≡ (νx)(M1 |M2), if x /∈ fpn(M2)
N12. (νx)(νy)M ≡ (νy)(νx)M
N13. (νg)(νx)M ≡ (νx)(νg)M
N14. ((νx)P ) :G ≡ (νx)(P :G)

Table 5: Additional structural congruence rules for the ω-node expressions.

Rule Name Rule Side Condition

PROC-PAR P :G α−→ P ′:G
(P |Q):G α−→ (P ′ |Q):G

bn(α) ∩ fn(Q) = ∅

PROC-COM
P :G z:Gx−→ P ′:G Q:G

z:G(y)−→ Q′:G
(P |Q):G τ−→ (P ′ |Q′{x/y}):G

PROC-CLOSE
P :G

(νx)z:Gx−→ P ′:G Q:G
z:G(x)−→ Q′:G

(P |Q):G τ−→ ((νx)(P ′ |Q′)):G

Table 6: Additional transitional semantics rules for basic ω-node expressions.

3.4. The full ω-calculus: ω2-calculus.

We obtain the ω2-calculus by adding the parallel composition (‘|’) operator at
the process level, thereby allowing concurrent processes within a node. This
addition facilitates e.g. the modeling of communication between layers of a pro-
tocol stack running at a single node; it also renders the π-calculus a subcalculus Comment (2k)

Done. “I don’t
like the use
of the same
primitive for
intra-node
and inter-node
communica-
tion: these
correspond to
very differ-
ent physical
operations
(a wireless
communication
and an internal
synchroniza-
tion); I would
like at least a
more detailed
discussion
about this;
also, I’m not
convinced that
becoming a
conservative
extension of the
pi-calculus is
an interesting
property, since
the kind of
systems to be
modeled is very
different”

of the ω2-calculus. In ω2, the actions of two processes within a node may be in-
terleaved. Moreover, two processes within a node can synchronize using unicast
(binary) communication. We add PAR, COM and CLOSE rules corresponding
to intra-node interleaving, synchronization and scope extrusion, respectively;
these rules are straightforward extensions of the corresponding rules in the π-
calculus.

The syntax of processes in the ω-calculus is defined by the following gram-
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Rule Name Rule Side Condition

UNI-OPEN M
z:Gx−→ M ′

(νx)M
(νx)z:Gx−→ M ′

x 6= z

UNI-CLOSE M
(νx)z:Gx−→ M ′ N

z:G′(x)−→ N ′

M |N τ−→ (νx)(M ′ |N ′)
G ∩ G′ 6= ∅

OPEN M
Gx−→ M ′

(νx)M
(νx)Gx−→ M ′

COM-RES M
(νx)Gx−→ M ′ N

G′(x)−→ N ′

M |N (νx)Gx−→ M ′ |N ′
G ∩ G′ 6= ∅

CLOSE M
(νx)Gx−→ M ′

(ν g)M τ−→ (ν g)(νx)M ′
G = {g}

PNAME-RES M
α−→ M ′

(νx)M α−→ (νx)M ′
x /∈ n(α)

Table 7: Additional transition semantics rules for structured ω-node expressions.
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mar:

P ::= nil | Act .P | P + P | (νx)P | [x = y]P | P |P | A(
⇀
x)

Act ::= xy | x(y) | bx | r(x) | τ

The following grammar defines the syntax of node expressions in the ω-
calculus:

M ::= 0 | P :G | (νg)M | (νx)M | M |M

The structural congruence rules for the ω-calculus are given in Tables 1
and 5, and the transitional semantics rules are given in Tables 2, 3, 4, 6, and 7.

4. Bisimulation, Congruence Results and Other Properties of the ω-
Calculus

In this section, we prove some fundamental properties of the ω-calculus, includ-
ing congruence results for strong bisimulation equivalence and a weak version
of bisimulation equivalence that treats τ - and µ-actions as unobservable.
Embedding of the π-Calculus. The ω-calculus is a conservative extension
of the π-calculus [12]. That is, every process expression P in the π-calculus
can be translated to an ω-node expression P : G, for G ⊆ Gn and G 6= ∅,
such that the transition system generated by P : G is isomorphic to the one
generated by P . We impose the condition G 6= ∅ since a basic node with an
empty interface (P : {}) cannot perform any action. This property is formally
stated by the following theorem, which is readily proved by induction on the
length of derivations. Comment (1h).

“If interfaces
may be empty,
why not let P
map to P :{} in
Thm 1”.

Done: Pn
and Gn are
disjoint, so the
requirement
that ‘g is a
fresh group
name not in
P ’ can be
removed.

Theorem 1. For any process expression P in the π-calculus, P :G is a node
expression in the ω-calculus, where G ⊆ Gn and G 6= ∅. Moreover, P α−→ P ′

is a transition derivable from the operational semantics of the π-calculus if and

only if P : G α′

−→ P ′ : G is derivable from the operational semantics of the ω-
calculus, and one of the following conditions hold: (i) α = α′ = τ ; (ii) α = x(y)
and α′ = x : G(y); (iii) α = xy and α′ = x :Gy; or (iv) α = (νy)xy and
α′ = (νy)x :Gy, for some names x, y.
Decidability of the Finite-Control Fragment. The finite-control fragment
of the ω-calculus, as in the case of the π-calculus, is the subcalculus where recur-
sive definitions do not contain the parallel operator (‘|’) and every occurrence of
process identifiers is guarded. Reachability properties are decidable for closed
process expressions (i.e. those without free names) specified in the finite-control
fragment [4]. We extend the notion of finite control to the ω-calculus, and show
that reachability remains decidable for closed node expressions. This result,
formally stated in Theorem 2, is of practical importance in verifying MANET
system specifications. Formally, we say that an ω-calculus expression N is reach-
able from M (denoted by M−→∗N) if there is a finite sequence of transitions
M

α1→M1
α2→M2 · · ·

αn→ N .
Theorem 2. Let M be a closed finite-control ω-calculus expression and let
RM = {N |M−→∗N}≡ be the set of node expressions reachable from M modulo
the structural congruence relation ≡. Then, RM is finite.
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Comment (2l)
Done. “you
should state
this assump-
tion before or
in the theorem
statement, not
in the proof”.
Removed the
assumption, see
the response in
file review2.txt.

The following proof uses the finite reachability result for the finite-control π-
calculus given in [4].
Proof Sketch: Consider the fragment ωπ of the ω-calculus without broadcast
actions and the MOBILITY rule. For a node expression M in ωπ, the corre-
sponding π-calculus process expression, denoted by Mπ, is obtained from M by
deleting process interfaces and gname restrictions. Let M be a ωπ-expression
such that all process expressions have the same process interface. Then M ’s
transition system is isomorphic to that of Mπ.

Now further assume that M is closed and finite-control. Then the set of
expressions reachable from M , RM , is similar (except for occurrences of process
interfaces and gnames) to that for Mπ. Since only finitely many expressions are
reachable from Mπ, RM is also finite.

Next, extend ωπ to ωbπ by including broadcast actions. Let M1 be such a
ωbπ-expression that is both closed and finite-control. The process contexts due
to broadcast action prefixes are analyzed in a similar manner as the binary-
synchronization action prefixes. Using an argument similar to the one used
above for ωπ, it can be concluded that RM1 is finite.

Finally, we include the MOBILITY rule in ωbπ, extending ωbπ to the ω-
calculus. Let M2 be a closed finite-control ω-expression. The MOBILITY rule
affects only the gnames (including process-interfaces) appearing in expressions
reachable from M2. It can be observed that the set RM2 is a variant of the
set RM1 , with different combinations of process-interfaces (permitted by the
MOBILITY rule) attached to the process expressions appearing in the elements
of RM1 . The different combinations of process interfaces possible for n basic
nodes in an ω-expression (modulo ≡) is finite and bounded by the number of
topologies that a network of n nodes can assume. This implies that RM2 is
finite.

Hence, reachability for the finite-control fragment of the ω-calculus is decid-
able. ut Comment (2m)

Done. “why do
you choose late
bisimulation?”

Bisimulation for the ω-Calculus. The definition of strong (late) bisimula-
tion for the π-calculus [12] can be extended to the ω-calculus.

Definition 1. A relation S ⊆ N × N is a strong simulation if M SN implies:
• fgn(M) = fgn(N), and
• whenever M α−→M ′ where bn(α) is fresh then:

– if α ∈ {G(x), z :G(x)}, there exists an N ′ s.t. N α−→ N ′ and for all y ∈
Pn, M ′{y/x}S N ′{y/x},

– if α /∈ {G(x), z :G(x)}, there exists an N ′ s.t. N α−→ N ′ and M ′ S N ′.
S is a strong bisimulation if both S and S−1 are strong simulations. Nodes
M and N are strong bisimilar, written M ∼ N , if M SN for some strong
bisimulation S.

Proposition 3. (i) ∼ is an equivalence; and (ii) ∼ is the largest strong bisim-
ulation.
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Strong bisimulation equivalence is a congruence for the ω-calculus, as formally
stated in Theorem 9. We use the bisimulation up to ≡ technique [19] to establish
this result. The following definitions and lemmas are also needed.
Notation: For a given relationR, the relation≡R≡ is given by: {(x, y) | (x′, y′) ∈
R, x ≡ x′, y ≡ y′}.
Definition 2. A symmetric relation S ⊆ N × N is a strong bisimulation up
to ≡ if M SN implies
• fgn(M) = fgn(N), and
• whenever M α−→M ′ where bn(α) is fresh then:

– if α ∈ {G(x), z :G(x)}, there exists an N ′ s.t. N α−→ N ′ and for all y ∈
Pn, M ′{y/x} ≡ S ≡ N ′{y/x},

– if α /∈ {G(x), z :G(x)}, there exists an N ′ s.t. N α−→ N ′ and M ′ ≡S≡
N ′.

Lemma 4. If S is a strong bisimulation up to ≡, then for any M,N ∈ N,
M SN implies M ∼ N .
Proof: For any M,N ∈ N, M SN implies M ≡S≡ N . It is sufficient to show
that ≡S≡ is a strong bisimulation because then M ≡S≡ N would imply that
M and N are strong bisimilar. M ≡S≡ N implies there exist some M1 and N1

s.t. M ≡ M1, N ≡ N1, and M1 S N1. From STRUCT rule, M α−→ M ′ implies
that there exists M ′1 s.t. M1

α−→M ′1 and M ′ ≡M ′1.
For the case α /∈ {G(x), z :G(x)}, using Def. 2 it can be inferred that M1 S N1

and M1
α−→ M ′1 imply that there exists N ′1 s.t. N1

α−→ N ′1 and M ′1 ≡S≡ N ′1.
M SN and M

α−→ M ′ imply that there exists N ′ s.t. N α−→ N ′, and N ′1 ≡
N ′ because N ≡ N1. M ′1 ≡S≡ N ′1 holds since M1 S N1 and S is a strong
bisimulation up to ≡. By transitivity of ≡, M ′ ≡S≡ N ′.

Similarly, it can be shown that for α ∈ {G(x), z :G(x)}, and for each y ∈
Pn, M ′{y/x} ≡S≡ N ′{y/x}.

From Def. 2 and M SN , it holds that fgn(M) = fgn(N).
Hence, ≡ S ≡ is a strong bisimulation. Therefore, M ≡ S ≡ N implies

M ∼ N . ut
An intermediate step in establishing that strong bisimulation equivalence

is a congruence for the ω-calculus is to prove it for ω-expressions in a normal
form, defined below. We use the term “guarded restrictions” in the context of
ω-expressions to mean restrictions that are preceded by an action prefix. Comment (2n)

Done. “can
the restrictions
at top level
be referred to
names that do
not occur in
the term? Oth-
erwise Lemma
7 becomes
false”

Definition 3 (Normal Form). An ω-expression is in normal form if all bound
names are distinct and all unguarded restrictions are at the top level with all
gnames preceding pnames.
We use Nnf to denote the set of ω-node expressions in normal form. The
structural congruence rules are extended by the following rules (as in [15]).

Comment
(2o) Done.
“I will put
the extended
structural
congruence
before the
proposition,
otherwise the
proposition is
false”

(νx)0 ≡ 0
(νx)P +Q ≡ (νx)(P +Q) if x /∈ fn(Q)
[y = z](νx)P ≡ (νx)[y = z]P if x 6= y and x 6= z

A(
⇀
y ) ≡ P{⇀y /⇀x} A(

⇀
x)

def
= P
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Proposition 5. Every ω-expression is structurally congruent to an ω-expression
in normal form.

Every ω-expression can be converted into a structurally congruent ω-expression
in normal form by renaming all bound names so that they are distinct and
using structural congruence rules to pull out all unguarded restrictions to the
outermost level.
The following lemma originally appeared in [15] and is lifted here to the ω-
calculus. Done:

Lemma 6
and lemma 7
should have
N ′ and M ′′
respectively
existentially
quantified.

Lemma 6. If M α−→M ′ and M ≡ N where N ∈ Nnf , then there exists N ′ ∈ N
such that by inference of no greater depth, N α−→ N ′ and M ′ ≡ N ′.
Proof Idea: The proof is by induction on the inference of M ≡ N and involves
examination of all the structural congruence rules. ut
Lemma 7. For every M,M ′ ∈ N, if M α−→M ′, then there exists an N ∈ Nnf

such that N ≡M and
(i) N is of the form (νg̃)(νx̃)N ′ where g̃ and x̃ are nonempty sets, and
(ii) there exists M ′′ ∈ N such that N α−→ M ′′, M ′′ ≡M ′, and N α−→ M ′′

can be derived without using STRUCT rules in the last two steps of the deriva-
tion.

Proof Sketch: Clearly, we can always find anN in normal form obeying condition
(i) that is equivalent to any given M ∈ N. Since N has an outermost (non-
empty) gname restriction and a non-empty pname restriction at the next level,
any derivation for a transition from N will involve at least two steps.

Consider the shortest derivation for N α−→M ′′ (shortest among all N equiv-
alent to M). For such a derivation, the last step cannot be an application of
STRUCT rule. To the contrary, assume that the last step in the derivation is
an application of the STRUCT rule. Then the last step is of the form:

N ≡M1 M1
α−→M2 M2 ≡M

N
α−→M

M1 cannot be in normal form; otherwise there is a shorter derivation. However,
by Lemma 6, there is a normal form equivalent to M1 that has at least as short a
derivation. Thus, there is a shorter derivation for N ′′ α−→M ′′ for some normal
form N ′′ ≡ M , which is a contradiction. Hence the last step in the shortest
derivation cannot be an application of the STRUCT rule.

This means that the last step in the shortest derivation must be due to
the outermost gname restriction. We can similarly argue that in the shortest
derivation, the next-to-last step is not an application of STRUCT rule. ut
Lemma 8. For all M1,M2 ∈ Nnf , i.e., M1, M2 are in normal form, the fol-
lowing hold:

(i) M1 ∼ M2 implies ∀x ∈ Pn : (νx)M1 ∼ (νx)M2;
(ii) M1 ∼ M2 implies ∀g ∈ Gn : (νg)M1 ∼ (νg)M2; and
(iii) M1 ∼ M2 implies ∀N ∈ Nnf : M1|N ∼ M2|N .

Proof Sketch. We give a sketch of the proof in what follows. The complete proof
is given in Appendix A.
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We show parts (i–iii) of the lemma simultaneously by considering the
set S = {((νg̃)(νx̃)(M1|N), (νg̃)(νx̃)(M2|N)) | M1 ∼ M2, g̃ ⊆ Gn, x̃ ⊆
Pn,M1,M2, N ∈ Nnf}. Following Lemma 4, it is sufficient to show that S
is a strong bisimulation upto ≡.

Note that if M1 ∼ M2 then fgn(M1) = fgn(M2), and hence
fgn((νg̃)(νx̃)(M1|N)) = fgn((νg̃)(νx̃)(M2|N)) for all g̃, x̃ and N . We then show
that every transition from (νg̃)(νx̃)(M1|N) can be matched by (νg̃)(νx̃)(M2|N)
by considering the derivations of transitions. Transitions for (νg̃)(νx̃)(M1|N)
can be derived by use of rules CLOSE, GNAME-RES1, GNAME-RES2, MO-
BILITY, PAR, UNI-COM, UNI-CLOSE, COM, COM-RES, UNI-OPEN, OPEN
and PNAME-RES. Only the last three steps of each transition derivation are
considered in the proof. Most importantly, following Lemma 7, we do not need Comment

(1i) Done.
Is reference
to Lemma 7,
possible since
according to
the definition
of set S it is
not known that
x̃ and g̃ are
non-empty?

to consider derivations that use STRUCT rules in the last two steps. From the
structural operational semantics, the last step of a derivation will be due to the
outermost (νg̃) in the expression, the next-to-last step will be due to the (νx̃)
following the outermost (νg̃), and the step before that will be due to the parallel
composition (M1|N). We omit in the proof the symmetric cases arising due to
the commutativity of the parallel operator ‘|’. This gives rise to 15 cases (owing
to the combinations of rules applied during the last three steps in a derivation).
For illustration, we show here one such case:
Case CLOSE, OPEN, COM:

(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃)(M ′1|N ′{x′/y}) given M1
Gx′

−→ M ′1 and

N
G′(y)−→ N ′. The derivation is as follows, where x̃1 = x̃ \ {x′}.

COM:
M1

Gx′−→ M ′1 N
G′(y)−→ N ′

M1|N
Gx′−→ M ′1|N ′{x′/y}

G ∩G′ 6= ∅

OPEN:
(νx̃)(M1|N)

(νx′)Gx′−→ (νx̃1)(M ′1|N ′{x′/y})CLOSE:
(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx′)(νx̃1)(M ′1|N ′{x′/y})

G \ g̃ = ∅

Since M1 ∼M2, M1
Gx′

−→M ′1 means that there is anM ′2 such thatM2
Gx′

−→M ′2
and M ′1 ∼M ′2. Moreover, there exist expressions M ′N1, M ′N2 and N ′N in normal
form such that M ′1 ≡ M ′N1, M ′2 ≡ M ′N2 and N ′{x′/y} ≡ N ′N . Now, since
M ′1 ∼M ′2, we know M ′N1 ∼M ′N2. Hence by construction of S, we can conclude
that the pair ( (νg̃)(νx′)(νx̃1)(M ′N1|N ′N ), (νg̃)(νx′)(νx̃1)(M ′N2|N ′N ) ) ∈ S, and
hence ((νg̃)(νx̃)(M ′1|N ′{x′/y}), (νg̃)(νx̃)(M ′2|N ′{x′/y})) ∈ ≡S≡.
By considering the 15 cases that cover all possible derivations, we conclude
that for every transition from (νg̃)(νx̃)(M1|N), there is a transition from
(νg̃)(νx̃)(M2|N) such that the destinations of the two transitions are related
by ≡S≡. Thus we establish that S is a strong bisimulation upto ≡. ut Comment

(2p) Done.
“it would be
interesting
to know also
what happens
by adding
behavior to
nodes”

Theorem 9 (Congruence). ∼ is a congruence for the ω-calculus; i.e., for all
M1,M2 ∈ N, the following hold:

(i) M1 ∼ M2 implies ∀x ∈ Pn : (νx)M1 ∼ (νx)M2;
(ii) M1 ∼ M2 implies ∀g ∈ Gn : (νg)M1 ∼ (νg)M2; and
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(iii) M1 ∼ M2 implies ∀N ∈ N : M1|N ∼ M2|N .

Proof: Let M1 ≡ MN1 and M2 ≡ MN2 , where M1,M2 ∈ N and MN1 ,MN2 ∈
Nnf . Then the following hold:

• M1 ∼ M2 implies MN1 ∼ MN2 (from Definition 2 and Lemma 4). MN1 ∼
MN2 implies ∀x ∈ Pn: (νx)MN1 ∼ (νx)MN2 (by Lemma 8), which in turn
implies (νx)M1 ∼ (νx)M2 (from Definition 2 and Lemma 4). Therefore,
whenever M1 ∼M2 then (νx)M1 ∼ (νx)M2.
• M1 ∼ M2 implies MN1 ∼ MN2 (from Definition 2 and Lemma 4). MN1 ∼
MN2 implies ∀g ∈ Gn: (νg)MN1 ∼ (νg)MN2 (by Lemma 8), which in turn
implies (νg)M1 ∼ (νg)M2 (from Definition 2 and Lemma 4). Therefore,
whenever M1 ∼M2 then (νg)M1 ∼ (νg)M2.
• M1 ∼ M2 implies MN1 ∼ MN2 (from Definition 2 and Lemma 4). MN1 ∼
MN2 implies for any N ∈ N, and N ≡ NN where, NN ∈ Nnf : (MN1 |NN ) ∼
(MN2 |NN ) (by Lemma 8), which in turn implies (M1|N) ∼ (M2|N) (from
Definition 2 and Lemma 4). Therefore, whenever M1 ∼M2 then (M1|N) ∼
(M2|N).

∼ is preserved by all node contexts. Hence, ∼ is a congruence . ut Added about
our choice for
late seman-
tics and late
bisimulation.

Recall that we defined a late semantics for transition systems in the ω-
calculus. Late semantics yields a more deterministic proof system for deriving
transitions (as compared to that of early semantics) because of the late in-
stantiation of an input name. Using the late semantics we defined a strong
late bisimulation. Late bisimulation is more natural for auotmated verification
tools because the late instantiation of names leads to more efficient checking of
bisimulation.

Early bisimulation can also be defined for the ω-calculus using the late se-
mantics. It turns out that early bisimulation equivalence is also a congruence
for the ω-calculus. The fact that nodes in the ω-calculus cannot be placed in the
context of an input or output prefix (only processes can be) makes the congru-
ence result hold for both late and early bisimulation equivalences. In contrast
for the π-calculus neither late nor early bisimulation equivalence is a congruence
due to input prefix. The congruence results for early bisimulation equivalence
in the ω-calculus can be established similar to that for the late bisimulation. A
lemma similar to Lemma 8 can be used to prove congrunce for early bisimula-
tion equivalence. In the proof of Lemma 8 given in Appendix A, all the cases
except case 9 will be identical to those for late bisimulation equivalence. Case 9
which includes derivations for input transition labels, will have a more elaborate
proof for early bisimulation equivalence to consider early instantiation of input
names.

Weak Bisimulation for the ω-Calculus. We can also define a notion of
weak bisimulation for the ω-calculus, in which τ - and µ-actions are treated as
unobservable. Its definition is similar to that for strong bisimulation (Defini-
tion 1) and is given in Definition 4. We also establish that weak bisimulation
equivalence, like its strong counterpart, is a congruence for the ω-calculus.

We use =⇒ to denote
(τ |µ)−→

∗
, i.e., zero or more τ - or µ-transitions, and bα=⇒
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to denote
(τ |µ)−→

∗
α−→(τ |µ)−→

∗
if α /∈ {τ, µ} and =⇒ otherwise.

Definition 4. A relation S ⊆ N × N is a weak simulation if M SN implies:
• fgn(M) = fgn(N), and
• whenever M α−→M ′ where bn(α) is fresh then:

– if α ∈ {G(x), z :G(x)}, there exists an N ′′ s.t. N=⇒ α−→ N ′′ and for all
y ∈ Pn, there exists an N ′ s.t. N ′′{y/x}=⇒N ′ and M ′{y/x}S N ′,

– if α /∈ {G(x), z :G(x)}, there exists an N ′ s.t. N bα=⇒ N ′ and M ′ S N ′.
S is a weak bisimulation if both S and S−1 are weak simulations. Nodes M and
N are weak bisimilar, written M ≈ N , if M SN , for some weak bisimulation
S.

Proposition 10. (i) ≈ is an equivalence relation; and (ii) ≈ is the largest weak
bisimulation.

Weak bisimulation equivalence is a congruence for the ω-calculus as formally
stated below. Comment

(2q) Done. “I
think you need
closure under
substitutions
for the case
of labels G(x)
and z:G(x),
which does not
hold neither
for pi-calculus
neither here.”

Theorem 11 (Congruence). ≈ is a congruence for the ω-calculus; i.e., for
all M1,M2 ∈ N, the following hold:

(i) M1 ≈ M2 implies ∀x ∈ Pn : (νx)M1 ≈ (νx)M2;
(ii) M1 ≈ M2 implies ∀g ∈ Gn : (νg)M1 ≈ (νg)M2; and
(iii) M1 ≈ M2 implies ∀N ∈ N : M1|N ≈ M2|N .

Proof Sketch. It suffices to show that S =
{((νg̃)(νx̃)(M1|N), (νg̃)(νx̃)(M2|N)) |M1 ≈ M2, g̃ ⊆ Gn, x̃ ⊆
Pn,M1,M2, N ∈ N} is a weak bisimulation.

M1 ≈ M2 implies that if M1
α−→ M ′1, where α /∈ {G(x), z : G(x)}, then

there exists an M ′2 such that M2
bα=⇒ M ′2 and M ′1 ≈ M ′2. M2

bα=⇒ M ′2 implies
that there exist M2a and M2b such that M2 =⇒ M2a, M2a

α−→ M2b, and
M2b =⇒M ′2.

It can be shown that if (νg̃)(νx̃)(M1|N) α−→ (νg̃)(νx̃)(M ′1|N ′), then
also (νg̃)(νx̃)(M2a|N) α−→ (νg̃)(νx̃)(M2b|N ′) which implies (νg̃)(M2|N) bα=⇒
(νg̃)(M ′2|N ′). We can similarly reason about the case when α ∈ {G(x), z :G(x)}.
Using these arguments along with the ideas used in the proof of congruence for
strong bisimulation equivalence, it can be shown that weak bisimulation equiv-
alence for ω-calculus is a congruence. ut
5. Symbolic Semantics for the ω-Calculus Comment

(1j) Done.
Better moti-
vate the need
for symbolic
semantics

Comment (2r)
Done. “It is
not clear to me
why do you
need symbolic
semantics for
mismatch. Is
it a standard
requirement?
Can you
comment on
this?”

We now define a symbolic transitional semantics for the ω-calculus. The sym-
bolic semantics binds names lazily and enables more efficient construction of
transition systems for verification. In particular, transition system for a node
expression is given using the traditional semantics (Section 3) assuming that the
free names in the expression are all distinct. Consequently, transition system
for an expression needs to be generated for each context in which the expression
is used. In contrast, the symbolic semantics can be used to generate a symbolic
transition system for each expression, and the transition system can then be
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Rule Name Rule Side Condition

MCAST
(bx.P ):G

true,Gx−→ P :G
G 6= ∅

RECV
(r(x).P ):G

true,G(x)−→ P :G
G 6= ∅

CHOICE P :G λ−→ P ′:G
(P +Q):G λ−→ P ′:G

MATCH P :G
C1,α−→ P ′:G

([x=y]P ):G
C1∧[x=y],α
−→ P ′:G

x, y /∈ bn(α)

MISMATCH P :G
C1,α−→ P ′:G

([x 6=y]P ):G
C1∧[x6=y],α
−→ P ′:G

x, y /∈ bn(α)

DEF
P{⇀y /⇀x}:G λ−→ P ′:G

A(
⇀
y ):G λ−→ P ′:G

A(
⇀
x)

def
= P

Table 8: Symbolic semantics for basic ω-node expressions.
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Rule Name Rule Side Condition

UNI-SEND
(zx.P ):G

true,z:Gx−→ P :G
G 6= ∅

UNI-RECV
(z(x).P ):G

true,z:G(x)−→ P :G
G 6= ∅

PROC-PAR P :G
C,α−→ P ′:G

(P |Q):G
C,α−→ (P ′ |Q):G

bn(α) ∩ fn(Q) = ∅

PROC-COM
P :G

C1,w:Gx
−→ P ′:G Q:G

C2,z:G(y)
−→ Q′:G

(P |Q):G
C1∧C2∧[w=z],τ

−→ (P ′ |Q′{x/y}):G

PROC-CLOSE
P :G

C1,(νx)w:Gx
−→ P ′:G Q:G

C2,z:G(x)
−→ Q′:G

(P |Q):G
C1∧C2∧[w=z],τ

−→ ((νx)(P ′ |Q′)):G

Table 9: Symbolic semantics for basic ω-node expressions.

applied to each context of the expression. The symbolic semantics also permits
us to introduce useful operators, such as a π-calculus-like mismatch operator to
the ω-calculus, and provide consice semantics to such operators.

We define a symbolic semantics for the ω-calculus in a manner similar to
that for the π-calculus [15]. The symbolic semantics is given in terms of a
symbolic labeled transition relation. Each symbolic transition has an associated
constraint representing the conditions under which that transition is enabled.
More specifically, symbolic transitions are of the form M

C,α−→ M ′, where C is
a constraint on the free pnames of M . Constraints are conjunctions of zero or
more atomic constraints, which are of the form true, false, and for pnames x
and y, x = y and x 6= y. An empty constraint is equivalent to true as are
constraints of the form x = x. Constraints of the form x 6= x are equivalent to
false. A conjunction containing false is equivalent to false. In the following, we
assume that constraints are maintained, using these equivalences, in simplified
form.

The inference rules for the symbolic semantics of the ω-calculus are given
in Tables 8-11. In the tables, we use λ to represent transition labels, i.e., pairs
(C,α). The rules also use a constraint expression of the form C − x, which
represents the constraint obtained from C by replacing all occurrences of x = y
by false and x 6= y by true. We do not need to consider cases such as x = x
since we assume that C is in simplified form.

Rule MATCH and the rules corresponding to binary (unicast) synchroniza-
tion (PROC-COM, UNI-COM, and UNI-CLOSE) generate equality constraints
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Rule Name Rule Side Condition

STRUCT N ≡M M
λ−→ M ′ M ′≡N ′

N
λ−→N ′

MOBILITY(I)
M |P :G

true,µ−→ M |P :G′

G′ 6= G,
G′ ⊆ G ∪ fgn(M),
I(M |P :G) =⇒

I(M |P :G′)

PAR(I) M
C,α−→ M ′

M |N C,α−→ M ′ |N
bn(α) ∩ fn(N) = ∅
I(M |N) =⇒ I(M ′ |N)

COM M
C1,Gx−→ M ′ N

C2,G
′(y)

−→ N ′

M |N
C1∧C2,Gx−→ M ′ |N ′{x/y}

G ∩ G′ 6= ∅

GNAME-RES1 M
C,α−→ M ′

(ν g)M
C,α\{g}−→ (ν g)M ′

α ∈ {τ, µ}, or
gn(α) \ {g} 6= ∅

GNAME-RES2 M
C,Gx−→ M ′

(ν g)M
C,τ−→ (ν g)M ′

G = {g}

Table 10: Symbolic semantics for structured ω-node expressions.

over pnames. In the non-symbolic case, we say that two nodes performing
unicast send and receive operations can synchronize only if they use identical
channel names. In contrast, in the symbolic case, we permit any two such op-
erations to synchronize and generate a condition that the two channels should
be the same (represented by the equality constraint between the two names).
Inequality constraints are introduced by the MISMATCH rule.

Consider the PNAME-RES rule, which says that (νx)M
C′,α−→ (νx)M ′ can

be inferred from M
C,α−→ M ′ if x is not a name in α. Note that while C is a

constraint on the free pnames of M , C ′ is a constraint on the free pnames of
(νx)M ; i.e., C ′ does not contain x. Consider an equality constraint of the form
x = y in C. This constraint will be unsatisfiable in the context of (νx) since x
is a restricted pname. Now consider a disequality constraint of the form x 6= y
in C. This constraint will be always satisfiable in the context of (νx) since x is
a restricted name and y is a free name. Hence we obtain C ′ as C − x: derived
from C by replacing all occurrences of x = y by false and x 6= y by true.

The equality constraints in a conjunction of constraints induce an equiva-
lence relation on the names appearing in the constraints. For a given constraint
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C, we use σC to denote a substitution that maps all names in the same equiv-
alence class to a representative name (chosen arbitrarily) of the class. We use
C1 . C2 to indicate that C1 implies C2.

We can establish a correspondence between the symbolic semantics and the
transitional semantics presented in Section 3, formalized as follows.

Theorem 12 (Correspondence). For all M in the mismatch-free fragment

of the ω-calculus: M
C,α−→M ′ iff MσC

ασC−→M ′σC .

This theorem can be proved by induction on the derivation length.
Symbolic Bisimulation for the ω-Calculus. We now proceed to define
symbolic bisimulation for the ω-calculus. As desired, the congruence results of
Section 4 can be established for this extension as well.

Definition 5. A relation S ⊆ N × N on nodes is a symbolic simulation if
M SN implies:
• fgn(M) = fgn(N), and

• whenever M
C1,α−→ M ′, where bn(α) is fresh, there exist N ′, β, and C2 s.t.

N
C2,β−→ N ′ and

– C1 . C2

– ασC1 ≡ βσC1

– M ′σC1 S N ′σC1 .
S is a symbolic bisimulation if both S and S−1 are symbolic simulations. Nodes
M and N are symbolic bisimilar, written M � N , if M SN for some symbolic
bisimulation S. Comment (1k)

Done. “You
should explain,
or at least
comment, how
the symbolic
bisimulation
relates to the
strong late
bisimulation.
For instance, I
would expect
that M1 and
M2 are strong
late bisimilar
iff M1 and M2
are symbolic
bisimilar when
M1 and M2
are mismatch-
free?”

Comment (1l)
Done. “Since
your case
studies involve
weak bisimula-
tion I assume
you have also
considered a
weak symbolic
bisimulation,
although you
don’t define
one, please
comment and
clarify.”

Proposition 13. (i) � is an equivalence relation; and (ii) � is the largest
symbolic bisimulation.

Symbolic bisimulation equivalence is a congruence for the ω-calculus, as formally
stated below.

Theorem 14 (Congruence for Symbolic Bisimulation for the ω-Calculus).
� is a congruence for the ω-calculus; i.e., for all M1,M2 ∈ N, the following
hold:

(i) M1 � M2 implies ∀x ∈ Pn : (νx)M1 � (νx)M2;
(ii) M1 � M2 implies ∀g ∈ Gn : (νg)M1 � (νg)M2; and
(iii) M1 � M2 implies ∀N ∈ N : M1|N � M2|N .

See Appendix B for a proof for the ω0-calculus; proofs for the extended calculi
follow along the same lines.

For mismatch-free fragment of the ω-calculus, the symbolic bisimulation and
the strong (late) bisimulation coincide. The notion of weak transitions used in
defining the weak bisimulation for the ω-calculus, can be lifted to the symbolic
semantics to define symbolic weak transitions. A weak version of symbolic
bisimulation can be defined over the symbolic weak transitions.
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Rule Name Rule Side Condition

UNI-COM M
C1,w:Gx
−→ M ′ N

C2,z:G
′(y)

−→ N ′

M |N
C1∧C2∧[w=z],τ

−→ M ′ |N ′{x/y}
G ∩ G′ 6= ∅

UNI-OPEN M
C,z:Gx−→ M ′

(νx)M
C−x,(νx)z:Gx−→ M ′

x 6= z

UNI-CLOSE M
C1,(νx)w:Gx
−→ M ′ N

C2,z:G
′(x)

−→ N ′

M |N
C1∧C2∧[w=z],τ

−→ (νx)(M ′ |N ′)
G ∩ G′ 6= ∅

OPEN M
C,Gx−→ M ′

(νx)M
C−x,(νx)Gx−→ M ′

COM-RES M
C1,(νx)Gx−→ M ′ N

C2,G
′(x)

−→ N ′

M |N
C1∧C2,(νx)Gx−→ M ′ |N ′

G ∩ G′ 6= ∅

CLOSE M
C,(νx)Gx−→ M ′

(ν g)M
C,τ−→ (ν g)(νx)M ′

G = {g}

PNAME-RES M
C,α−→ M ′

(νx)M
C−x,α−→ (νx)M ′

x /∈ n(α)

Table 11: Symbolic semantics for structured ω-node expressions.
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6. Towards Verification of ω-Calculus Specifications
In the section, we present two developments that yield a a prototype system for
the specification and verification of ω-calculus specifications. First, we extend
the calculus with constructs that simplify the specification of practical MANET
protocols. Secondly, we show how the transitional semantics of the ω-calculus
can be directly encoded in Prolog, in order to generate the transition system
corresponding to a given specification.
Syntactic extensions to the ω-calculus. The ω-calculus provides the ba-
sic mechanisms needed to model MANETs. In order to make specifications
more concise, we extend the calculus to a polyadic version (along the lines of
the polyadic π-calculus [11]) and add support for data types such as bounded
integers and structured terms. The matching prefix is extended to include equal-
ity over these types. Terms composed of these types can be used as values in
a unicast or local broadcast transmission, or as actual parameters in a pro-
cess invocation. We also introduce set-valued types and permit the use of a
membership operation (denoted by ‘∈’) in a match. Note that finite sets can
be represented by finite terms, and the test for set membership can be imple-
mented by a sum of equality tests. Hence the addition of set-valued data can
be regarded as syntactic sugar and does not affect the proofs of the properties
of the calculus given in Section 4. The modifications to the theory developed in
the preceding sections to account for these syntactic extensions to the calculus
are straightforward.
Encoding the transitional semantics in Prolog. Following the Prolog
encoding of the semantics of value-passing CCS and the π-calculus [18, 24]
using the XSB tabled logic-programming system [21], we encoded the symbolic
transitional semantics of the ω-calculus using Prolog rules. Each inference rule
of the semantics is represented as a rule for the predicate trans, which evaluates
the transition relation of an ω-calculus model.

In our encoding, each ω-calculus expression is represented as a Prolog term.
For instance, a basic node expression of the form P : G is represented by the
term basic(P, G), where P and G are the Prolog terms representing the process
expression P and set of group names G, respectively. The key aspect of our
encoding is to represent names in the ω calculus—pnames as well as gnames—
as Prolog variables. This representation was used for the π-calculus in our earlier
work [24].

Using this representation, several operations such as renaming of bound
names need not be implemented by our encoding explicitly; the way the de-
ductive engine of Prolog handles logical variables implements all the necessary
name manipulation. For instance, our encoding of the transitional semantics
does not have to handle substitutions to names explicitly (which arise in the
application of process names). Moreover, it is not necessary to encode alpha-
renaming; bound names are implicitly renamed when clause instances are picked
by Prolog’s resolution step (which renames all variables in the selected program
clause). Finally, when encoding the symbolic semantics of ω-calculus, we ex-
plicitly represent only the disequality constraints on transitions (i.e., those of
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% MCAST

trans(basic(pref(bcast(X),PExp),Gs), [], bcast(Gs,X), basic(PExp,Gs)).

% RECV

trans(basic(pref(recv(X),PExp),Gs), [], brecv(Gs,X), basic(PExp,Gs)).

% UNI-SEND

trans(basic(pref(out(Z,X),PExp),Gs), [], unisend(Z,Gs,X), basic(PExp,Gs)).

% COM

trans(par(M1, N1), C, bcast(Gs1, X), par(M2, N2)) :-

trans(M1, C1, bcast(Gs1, X), M2),

trans(N1, C2, brecv(Gs2, X), N2),

non_disjoint(Gs1, Gs2), % sets Gs1 and Gs2 have common gname(s)

and(C1, C2, C).

% GNAME-RES2

trans(nu_g(G, M1), C, tau, nu_g(G, M2)) :-

trans(M1, C, bcast(Gs, X), M2),

Gs == [G].

% UNI-OPEN

trans(nu(X, M1), C, unires(Z, Gs, X), M2) :-

trans(M1, C1, unisend(Z, Gs, Y), M2),

X == Y, Z \== X,

remove_from_constraint(C1, X, C). % C = C1-X

Figure 4: Encoding of selected symbolic transition rules in Prolog.

the form x 6= y); the equality constraints are processed implicitly using Prolog’s
unification mechanism.

In our encoding, each symbolic transition is represented by an instance of a
4-ary prolog predicate trans. In particular, a symbolic transition of the form
M1

C,α−→ M2 is represented by trans(M1, C, α, M2). The derivation of a
symbolic transition from the semantic rules is realized by encoding the rules as
clauses defining trans, and using query evaluation in Prolog.

Figure 6 shows the Prolog encoding of selected symbolic transition rules of
the ω-calculus. Observe that the encoding of the MCAST, RECV and UNI-
SEND rules is straightforward. For these rules, the constraint true is repre-
sented by the empty list ‘[]’. The encoding of COM rule is also direct. Predi-
cate non disjoint is used to test for non-disjointness of two sets (represented as
lists) and predicate and is used to compute the conjunction of two constraints.

Note that in a broadcast-receive transition of the form M
C,G(y)−→ M ′, the name

y is a bound name of M . In the symbolic semantics, we assume that before
applying the COM rule, y is renamed to the name received in COM. Such alpha-
renaming corresponds to an application of the STRUCT rule. In our encoding,
we first ensure that all bound names are mapped to distinct Prolog variables
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and are also distinct from free names. We then ensure that the receiving and
sent names are identical by unifying the corresponding Prolog variables.

The GNAME-RES2 rule is applicable only when the set of group names
involved in the broadcast action (Gs in our encoding) is a singleton set containing
only G, the restricted group name. Since group names are encoded as variables,
this check has to be performed by testing if Gs is identical to [G]: i.e. whether
for all substitutions θ the two terms Gsθ and [G]θ are the same. This test
is accomplished using the “==” operator in Prolog. Note that if we had used
“=” instead, we would have incorrectly unified Gs with [G], thereby possibly
treating two distinct group names as the same.

Finally, consider the encoding of UNI-OPEN. This rule is applicable when
the name sent by unicast is a restricted name. In the encoding, we apply this
rule by first generating transitions from M1, and then checking if the name Y sent
by unicast is same as the restricted name X. As in the case of GNAME-RES2,
we use “==” to test whether two names are identical. This rule also uses “\==”
to test whether two names are not identical (i.e. distinct).

The other symbolic transition rules of the ω-calculus are encoded similarly.
As remarked earlier, the key aspect of the encoding is the representation of
pnames and gnames by Prolog variables, following [24]. The soundness and
completeness of our encoding can be established along the same lines as in [24].

7. Modeling and Verifying MANET Protocols using the ω-Calculus
We used our Prolog encoding of the semantics of the ω-calculus to de-
velop and analyze formal ω-calculus models of a leader-election algorithm for
MANETs [20] and the AODV routing protocol [16]. The main purpose of these Added few lines

case studies is to show that models of realistic MANET protocols can be con-
structed in the ω-calculus, and the semantics of these encodings, in terms of
labeled transition systems, can be effectively computed. We use the derived
transition systems to verify reachability properties of these protocols.

7.1. Case Study 1: A Leader Election Protocol for MANETs

The algorithm of [20] elects the node with the maximum id among a set of
connected nodes as the leader of the connected component. A node that ini-
tiates a leader election sends an election message to its neighboring nodes.
The recipients of the election message mark the node from which they received Comment

(2s) Done.
“what happens
if there are
cycles? Please
specify better”

the message as their parent and send the election message to their neighbors,
thereby building a spanning tree with the initiator as the root. After sending
an election message, a node awaits acknowledgements from its children in the
spanning tree. A child node n sends its parent an acknowledgement ack with
the maximum id in the spanning tree rooted at n. The maximum id in the span-
ning tree is propagated up the tree to the root. The root node then announces
the leader to all the nodes in its spanning tree by sending a leader message.
To keep track of the neighbors of a node, probe and reply messages are used
periodically. When a node discovers that it is disconnected from its leader, it
initiates an election process. The flow of election, ack, and leader messages is
depicted in Fig. 5, where the node with id 1 is the initiator.
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Figure 5: Message flow in leader election protocol

Specification of the leader election protocol in the ω-calculus. We
model a network as the parallel composition of basic ω-nodes, whose process
interfaces reflect the initial topology of the network. Each node runs an instance
of process node(id, chan, init, elec, lid, pChan) defined in Fig. 6. The meaning
of this process’s parameters is the following: id is the node identifier; chan is
an input channel; init indicates whether the node initiates the election process;
elec indicates whether the node is part of the election process; lid represents
the node’s knowledge of the leader id; and pChan is the parent’s input channel.
These parameters are represented by pnames and integers.

A node may receive election, ack, and leader messages, representing an elec-
tion message, an acknowledgement to the election process, and a leader message,
respectively. We need not consider probe and reply messages in our model be-
cause a node can broadcast to its neighbors without knowing its neighbors, and
the effect of disconnection between nodes can be modeled using the choice op-
erator. The ω-calculus model of the protocol is given in Fig. 6. The messages,
their parameters, and the parameters used in the definitions appearing in Fig. 6
are explained below:
Messages: election(sndrChan); ack(maxid); leader(maxid).
Message parameters: sndrChan: input channel of the sender of the message;
maxid: maximum id seen so far by the sender of the message.
Definition parameters: id: id of the node, chan: input channel of the node;
init: 1 if node initiated the election process, 0 otherwise; elec: 1 if node is
participating in the election process, 0 otherwise; lid: node’s knowledge of the
leader id; pChan: input channel of the node’s parent in the spanning tree;
sndrChan: input channel of the sender node of the message; maxid: maximum
id seen so far by the node.

An example specification of an eight-node network running the leader elec-
tion protocol of Fig. 6 is given in Fig. 7. The initial network topology is the
same as that of the network of Fig. 5. The node with id 1 (initElection) is
designated to be the initiator of the leader-election process. The last parameter
none in the process invocations indicates that the parent channel is initially not
known to the processes. Pls See: added

‘On some com-
putation path
in the transi-
tion system’ to
the property
to address the
comment 2(t).

Verifying the leader election protocol model. Using our implementa-
tion of the transitional semantics of the ω-calculus, we verified the following
correctness property for the leader election protocol for MANETs: On some
computation path in the transition system, eventually a node with the maximum
id in a connected component is elected as the leader of the component, and every
node connected to it (via one or more hops) learns about it.

Note that the reachability property stated above does not guarantee that a
leader will be always computed. In fact, due to lossy communication, there will
be paths in the transition system where a leader may never be elected; hence
the correctness condition can be shown only using fairness assumptions, e.g.
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/* A node may receive an election or a leader message. */

node(id, chan, init, elec, lid, pChan)
def
=

r(election(sndrChan)). processElection(id, chan, init, 1, lid, pChan, sndrChan)
+ r(leader(maxid)). processLeader(id, chan, init, elec, lid, pChan,maxid)

/* Node that initiates election process broadcasts election msg and awaits ack in
state awaitAck. */

initElection(id, chan, init, elec, lid, pChan)
def
=

b election(chan). awaitAck(id, chan, init, 1, id, none)

/* When a node receives an election message it reaches the processElection state
where it broadcasts the election message and goes to state awaitAck. */

processElection(id, chan, init, elec, lid, pChan, sndrChan)
def
=

b election(chan). awaitAck(id, chan, init, elec, lid, sndrChan)

/* A node in awaitAck state may receive an ack and reach processAck state or it
may nondeterministically conclude that it has received ack from all its children in
the spanning tree. In the latter case, it declares the leader by broadcasting a leader
message if it is the initiator. Otherwise, it sends (unicast) an ack to its parent node
(pChan) with the maximum id in the spanning tree rooted at this node. */

awaitAck(id, chan, init, elec, lid, pChan)
def
=

chan(ack(maxid)). processAck(id, chan, init, elec, lid, pChan,maxid)

+ [init = 1]b leader(lid). node(id, chan, init, 0, lid, pChan)

+ [init = 0] pChanack(id, lid). node(id, chan, init, elec, lid, pChan)

/* On receiving an ack, a node stores the maximum of the ids received in ack
messages. */

processAck(id, chan, init, elec, lid, pChan,maxid)
def
=

[maxid >= lid] awaitAck(id, chan, init, elec,maxid, pChan)
+ [maxid < lid] awaitAck(id, chan, init, elec, lid, pChan)

/* On receiving a leader message, a node sets its lid parameter to the maxid in
the leader message. If maxid is less than lid, then either the node was not part of
the election process or did not report ack to its parent node (probably because it
moved away from its parent). In either case, it broadcasts its lid as the maximum
id. */

processLeader(id, chan, init, elec, lid, pChan, sndrChan,maxid)
def
=

[maxid = lid](

[elec = 1] b leader(maxid). node(id, chan, init, 0, lid, pChan)
+ [elec = 0] node(id, chan, init, 0, lid, pChan)

)

+ [maxid > lid] b leader(maxid). node(id, chan, init, 0,maxid, pChan)

+ [maxid < lid] b leader(lid). node(id, chan, init, 0, lid, pChan)

Figure 6: ω-calculus encoding of the leader election protocol for MANETs.
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M = (νa)(νb)(νc)(νd)(νe)(νh)(νi)(νj)(νg1)(νg2)(νg3)(νg4)(νg5)(νg6)(νg7)
(initElection(1, a, 1, 0, 1, none) : {g1, g2}
|node(2, b, 0, 0, 2, none) : {g1, g3, g4}
|node(3, c, 0, 0, 3, none) : {g4}
|node(4, d, 0, 0, 4, none) : {g2, g5}
|node(5, e, 0, 0, 5, none) : {g3}
|node(6, h, 0, 0, 6, none) : {g5, g6, g7}
|node(7, i, 0, 0, 7, none) : {g6}
|node(8, j, 0, 0, 8, none) : {g7})

Figure 7: ω-calculus specification of leader election protocol for an 8-node tree-structured
network.

Nodes Tree Ring
States Transitions Time(sec) States Transitions Time(sec)

5 77 96 0.97 98 118 1.22
6 168 223 3.35 212 281 4.45
7 300 455 11.55 453 664 17.58
8 663 1073 45.85 952 1560 71.22

Table 12: Verification statistics for ω-calculus model of leader election protocol.

that message loss does not happen infinitely often. Our implementation verifies
reachability properties without fairness conditions, and hence we only verify the
weaker property stated above. Comment 2(t)

Done. “if the
choice is non-
deterministic,
what guaran-
tees that all
acks are ever
considered.
Also, since
nodes may
not receive
messages even
if they are
connected it
is not clear to
me how the
property at
page 29 may
be true: simply
the system
can lose all
the messages.
Do you have
some fairness
assumptions? ”

The verification was performed on models having tree- and ring-structured
initial topologies. A distinguished node (with maximum id, for example, node 8
marked ‘M’ for “mobile” in Fig. 5) was free to move as long as the network
remained connected. A mobility invariant was used to constrain the other nodes
to remain connected to their neighbors. For verification purposes, we added a
node final to the model that remains connected to all other nodes. A node, upon
learning its leader, forwards this information to node final. After final receives
messages from every other node with their leader ids equal to the maximum id
in the network, it performs the observable action action(leader(MaxId)). The

Comment (2u)
Done. “Say
more about
the bisimilarity
checker”.

closed ω-specification of the protocol was checked for weak bisimilarity with an
ω-specification that emits action(leader(MaxId)) as the only observable action.
Weak bisimilarity between these two specifications indicates that the correctness
property is true of the system.

Our Prolog encoding of the weak bisimulation checker for the ω-calculus
includes the weak version of the transition relation, abstracting τ - and µ-
transitions, encoded as the dtrans predicate. The predicate nb(S1, S2) checks
if two ω-specifications S1 and S2 are weak bisimilar.

We verified the correctness property for networks containing 5 through 8
nodes. Table 12 lists the states, transitions and time (in seconds) it took our
Prolog implementation of the calculus and weak bisimulation checker to verify
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the property for networks with initial tree and ring topologies.

7.2. Case Study 2: The AODV Routing Protocol

The Ad Hoc On-Demand Distance Vector (AODV) protocol [16] is a routing pro-
tocol that discovers and maintains point-to-point routes in a MANET. Route
discovery is initiated by a node on demand. If a node (source) does not know a
route to a destination node to which it wants to route a packet, it initiates route
discovery by locally broadcasting a route request. On receiving a route request,
if a node knows a route to the destination node or is itself the destination, it
responds to the sender node with a route reply, otherwise it forwards (locally
broadcasts) the route request. Each route request is marked with a broadcast-id,
assigned by the originator node of the request. The broadcast-id and the origi-
nator node’s id uniquely define a route request, and are used to avoid processing
of duplicate requests. The broadcast-id is incremented by a node everytime it
originates a route request. Sequence numbers are used with route requests and
route replies to maintain freshness of routes. Route error messages are used to
convey invalidation of routes due to staleness of routes, indicated by a lower
sequence number.
Specification of the AODV Protocol in the ω-calculus. We model
a MANET as the parallel composition of basic ω-nodes. The interfaces of all
nodes are initialized in accordance with the initial topology of the network.
Each node in the network runs an instance of process aodv defined in Fig. 8.
Process aodv has the following parameters: process identifier id (a pname),
broadcast id bid , sequence number sqn (for messages and route requests), route
table rt (a list of tuples), set of previously seen route requests rreqs (a list of
tuples), and set of known destinations kD (a list of pnames). These parameters
record the state of a node which may change as the protocol runs and the
network evolves. An aodv process can receive a message either destined for it,
or a message locally broadcasted by a neighboring node. A node may receive
data, rreq, rrep, rerr messages representing data packet, route request, route
reply and route invalidation, respectively. On receiving a message, the protocol
may modify its state and/or broadcast a message. The aodv process invokes
message handlers, defined using ω-process definitions, to process the received
messages. Reception of data, rreq, rrep, and rerr (parameterized) messages is
handled by processes defined by pktP , rreqP , rrepP , and rerrP , respectively
(See Fig. 8). A route table rt is a set of tuples with each tuple containing
id, sequence number, hop count, next hop, active neighbors, and route validity
for each known destination node. Data manipulation code for updating route
table (rt to nrt), extracting next hop (y), sequence number (dsqn), and active
neighbors (dactn) for a destination, from the route table, and incrementing
sequence number, broadcast id, and hop count is omitted from the encoding
given in Fig. 8.

On receiving a data packet, a node accepts it if the packet is destined for
it, otherwise if it knows the route to the destination, it sends the packet to the
next hop towards the destination node, else it initiates a route discovery for
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aodv(id, bid, sqn, rt, rreqs, kD)
def
=

r(msg). ([msg = pkt(data, did, sndrid)]
pktP (data, did, sndrid, id, bid, sqn, rt, rreqs, kD)

+ [msg = rreq(hops,mbid, did, dsqn, srcid, ssqn, sndrid)]
rreqP (hops,mbid, did, dsqn, srcid, ssqn, sndrid, id, bid, sqn, rt, rreqs, kD)

+ [msg = rrep(hops, did, dsqn, srcid, sndrid)]
rrepP (hops, did, dsqn, srcid, sndrid, id, bid, sqn, rt, rreqs, kD)

+ [msg = rerr(did, dsqn, sndrid)]
rerrP (did, dsqn, sndrid, id, bid, sqn, rt, rreqs, kD) )

pktP (data, did, sndrid, id, bid, sqn, rt, rreqs, kD)
def
=

[did = id] aodv(id, bid, sqn, rt, rreqs, kD)
+ [did 6= id] /* y is the next hop node towards did. nrt is obtained by
adding sndrid to actn of did in rt */
( [did ∈ kD] y pkt(data, did, id). aodv(id, bid, sqn, nrt, rreqs, kD)

+ /* newbid is bid + 1 and rdsqn is the sequence number for did in rt */

[did /∈ kD] b rreq(0, newbid, did, rdsqn, id, sqn, id).
aodv(id, newbid, sqn, rt, rreqs, kD) )

rreqP (hops,mbid, did, dsqn, srcid, ssqn, sndrid, id, bid, sqn, rt, rreqs, kD)
def
=

[(srcid,mbid) ∈ rreqs] aodv(id, bid, sqn, rt, rreqs, kD)
+ [(srcid,mbid) /∈ rreqs] (

/* y is the next hop node towards srcid. maxsqn is the maximum of
sqn and dsqn. nrt is obtained by updating the route to srcid in rt. */

[did = id] b rrep(y, 0, id,maxsqn, srcid, id).
aodv(id, bid,maxsqn, nrt, rreqs, kD)

+ /* dhops is the number of hops towards did in rt. rsqn is the
sequence number for did. nhops is hops + 1. */

[did 6= id] ( [did ∈ kD] b rrep(y, dhops, did, rsqn, srcid, id).
aodv(id, bid, sqn, nrt, rreqs, kD)

+ [did /∈ kD] b rreq(nhops,mbid, did, dsqn, srcid, ssqn).
aodv(id, bid, sqn, nrt, rreqs, kD) ) )

rrepP (hops, did, dsqn, srcid, sndrid, id, bid, sqn, rt, rreqs, kD)
def
=

/* nrt is obtained by updating the route to did in rt. */
[srcid = id] aodv(id, bid, sqn, nrt, rreqs, kD)
+ /* y is the next hop node towards srcid. nhops is hops + 1. */
[srcid 6= id] y rrep(nhops, did, dsqn, srcid, id). aodv(id, bid, sqn, nrt, rreqs, kD)

rerrP (did, dsqn, sndrid, id, bid, sqn, rt, rreqs, kD)
def
=

[did ∈ kD] /* dactn are active neighbors for did in rt.
nrt is obtained by invalidating the route to did. */
notifyAllRErr(dactn, rerr(did, dqsn, id), id, bid, sqn, nrt, rreqs, kD)

+ [did /∈ kD] aodv(id, bid, sqn, rt, rreqs, kD)

notifyAllRErr(actn,msg, id, bid, sqn, rt, rreqs, kD)
def
=

[actn = []] aodv(id, bid, sqn, rt, rreqs, kD)
+ [actn 6= []] notifyRErr(actn,msg, id, bid, sqn, rt, rreqs, kD)

notifyRErr(actn,msg, id, bid, sqn, rt, rreqs, kD)
def
=

/* x is an element in actn and remactn are remaining elements of actn */
xmsg. notifyAllRErr(remactn,msg, id, bid, sqn, rt, rreqs, kD)

Figure 8: Encoding of the AODV protocol in the ω-calculus.
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the destination node. On receiving a route request rreq, a node replies with
rrep, if it knows a route to the destination, otherwise it forwards the rreq via
local broadcast. Each such request is associated with a broadcast id (mbid) set
by the originator (identified by srcid) of the message. A route request rreq is
discarded if it had been received previously ((srcid,mbid) ∈ rreqs). Otherwise,
the route table is updated (to nrt) with a route to node srcid. If the node itself
is the destination node (identified by did) to which the route is sought, or if the
node knows a route to the destination (did ∈ kD), a route-reply message (rrep)
is sent. Otherwise, the node locally broadcasts the rreq message (via action
b) with the hop count (hops) incremented by one (to nhops). On receiving a
route reply rrep, a node updates its route table accordingly. If the node itself
is not the initiator of the corresponding rreq, it forwards the rrep to the next
hop towards the initiator node. Detection of a change in network topology is
modeled using non-determinism. On detection of a change in network topology,
a node invalidates the route table entry for the disconnected neighbor node, and
sends a route error rerr to the affected nodes.
Verifying the AODV protocol model. Using our Prolog encoding of the
transitional semantics of the ω-calculus, we verified a simplified version of the
AODV routing protocol. The simplified version ignores sequence numbers and
uses two distinguished nodes as the source and destination nodes for the route
discovery process. Broadcast id (bid) and hop count (hops) are modeled as
bounded integers. Routes get invalidated due to node movement or link failures
along the route. We verified following properties:
• deadlock-freedom: There is no state in the model without an outgoing tran-

sition. Pls see:
Modified route-
found to a
reachability
property to
address com-
ments 1(m)
and 2(v).

• route-found: As long as there exists a path from a source node to a destina-
tion node during route detection, on some computation path in the transition
system it will eventually be detected.

Comment 1(m)
Done. Why
does a tran-
sition labeled
with the action
routeFound
guarantee a
route will
be eventu-
ally found, it
sounds more
that there is a
possibility to
find a route,
which is a
much weaker
requirment?
Clarify.

Comment 2(v)
Done. ‘route-
found’: “how
can this be pos-
sible, if mes-
sages may be
lost?”

It should be noted that, similar to the leader-election property, the route-found
property is a weaker form of the correctness condition that a route is always
found provided node mobility and message loss do not occur infinitely often.

The verification was performed on models with initial line topologies, with
the destination node being 1-, 2-, 3-hops away from the source node in networks
with 2, 3, and 4 nodes, respectively. The network topology was allowed to change
freely during verification. The deadlock-freedom property involved searching for
states with no transitions. In the model, when a node has found a route it
performs an external action action(routeFound). The route-found property was
verified by checking for reachability of a transition labeled action(routeFound)
from the start state of the model. Table 13 lists the number of states and
transitions generated using our XSB-based implementation of the ω-calculus
for network models containing 2, 3 and 4 nodes, as well as the time (in seconds)
it took to verify deadlock-freedom and route-found properties.
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Nodes Deadlock Freedom Route Found
States Transitions Time(sec) States Transitions Time(sec)

2 8 16 0.07 5 10 0.06
3 30 78 0.25 15 39 0.16
4 380 1440 4.56 191 732 2.74

Table 13: Verification statistics for ω-calculus model of AODV protocol.

7.3. Discussion

We consider our current implementation of the calculus to be a prototype. Its
main purpose is to demonstrate the feasibility and straightforwardness of im-
plementing the calculus in a tabled logic-programming system. As future work,
we plan to develop an optimizing compiler for the ω-calculus, along the lines of
one for the π-calculus implemented in the MMC model checker [23]. As these
prior results demonstrate, this should significantly improve the performance of
our implementation.

We observed a number of benefits in using the ω-calculus to model the leader
election protocol for MANETs and the AODV routing protocol. (1) Neither of
these protocols assumes reliable communication. This fits well with the ω-
calculus semantics which models lossy broadcast. (2) The concise and modular
nature of our specifications is a direct consequence of the calculus’s basic fea- Comment (2w)

Done. Changed
‘direction’ to
‘direct’.

tures, including separation of control behavior (processes) from neighborhood
information (interfaces), and modeling support for unicast, local broadcast, and
mobility. (3) The mobility constraints imposed on the leader election protocol
model (Section 7.1) are specified independently of the control logic using a mo-
bility invariant. For the case at hand, the invariant dictates that all nodes other
than a distinguished node (node 8 in Fig. 5) remain connected to their initial
neighbors. Thus, during protocol execution, process interfaces may change at
will as long as the mobility invariant is maintained. (4) Our specifications of the
leader-election protocol and the AODV protocol are given in the finite-control
sub-calculus of the ω-calculus, thereby rendering them amenable to automatic
verification; see also Theorem 2.

8. Related Work
Several process calculi have recently been developed for wireless and mobile ad
hoc networks. The closest to our work are CBS# [13], CWS [10], CMN [9], and
CMAN [6]. These calculi provide local broadcast and separate control behavior
from neighborhood information. However, there are significant differences be-
tween these calculi and ours, which we now discuss. CBS# [13], based on the
CBS process algebra of [17], supports a notion of located processes. Node con-
nectivity information is given independently of a system specification in terms
of node connectivity graphs. The effect of mobility is achieved by nondetermin-
istically choosing a node connectivity graph from a family of such graphs when
a transition is derived. In contrast, the ω-calculus offers a single, integrated lan-
guage for specifying control behavior and connectivity information, and permits
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reasoning about changes to connectivity information within the calculus itself.
In CWS [10], node location and transmission range are a part of the node

syntax. Node movement is not supported, although the authors suggest the
addition of primitives for this feature. CWS is well-suited for modeling device-
level behaviors (e.g., interference due to simultaneous transmissions) in wireless
systems.

In CMN [9], a MANET node is a named, located sequential process that can
broadcast within a specific transmission radius. Both the location and trans-
mission radius are values in a physical coordinate system. Nodes are designated
as mobile or stationary, and those of the former kind can move to an arbitrary
location (resulting in a tau-transition). Bisimulation as defined for CMN is
based on a notion of physically located observers. A calculus based on physical
locations may pose problems for model checking as a model’s state space would
be infinite if locations are drawn from a real coordinate system.

In CMAN [6], each node is associated with a specific location. Furthermore,
each node n is annotated by a connection set : the set of locations of nodes to
which n is connected. Connections sets thus determine the network topology.
Synchronous local broadcast is the sole communication primitive. The connec-
tion set of a node explicitly identifies the node’s neighbors. Consequently, when
a node moves, its neighbors actively participate by removing from (or adding to)
their connection sets the location of the moving node. This explicit handling of
connection information affects the modularity of the calculus’s semantics (the
definition of bisimulation, in particular), and may preclude reasoning about
open systems. In contrast, in the ω-calculus, neighborhood information is im-
plicitly maintained using groups, thereby permitting us to define bisimulation
relations in a natural way.

Other calculi for mobile processes that have been proposed in the literature
include the π-calculus [12], HOBS [14], distributed process calculus Dπ [8], and
the ambient calculus [3]. These calculi do not support primitive for broadcast.
Some calculi that support broadcast as a primitive are the bπ-calculus [5] and
PRISMA [2]. The bπ-calculus adds broadcast communication as a primitive
to the π-calculus and provides same mechanism for mobility as the π-calculus.
PRISMA is a parametric calculus that can be instantiated with different in-
teraction policies, and provides a uniform framework for expressing different
synchronization models such as unicast and broadcast. Mobility in PRISMA
is provided by name-passing as in the π-calculus. These calculi could be used
to model MANETs but not as in a concise and natural fashion as with the
ω-calculus because they intermix specification of network structure with the
specification of the control behavior of a protocol. Comment (2x)

Done. Add
about PRISMA
TCS 2008 pa-
per. Also in-
cluded discus-
sion about bpi-
calculus in this
para.

9. Conclusions and Future Work
The ω-calculus, introduced in this paper, is a conservative extension of the
π-calculus that permits succinct and high-level encodings of MANET systems
and protocols. The salient aspect of the calculus is its group-based support for
local broadcast communication over dynamically changing network topologies.
We have shown that reachability of system states is decidable for the finite-
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control fragment of the calculus, and late bisimulation equivalence and its weak
counterpart are a congruence. Commented

the symbolic
semantics
part in the
conclusion.

We illustrated the practical utility of the ω-calculus by using it to develop
models of a leader-election algorithm for MANETS [20] and the AODV rout-
ing protocol [16]. We also showed how the calculus’s operational semantics can
be readily encoded in the XSB tabled logic-programming system, thereby per-
mitting the generation of transition systems from ω-calculus specifications. We
used this feature to implement a weak bisimulation checker for the ω-calculus,
which we then used to verify certain key properties of our encodings of the leader
election algorithm of [20] and the AODV routing protocol [16].

As mentioned in Section 7, future work involves the development of an op-
timizing compiler for the ω-calculus, along the lines of one for the π-calculus
implemented in the MMC model checker [23]. MMC exploits the use of binary
synchronization in the π-calculus, generating specialized rules from which the
transition system can be derived efficiently at model-checking time. The MMC
compiler enables MMC to match the efficiency of model checkers for non-mobile
systems. Extending such compilation techniques to broadcast and multicast
communication is an open problem. Another avenue of future work is the de-
velopment of a compositional model checker for the ω-calculus, such as those Comment 2(y)

Done. Changed
‘such as of
those’ to ‘such
as those’.

for CCS and the π-calculus [1, 22]. A model checker of this nature would per-
mit verification of infinite families of MANETs. Finally, the ω-calculus models
bidirectional connectivity between nodes. Since certain MANET protocols rely
on unidirectional node connections, it would be fruitful to extend the calculus
with such a modeling capability.
Acknowledgements. We would like to thank the anonymous reviewers for
their valuable comments which substantially helped to improve the quality of the
paper. Research supported in part by NSF grants CCR-0205376, CNS-0509230,
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Appendix

A. Proof of Lemma 8

Lemma 8. For all nodes M1,M2 ∈ Nnf , i.e., M1, M2 are in normal form, the
following hold:

(i) M1 ∼ M2 implies ∀x ∈ Pn : (νx)M1 ∼ (νx)M2;
(ii) M1 ∼ M2 implies ∀g ∈ Gn : (νg)M1 ∼ (νg)M2; and
(iii) M1 ∼ M2 implies ∀N ∈ Nnf : M1|N ∼ M2|N .

Proof. We show parts (i–iii) of the lemma simultaneously by considering
the set S = {((νg̃)(νx̃)(M1|N), (νg̃)(νx̃)(M2|N)) | M1 ∼ M2, g̃ ⊆ Gn, x̃ ⊆
Pn,M1,M2, N ∈ Nnf}. Following Lemma 4 it is sufficient to show that S is a
strong bisimulation upto ≡ to establish this lemma.

Note that if M1 ∼ M2 then fgn(M1) = fgn(M2), and hence
fgn((νg̃)(νx̃)(M1|N)) = fgn((νg̃)(νx̃)(M2|N)) for all g̃, x̃ and N . We then show
that every transition from (νg̃)(νx̃)(M1|N) can be matched by (νg̃)(νx̃)(M2|N)
by considering the derivations of transitions. Transitions for (νg̃)(νx̃)(M1|N)
can be derived by use of rules CLOSE, GNAME-RES1, GNAME-RES2, MO-
BILITY, PAR, UNI-COM, UNI-CLOSE, COM, COM-RES, UNI-OPEN, OPEN
and PNAME-RES. Only the last three steps of each transition derivation are
considered in the proof. Most importantly, following Lemma 7, we do not need
to consider derivations that use STRUCT rules in the last two steps. From the
structural operational semantics, the last step of a derivation will be due to the
outermost (νg̃) in the expression, the next-to-last step due to the (νx̃) follow-
ing the outermost (νg̃), and the earliest of the three steps due to the parallel
composition (M1|N).

We omit in the proof the symmetric cases arising due to the commutativity
of the parallel operator ‘|’. This gives rise to 15 cases (combinations of rules in
the last three steps in a derivation).

1. Case CLOSE, OPEN, COM: (νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃)(M ′1|N ′{x′/y})
given M1

Gx′

−→ M ′1 and N
G′(y)−→ N ′. The derivation is as follows, where

x̃1 = x̃ \ {x′}.

COM:
M1

Gx′−→ M ′1 N
G′(y)−→ N ′

M1|N
Gx′−→ M ′1|N ′{x′/y}

G ∩G′ 6= ∅

OPEN:
(νx̃)(M1|N)

(νx′)Gx′−→ (νx̃1)(M ′1|N ′{x′/y})CLOSE:
(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx′)(νx̃1)(M ′1|N ′{x′/y})

G \ g̃ = ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′1 means that there is an M ′2 such

that M2
Gx′

−→ M ′2 and M ′1 ∼ M ′2. Moreover, there exist expres-
sions M ′N1, M ′N2 and N ′N in normal form such that M ′1 ≡ M ′N1,
M ′2 ≡ M ′N2 and N ′{x′/y} ≡ N ′N . Now, since M ′1 ∼ M ′2, we know
M ′N1 ∼ M ′N2. Hence by construction of S, we can conclude that the pair
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( (νg̃)(νx′)(νx̃1)(M ′N1|N ′N ), (νg̃)(νx′)(νx̃1)(M ′N2|N ′N ) ) ∈ S, and hence
((νg̃)(νx̃)(M ′1|N ′{x′/y}), (νg̃)(νx̃)(M ′2|N ′{x′/y})) ∈ ≡S≡.

2. Case CLOSE, OPEN, PAR:

(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃)(M ′1|N) given M1
Gx′

−→ M ′1 , where x̃1 =
x̃ \ {x′}. The derivation is given below:

PAR:
M1

Gx′−→ M ′1

M1|N
Gx′−→ M ′1|NOPEN:

(νx̃)(M1|N)
(νx′)Gx′−→ (νx̃1)(M ′1|N)

CLOSE:
(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx′)(νx̃1)(M ′1|N)

G \ g̃ = ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′1 means that there is an M ′2 such that

M2
Gx′

−→ M ′2 and M ′1 ∼ M ′2. Moreover, there exist expressions M ′N1 and
M ′N2 in normal form such that M ′1 ≡ M ′N1 and M ′2 ≡ M ′N2. Now, since
M ′1 ∼ M ′2, we know M ′N1 ∼ M ′N2. Hence by construction of S, we can
conclude that the pair ((νg̃)(νx̃)(M ′N1

|N), (νg̃)(νx̃)(M ′N2
|N)) ∈ S, and

hence ((νg̃)(νx̃)(M ′1|N), (νg̃)(νx̃)(M ′2|N)) ∈ ≡S≡.

3. Case CLOSE, PNAME-RES, COM-RES:

(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃1)(M ′1|N ′) given M1
(νx′)Gx′

−→ M ′1 and

N
G′(x′)−→ N ′ where x̃1 = x̃ ∪ {x′}. The derivation is given below:

COM-RES:
M1

(νx′)Gx′−→ M ′1 N
G′(x′)−→ N ′

M1|N
(νx′)Gx′−→ M ′1|N ′

G ∩G′ 6= ∅

PNAME-RES:
(νx̃)(M1|N)

(νx′)Gx′−→ (νx̃)(M ′1|N ′)
x′ /∈ x̃

CLOSE:
(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx′)(νx̃)(M ′1|N ′)

G \ g̃ = ∅

Since M1 ∼ M2, M1
(νx′)Gx′

−→ M ′1 means that there is an M ′2 such that

M2
(νx′)Gx′

−→ M ′2 and M ′1 ∼M ′2. Moreover, there exist expressions M ′N1, M ′N2

and N ′N in normal form such that M ′1 ≡ M ′N1, M ′2 ≡ M ′N2 and N ′ ≡ N ′N .
Now, since M ′1 ∼M ′2, we know M ′N1

∼M ′N2
. Hence by construction of S, we

can conclude that the pair ((νg̃)(νx̃1)(M ′N1
|N ′N ), (νg̃)(νx̃1)(M ′N2

|N ′N )) ∈ S,
and hence ((νg̃)(νx̃1)(M ′1|N ′), (νg̃)(νx̃1)(M ′2|N ′)) ∈ ≡S≡.

4. Case CLOSE, PNAME-RES, PAR:

(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃1)(M ′1|N) given M1
(νx′)Gx′

−→ M ′1, where
x̃1 = x̃ ∪ {x′}. The derivation is given below:
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PAR:
M1

(νx′)Gx′−→ M ′1

M1|N
(νx′)Gx′−→ M ′1|N

x′ ∩ fn(N) = ∅

PNAME-RES:
(νx̃)(M1|N)

(νx′)Gx′−→ (νx̃)(M ′1|N)
x′ /∈ x̃

CLOSE:
(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx′)(νx̃)(M ′1|N)

G \ g̃ = ∅

Since M1 ∼ M2, M1
(νx′)Gx′

−→ M ′1 means that there is an M ′2 such that

M2
(νx′)Gx′

−→ M ′2 and M ′1 ∼ M ′2. Moreover, there exist expressions M ′N1
and

M ′N2
in normal form such that M ′1 ≡ M ′N1

and M ′2 ≡ M ′N2
. Now, since

M ′1 ∼ M ′2, we know M ′N1
∼ M ′N2

. Hence by construction of S, we can
conclude that the pair ((νg̃)(νx̃1)(M ′N1

|N), (νg̃)(νx̃1)(M ′N2
|N)) ∈ S, and

hence ((νg̃)(νx̃1)(M ′1|N), (νg̃)(νx̃1)(M ′2|N)) ∈ ≡S≡.

5. Case GNAME-RES1, UNI-OPEN, PAR:

(νg̃)(νx̃)(M1|N)
(νx′)z:G′′x′

−→ (νg̃)(νx̃1)(M ′1|N) given M1
z:Gx′

−→ M ′1,
where x̃1 = x̃ \ {x′} and G′′ = G \ g̃. The derivation is given below:

PAR:
M1

z:Gx′−→ M ′1

M1|N
z:Gx′−→ M ′1|NUNI-OPEN:

(νx̃)(M1|N)
(νx′)z:Gx′−→ (νx̃1)(M ′1|N)

x′ 6= z, z /∈ x̃

GNAME-RES1:
(νg̃)(νx̃)(M1|N)

(νx′)z:G′′x′−→ (νg̃)(νx̃1)(M ′1|N)
G′′ 6= ∅

Since M1 ∼ M2, M1
z:Gx′

−→ M ′1 means that there is an M ′2 such that

M2
z:Gx′

−→ M ′2 and M ′1 ∼ M ′2. Moreover, there exist expressions M ′N1
and

M ′N2
in normal form such that M ′1 ≡ M ′N1

and M ′2 ≡ M ′N2
. Now, since

M ′1 ∼ M ′2, we know M ′N1
∼ M ′N2

. Hence, by construction of S, we can
conclude that the pair ((νg̃)(νx̃1)(M ′N1

|N), (νg̃)(νx̃1)(M ′N2
|N)) ∈ S, and

hence ((νg̃)(νx̃1)(M ′1|N), (νg̃)(νx̃1)(M ′2|N)) ∈ ≡S≡.

6. Case GNAME-RES1, OPEN, COM:

(νg̃)(νx̃)(M1|N)
(νx′)G′′x′

−→ (νg̃)(νx̃1)(M ′1|N ′{x′/y}) given M1
Gx′

−→ M ′1

and N
G′(y)−→ N ′, where x̃1 = x̃ \ {x′} and G′′ = G \ g̃. The derivation is

given below:
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COM:
M1

Gx′−→ M ′1 N
G′(y)−→ N ′

M1|N
Gx′−→ M ′1|N ′{x′/y}

G ∩G′ 6= ∅

OPEN:
(νx̃)(M1|N)

(νx′)Gx′−→ (νx̃1)(M ′1|N ′{x′/y})GNAME-RES1:
(νg̃)(νx̃)(M1|N)

(νx′)G′′x′−→ (νg̃)(νx̃1)(M ′1|N ′{x′/y})
G′′ 6= ∅

Since M1 ∼M2, M1
Gx′

−→M ′1 means that there is anM ′2 such thatM2
Gx′

−→M ′2
and M ′1 ∼ M ′2. Moreover, there exist expressions M ′N1

, M ′N2
and N ′N in

normal form such that M ′1 ≡ M ′N1
, M ′2 ≡ M ′N2

and N ′{x′/y} ≡ N ′N . Now,
since M ′1 ∼M ′2, we know M ′N1

∼M ′N2
. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃1)(M ′N1
|N ′N ), (νg̃)(νx̃1)(M ′N2

|N ′N )) ∈ S, and
hence ((νg̃)(νx̃1)(M ′1|N ′{x′/y}), (νg̃)(νx̃1)(M ′2|N ′{x′/y})) ∈ ≡S≡.

7. Case GNAME-RES1, OPEN, PAR:

(νg̃)(νx̃)(M1|N)
(νx′)G′′x′

−→ (νg̃)(νx̃1)(M ′1|N) given M1
Gx′

−→ M ′1, where
x̃1 = x̃ \ {x′} and G′′ = G \ g̃. The derivation is given below:

PAR:
M1

Gx′−→ M ′1

M1|N
Gx′−→ M ′1|NOPEN:

(νx̃)(M1|N)
(νx′)Gx′−→ (νx̃1)(M ′1|N)

GNAME-RES1:
(νg̃)(νx̃)(M1|N)

(νx′)G′′x′−→ (νg̃)(νx̃1)(M ′1|N)
G′′ 6= ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′1 means that there is an M ′2 such that

M2
Gx′

−→ M ′2 and M ′1 ∼ M ′2. Moreover, there exist expressions M ′N1
and

M ′N2
in normal form such that M ′1 ≡ M ′N1

and M ′2 ≡ M ′N2
. Now, since

M ′1 ∼ M ′2, we know M ′N1
∼ M ′N2

. Hence, by construction of S, we can
conclude that the pair ((νg̃)(νx̃1)(M ′N1

|N), (νg̃)(νx̃1)(M ′N2
|N)) ∈ S, and

hence ((νg̃)(νx̃1)(M ′1|N), (νg̃)(νx̃1)(M ′2|N)) ∈ ≡S≡.
Comment (1n)
Done. Deriva-
tion in presence
of MOBILITY.
Also related
to comment
(1f) about
MOBILITY
rule.

8. Case GNAME-RES1, PNAME-RES, MOBILITY:
(νg̃)(νx̃)(M1|N)

µ−→ (νg̃)(νx̃)(M ′1|N ′). The derivation is given below:

MOBILITY:
M1|N

µ−→ M ′1|N ′PNAME-RES:
(νx̃)(M1|N)

µ−→ (νx̃)(M ′1|N ′)GNAME-RES1:
(νg̃)(νx̃)(M1|N)

µ−→ (νg̃)(νx̃)(M ′1|N ′)

and I(M1|N) =⇒ I(M ′1|N ′) for a connectivity invariant I.
Now consider the following cases for M ′1 and N ′:
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(i) M ′1 = M1 and N ′ differs from N only in one of its basic node’s
interface, i.e. N ′ is obtained by replacing one basic node P : G in N
by P : G′, where G′ ⊆ fgn(M1) ∪ fgn(N).
Since M1 ∼M2, fgn(M1) = fgn(M2) and M1|N

µ−→M1|N ′ imply that
M2|N

µ−→M2|N ′ such that I(M2|N) =⇒ I(M2|N ′), and it can be de-
rived that (νg̃)(νx̃)(M2|N)

µ−→ (νg̃)(νx̃)(M2|N ′). Moreover, there
exist N ′N in normal form such that N ′ ≡ N ′N . Hence, by construction of
S, we can conclude that pair ((νg̃)(νx̃)(M1|N ′N ), (νg̃)(νx̃)(M2|N ′N )) ∈
S, and hence ((νg̃)(νx̃)(M1|N ′), (νg̃)(νx̃)(M2|N ′)) ∈ ≡S≡.

(ii) N ′ = N and M ′1 is obtained from M1 by replacing one of its basic node
P : GP in M1 by P : G′P in M ′1, where G′P ⊆ fgn(M1) ∪ fgn(N).
Let M2 contain a basic node Q : GQ and M ′2 differ from M2 only due
to Q : GQ replaced by Q : G′Q, where G′Q ⊆ fgn(M2) ∪ fgn(N).
Consider the following two cases:
(a) G′P and G′Q contain gnames only in fgn(M1) and fgn(M2), respec-
tively, then M ′1 and M ′2 can be derived using MOBILITY rule from
M1 and M2, respectively. Since M1 ∼ M2, fgn(M1) = fgn(M2) and
M1

µ−→M ′1 implies that M2
µ−→M ′2, and M ′1 ∼M ′2.

(b) G′P and G′Q also contain gnames in fgn(N). Since the possible new
free gnames (other than fgn(M1) and fgn(M2)), added to basic nodes
P : GP in M1 and Q : GQ in M2 leading to M ′1 and M ′2, respectively,
are drawn from the same set of gnames fgn(N), similarity in behavior
(transitions) of M ′1 and M ′2 is preserved i.e. M ′1 ∼M ′2.
M2|N

µ−→ M ′2|N and it can be derived that
(νg̃)(νx̃)(M2|N)

µ−→ (νg̃)(νx̃)(M ′2|N) such that I(M2|N) =⇒
I(M ′2|N). Moreover, there exist expressions M ′N1

and M ′N2
in normal

form such that M ′1 ≡ M ′N1
and M ′2 ≡ M ′N2

. Now, since M ′1 ∼ M ′2,
we know M ′N1

∼ M ′N2
. Hence, by construction of S, we can conclude

that the pair ((νg̃)(νx̃)(M ′N1
|N), (νg̃)(νx̃)(M ′N2

|N)) ∈ S, and hence
((νg̃)(νx̃)(M ′1|N), (νg̃)(νx̃)(M ′2|N)) ∈ ≡S≡.

9. Case GNAME-RES1, PNAME-RES, PAR:

(νg̃)(νx̃)(M1|N)
α\g̃−→ (νg̃)(νx̃)(M ′1|N) given M1

α−→ M ′1. The derivation
is given below:

PAR:
M1

α−→ M ′1
M1|N

α−→ M ′1|N
bn(α) ∩ fn(N) = ∅

PNAME-RES:
(νx̃)(M1|N) α−→ (νx̃)(M ′1|N)

x̃ ∩ n(α) = ∅
GNAME-RES1:

(νg̃)(νx̃)(M1|N)
α\g̃−→ (νg̃)(νx̃)(M ′1|N)

Since M1 ∼ M2, M1
α−→ M ′1 means that there is an M ′2 such that
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M2
α−→ M ′2 and M ′1 ∼ M ′2. Moreover, there exist expressions M ′N1

and
M ′N2

in normal form such that M ′1 ≡ M ′N1
and M ′2 ≡ M ′N2

. Now, since
M ′1 ∼ M ′2, we know M ′N1

∼ M ′N2
. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃)(M ′N1
|N), (νg̃)(νx̃)(M ′N2

|N)) ∈ S, and
hence ((νg̃)(νx̃)(M ′1|N), (νg̃)(νx̃)(M ′2|N)) ∈ ≡S≡.
For the case α = µ, the conditions I(M1|N) =⇒ I(M ′1|N) and
I(M2|N) =⇒ I(M ′2|N), for a connectivity invariant I, also come into
effect.

Note that if α \ g̃ is of the form G(x′) or z :G(x′), where x′ ∈ Pn, the proof
involves following reasoning:
M1 ∼ M2 implies for all y ∈ Pn, M ′1{y/x′} ∼ M ′2{y/x′}. More-
over, there exist expressions M ′N1

and M ′N2
in normal form such

that M ′1 ≡ M ′N1
and M ′2 ≡ M ′N2

. We infer that for all y ∈ Pn,
M ′1{y/x′} ∼ M ′2{y/x′} implies M ′N1

{y/x′} ∼ M ′N2
{y/x′}. Therefore, for

all y ∈ Pn, ((νg̃)(νx̃)(M ′N1
{y/x′}|N), (νg̃)(νx̃)(M ′N2

{y/x′}|N)) ∈ S.
Since bn(α) ∩ fn(N ) = ∅, we know x′ /∈ fn(N ). Hence, for all
pname y ∈ Pn, (νg̃)(νx̃)(M ′N1

{y/x′}|N) = ((νg̃)(νx̃)(M ′N1
|N)){y/x′}

and (νg̃)(νx̃)(M ′N2
{y/x′}|N) = ((νg̃)(νx̃)(M ′N2

|N)){y/x′}. Hence, by
construction of S, we can conclude that for all y ∈ Pn, the pair
(((νg̃)(νx̃)(M ′N1

|N)){y/x′}, ((νg̃)(νx̃)(M ′N2
|N)){y/x′}) ∈ S, and hence for

all y ∈ Pn, (((νg̃)(νx̃)(M ′1|N){y/x′}), ((νg̃)(νx̃)(M ′2|N)){y/x′}) ∈ ≡S≡.

10. Case GNAME-RES1, PNAME-RES, UNI-COM:

(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃)(M ′1|N ′{x′/y}) given M1
z:Gx′

−→ M ′1 and

N
z:G′(y)−→ N ′. The derivation is given below:

UNI-COM:
M1

z:Gx′−→ M ′1 N
z:G′(y)−→ N ′

M1|N
τ−→ M ′1|N ′{x′/y}

G ∩G′ 6= ∅
PNAME-RES:

(νx̃)(M1|N) τ−→ (νx̃)(M ′1|N ′{x′/y})GNAME-RES1:
(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃)(M ′1|N ′{x′/y})

Since M1 ∼ M2, M1
z:Gx′

−→ M ′1 means that there is an M ′2 s.t. M2
z:Gx′

−→ M ′2
and M ′1 ∼ M ′2. Moreover, there exist expressions M ′N1

, M ′N2
and N ′N in

normal form such that M ′1 ≡ M ′N1
, M ′2 ≡ M ′N2

and N ′{x′/y} ≡ N ′N . Now,
since M ′1 ∼M ′2, we know M ′N1

∼M ′N2
. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃)(M ′N1
|N ′N ), (νg̃)(νx̃)(M ′N2

|N ′N )) ∈ S, and
hence ((νg̃)(νx̃)(M ′1|N ′{x′/y}), (νg̃)(νx̃)(M ′2|N ′{x′/y})) ∈ ≡S≡.

11. Case GNAME-RES1, PNAME-RES, UNI-CLOSE:

(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃1)(M ′1|N ′) given M1
(νx′)z:Gx′

−→ M ′1 and

N
z:G′(x′)−→ N ′, where x̃1 = x̃ ∪ {x′}. The derivation is given below:
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UNI-CLOSE:
M1

(νx′)z:Gx′−→ M ′1 N
z:G′(x′)−→ N ′

M1|N
τ−→ (νx′)(M ′1|N ′)

G ∩G′ 6= ∅
PNAME-RES:

(νx̃)(M1|N) τ−→ (νx̃)(νx′)(M ′1|N ′)GNAME-RES1:
(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃)(νx′)(M ′1|N ′)

Since M1 ∼ M2, M1
(νx′)z:Gx′

−→ M ′1 means that there exists an M ′2

such that M2
(νx′)z:Gx′

−→ M ′2 and M ′1 ∼ M ′2. Moreover, there exist ex-
pressions M ′N1

, M ′N2
and N ′N in normal form such that M ′1 ≡ M ′N1

,
M ′2 ≡ M ′N2

and N ′ ≡ N ′N . Now, since M ′1 ∼ M ′2, we know
M ′N1

∼ M ′N2
. Hence, by construction of S, we can conclude that

the pair ((νg̃)(νx̃1)(M ′N1
|N ′N ), (νg̃)(νx̃1)(M ′N2

|N ′N )) ∈ S, and hence
((νg̃)(νx̃1)(M ′1|N ′), (νg̃)(νx̃1)(M ′2|N ′)) ∈ ≡S≡.

12. Case GNAME-RES1, PNAME-RES, COM:

(νg̃)(νx̃)(M1|N) G′′x′

−→ (νg̃)(νx̃)(M ′1|N ′{x′/y}) given M1
Gx′

−→ M ′1 and

N
G′(y)−→ N ′, where G′′ = G \ g̃. The derivation is given below:

COM:
M1

Gx′−→ M ′1 N
G′(y)−→ N ′

M1|N
Gx′−→ M ′1|N ′{x′/y}

G ∩G′ 6= ∅

PNAME-RES:
(νx̃)(M1|N) Gx′−→ (νx̃)(M ′1|N ′{x′/y})

x′ /∈ x̃

GNAME-RES1:
(νg̃)(νx̃)(M1|N) G′′x′−→ (νg̃)(νx̃)(M ′1|N ′{x′/y})

G′′ 6= ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′1 means that there exists an M ′2 such that

M2
Gx′

−→M ′2 and M ′1 ∼M ′2. Moreover, there exist expressions M ′N1
, M ′N2

and
N ′N in normal form such that M ′1 ≡M ′N1

, M ′2 ≡M ′N2
and N ′{x′/y} ≡ N ′N .

Now, since M ′1 ∼ M ′2, we know M ′N1
∼ M ′N2

. Hence, by construction of S,
we can conclude that the pair ((νg̃)(νx̃)(M ′N1

|N ′N ), (νg̃)(νx̃)(M ′N2
|N ′N )) ∈ S,

and hence ((νg̃)(νx̃)(M ′1|N ′{x′/y}), (νg̃)(νx̃)(M ′2|N ′{x′/y})) ∈ ≡S≡.

13. Case GNAME-RES1, PNAME-RES, COM-RES:

(νg̃)(νx̃)(M1|N)
(νx′)G′′x′

−→ (νg̃)(νx̃)(M ′1|N ′) given M1
(νx′)Gx′

−→ M ′1 and

N
G′(x′)−→ N ′, where G′′ = G \ g̃. The derivation is given below:
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COM-RES:
M1

(νx′)Gx′−→ M ′1 N
G′(x′)−→ N ′

M1|N
(νx′)Gx′−→ M ′1|N ′

G ∩G′ 6= ∅

PNAME-RES:
(νx̃)(M1|N)

(νx′)Gx′−→ (νx̃)(M ′1|N ′)
x′ /∈ x̃

GNAME-RES1:
(νg̃)(νx̃)(M1|N)

(νx′)G′′x′−→ (νg̃)(νx̃)(M ′1|N ′)
G′′ 6= ∅

Since M1 ∼ M2, M1
(νx′)Gx′

−→ M ′1 means that there is an M ′2 such that

M2
(νx′)Gx′

−→ M ′2 and M ′1 ∼M ′2. Moreover, there exist expressions M ′N1
, M ′N2

and N ′N in normal form such that M ′1 ≡ M ′N1
, M ′2 ≡ M ′N2

and N ′ ≡ N ′N .
Now, since M ′1 ∼ M ′2, we know M ′N1

∼ M ′N2
. Hence, by construction of S,

we can conclude that the pair ((νg̃)(νx̃)(M ′N1
|N ′N ), (νg̃)(νx̃)(M ′N2

|N ′N )) ∈ S,
and hence ((νg̃)(νx̃)(M ′1|N ′), (νg̃)(νx̃)(M ′2|N ′)) ∈ ≡S≡.

14. Case GNAME-RES2, PNAME-RES, COM:

(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃)(M ′1|N ′{x′/y}) given M1
Gx′

−→ M ′1 and

N
G′(y)−→ N ′. The derivation is given below:

COM:
M1

Gx′−→ M ′1 N
G′(y)−→ N ′

M1|N
Gx′−→ M ′1|N ′{x′/y}

G ∩G′ 6= ∅

PNAME-RES:
(νx̃)(M1|N) Gx′−→ (νx̃)(M ′1|N ′{x′/y})

x′ /∈ x̃

GNAME-RES2:
(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃)(M ′1|N ′{x′/y})

G \ g̃ = ∅

Since M1 ∼M2, M1
Gx′

−→M ′1 means that there is anM ′2 such thatM2
Gx′

−→M ′2
and M ′1 ∼ M ′2. Moreover, there exist expressions M ′N1

, M ′N2
and N ′N in

normal form such that M ′1 ≡ M ′N1
, M ′2 ≡ M ′N2

and N ′{x′/y} ≡ N ′N . Now,
since M ′1 ∼M ′2, we know M ′N1

∼M ′N2
. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃)(M ′N1
|N ′N ), (νg̃)(νx̃)(M ′N2

|N ′N )) ∈ S, and
hence ((νg̃)(νx̃)(M ′1|N ′{x′/y}), (νg̃)(νx̃)(M ′2|N ′{x′/y})) ∈ ≡S≡.

15. Case GNAME-RES2, PNAME-RES, PAR:

(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃)(M ′1|N) given M1
Gx′

−→ M ′1.

PAR:
M1

Gx′−→ M ′1

M1|N
Gx′−→ M ′1|NPNAME-RES:

(νx̃)(M1|N) Gx′−→ (νx̃)(M ′1|N)
x′ /∈ x̃

GNAME-RES2:
(νg̃)(νx̃)(M1|N) τ−→ (νg̃)(νx̃)(M ′1|N)

G \ g̃ = ∅
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Since M1 ∼ M2, M1
Gx′

−→ M ′1 means that there exists an M ′2 such that

M2
Gx′

−→ M ′2 and M ′1 ∼ M ′2. Moreover, there exist expression M ′N1
and

M ′N2
in normal form such that M ′1 ≡ M ′N1

and M ′2 ≡ M ′N2
. Now, since

M ′1 ∼M ′2, we know M ′N1
∼M ′N2

. Hence, by construction of S, we can con-
clude that the pair ((νg̃)(νx̃)(M ′N1

|N), (νg̃)(νx̃)(M ′N2
|N)) ∈ S, and hence

((νg̃)(νx̃)(M ′1|N), (νg̃)(νx̃)(M ′2|N)) ∈ ≡S≡.

By considering the 15 cases and their symmetric counterparts due to com-
mutativity of ‘|’ operator, all possible derivations are covered and we con-
clude that for every transition from (νg̃)(νx̃)(M1|N), there is a transition from
(νg̃)(νx̃)(M2|N) such that the destinations of the two transitions are related
by ≡ S ≡. Thus we establish that S is a strong bisimulation upto ≡. Follow-
ing Lemma 4, we conclude that S is a strong bisimulation. Therefore, ∼ is
preserved by restriction of pnames and gnames, and the parallel operator for
ω-expressions in normal form.
This proof is complete because at each proof step all possible transitions from
an expression are considered to find its derivatives. The fifteen cases along with
their symmetric counterparts for the parallel operator cover all the derivation
possibilities. All the possible transitions at the node level (pertaining to broad-
cast, unicast, silent action, and mobility) are taken into account through the
derivations given in the proof. ut

B. Symbolic Bisimulation for the ω0-Calculus
We prove that the symbolic bisimulation equivalence for the ω0-calculus is a
congruence. The proof for the extended calculi follow along the same lines.

Lemma 15. For all M1,M2 ∈ Nnf , i.e., M1,M2 are in normal form, the fol-
lowing hold:

(i) M1 � M2 implies ∀g ∈ Gn : (νg)M1 � (νg)M2; and
(ii) M1 � M2 implies ∀N ∈ Nnf : M1|N � M2|N .

Proof. We show parts (i–ii) of the lemma simultaneously by considering the
set S = {((νg̃)(M1|N), (νg̃)(M2|N)) | M1 � M2, g̃ ⊆ Gn,M1,M2, N ∈ Nnf}.
Following Lemma 4 it is sufficient to show that S is a strong bisimulation upto
≡ to establish this lemma.

Note that if M1 � M2 then fgn(M1) = fgn(M2), and hence
fgn((νg̃)(M1|N)) = fgn((νg̃)(M2|N)) for all g̃ and N . We then show that every
transition from (νg̃)(M1|N) can be matched by (νg̃)(M2|N) by considering the
derivations of transitions. Transitions for (νg̃)(M1|N) can be derived by the use
of rules GNAME-RES1, GNAME-RES2, MOBILITY, PAR and COM. Only the
last two steps of each transition derivation are considered in the proof. Most
importantly, following Lemma 7, we do not need to consider derivations that
use STRUCT rules in the last step. From the structural operational semantics,
the last step of a derivation will be due to the outermost (νg̃) in the expression,
and the first step due to the parallel composition (M1|N). We omit in the proof
the symmetric cases arising due to the commutativity of the parallel operator
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‘|’. This gives rise to 5 cases (combinations of rules in the last two steps in a
derivation).

1. Case GNAME-RES1, COM:

(νg̃)(M1|N)
C1∧C,G′′x−→ (νg̃)(M ′1|N ′{x/y}) given M1

C1,Gx−→ M ′1 and

N
C,G′(y)−→ N ′, where G′′ = G \ g̃. The derivation is given below:

COM:
M1

C1,Gx−→ M ′1 N
C,G′(y)−→ N ′

M1|N
C1∧C,Gx−→ M ′1|N ′{x/y}

G ∩G′ 6= ∅

GNAME-RES1:
(νg̃)(M1|N)

C1∧C,G′′x−→ (νg̃)(M ′1|N ′{x/y})
G′′ 6= ∅

Since M1 �M2, M1
C1,Gx−→ M ′1 implies ∃M ′2, β, and C2 such that M2

C2,β−→ M ′2
and C1 . C2, GxσC1 ≡ βσC1 , M ′1σC1 � M ′2σC1 . Moreover, there exist
expressions M ′N1

, M ′N2
and N ′N in normal form such that M ′1 ≡ M ′N1

,
M ′2 ≡ M ′N2

and N ′{x/y} ≡ N ′N . Now, since M ′1σC1 � M ′2σC1 , we know
M ′N1

σC1 �MN2σ
′
C1

. Hence, by construction of S, we can conclude that the
pair ((νg̃)(M ′N1

σC1 |N ′NσC1∧C), (νg̃)(M ′N2
σC1 |N ′NσC1∧C)) ∈ S, and hence

((νg̃)(M ′1|N ′{x/y})σC1∧C , (νg̃)(M ′2|N ′{x/y})σC1∧C) ∈ ≡S≡.

2. Case GNAME-RES1, MOBILITY: Similar to
Comment (1n)
for proof of
Lemma 8.

(νg̃)(M1|N)
true,µ−→ (νg̃)(M ′1|N ′). The derivation is given below:

MOBILITY:
M1|N

true,µ−→ M ′1|N ′GNAME-RES1:
(νg̃)(M1|N)

true,µ−→ (νg̃)(M ′1|N ′)

and I(M1|N) =⇒ I(M ′1|N ′) for a connectivity invariant I.
A case analysis of M ′1 and N ′, similar to as in Case 8 (GNAME-RES1,
PNAME-RES, MOBILITY) for proof of Lemma 8 given in Appendix A,
can be used to conclude that ((νg̃)(M ′1|N ′), (νg̃)(M ′2|N ′)) ∈ ≡S≡.

3. Case GNAME-RES1, PAR:

(νg̃)(M1|N)
C1,α\g̃−→ (νg̃)(M ′1|N) given M1

C1,α−→ M ′1. The derivation is given
below:

PAR:
M1

C1,α−→ M ′1

M1|N
C1,α−→ M ′1|N

bn(α) ∩ fn(N ) = ∅

GNAME-RES1:
(νg̃)(M1|N)

C1,α\g̃−→ (νg̃)(M ′1|N)

Since M1 � M2, M1
C1,α−→ M ′1 implies ∃M ′2, β, and C2 such that

M2
C2,β−→ M ′2 and C1 . C2, ασC1 ≡ βσC1 , M ′1σC1 � M ′2σC1 . More-
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over, there exist expressions M ′N1
and M ′N2

in normal form such that
M ′1 ≡ M ′N1

and M ′2 ≡ M ′N2
. Now, since M ′1σC1 � M ′2σC1 , we know

M ′N1
σC1 � M ′N2

σC1 . Hence, by construction of S, we can conclude that
the pair ((νg̃)(M ′N1

σC1 |NσC1), (νg̃)(M ′N2
σC1 |NσC1)) ∈ S, and hence

((νg̃)(M ′1|N)σC1 , (νg̃)(M ′2|N)σC1) ∈ ≡S≡.
For the case α = µ, the conditions I(M1|N) =⇒ I(M ′1|N) and
I(M2|N) =⇒ I(M ′2|N), for a connectivity invariant I, also come into effect
in the above derivations.

For the case when α \ g̃ is of the form G(x′), we can reason in a manner
similar to that for the Case 9 (GNAME-RES1, PNAME-RES, PAR) for
proof of Lemma 8 given in Appendix A.

4. Case GNAME-RES2, COM:

(νg̃)(M1|N)
C1∧C,τ−→ (νg̃)(M ′1|N ′{x/y}) given M1

C1,Gx−→ M ′1 and N
C,G′(y)−→

N ′. The derivation is given below:

COM:
M1

C1,Gx−→ M ′1 N
C,G′(y)−→ N ′

M1|N
C1∧C,Gx−→ M ′1|N ′{x/y}

G ∩G′ 6= ∅

GNAME-RES2:
(νg̃)(M1|N)

C1∧C,τ−→ (νg̃)(M ′1|N ′{x/y})
G \ g̃ = ∅

Since M1 � M2, M1
C1,Gx−→ M ′1 implies ∃M ′2, β, and C2 such that

M2
C2,β−→ M ′2 and C1 . C2, GxσC1 ≡ βσC1 , M ′1σC1 � M ′2σC1 . Moreover,

there exist expressions M ′N1
, M ′N2

and N ′N in normal form such that
M ′1 ≡M ′N1

, M ′2 ≡M ′N2
and N ′{x/y} ≡ N ′N . Now, since M ′1σC1 � M ′2σC1 ,

we know M ′N1
σC1 �M ′N2

σC1 . Hence, by construction of S, we can conclude
that ((νg̃)(M ′N1

σC1 |N ′NσC1∧C), (νg̃)(M ′N2
σC1 |N ′NσC1∧C)) ∈ S, and hence

((νg̃)(M ′1|N ′{x/y})σC1∧C , (νg̃)(M ′2|N ′{x/y})σC1∧C) ∈ ≡S≡.

5. Case GNAME-RES2, PAR:

(νg̃)(M1|N)
C1,τ−→ (νg̃)(M ′1|N) given M1

C1,Gx−→ M ′1. The derivation is given
below:

PAR:
M1

C1,Gx−→ M ′1

M1|N
C1,Gx−→ M ′1|NGNAME-RES2:

(νg̃)(M1|N)
C1,τ−→ (νg̃)(M ′1|N)

G \ g̃ = ∅

Since M1 � M2, M1
C1,Gx−→ M ′1 implies ∃M ′2, β, and C2 such that

M2
C2,β−→ M ′2 and C1 . C2, GxσC1 ≡ βσC1 , M ′1σC1 � M ′2σC1 . More-

over, there exist expression M ′N1
and M ′N2

in normal form such that
M ′1 ≡ M ′N1

and M ′2 ≡ M ′N2
. Now, since M ′1σC1 � M ′2σC1 , we
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know M ′N1
σC1 � M ′N2

σC1 . Hence, by construction of S, we can con-
clude that ((νg̃)(M ′N1

σC1 |NσC1), (νg̃)(M ′N2
σC1 |NσC1)) ∈ S, and hence

((νg̃)(M ′1|N)σC1 , (νg̃)(M ′2|N)σC1) ∈ ≡S≡.

By considering the 5 cases and their symmetric counterparts due to the com-
mutativity of ‘|’ operator, all possible derivations are covered and we conclude
that S is a symbolic bisimulation up to ≡. Following Lemma 4 we conclude
that S is a symbolic bisimulation. Therefore, � is preserved by restriction of
gnames and the parallel operator for ω0-expressions in normal form.

This proof is complete because at each proof step all possible transitions from
an expression are considered to find its derivatives. The five cases along with
their symmetric counterparts for the parallel operator cover all the derivation
possibilities. All the possible transitions at the node level (pertaining to broad-
cast send/receive, silent action, and mobility) are taken into account through
the derivations given in the proof. ut
Theorem 16 (Congruence for Symbolic Bisimulation for the ω0-Calculus).
� is a congruence for the ω0-calculus; i.e., for all M1,M2 ∈ N, the following
hold:

(i) M1 � M2 implies ∀g ∈ Gn : (νg)M1 � (νg)M2; and
(ii) M1 � M2 implies ∀N ∈ N : M1|N � M2|N .

Proof: Let M1 ≡ MN1 and M2 ≡ MN2 , where MN1 and MN2 are in normal
form. Then the following holds:

• M1 � M2 implies MN1 � MN2 (from Definition 2 and Lemma 4). MN1 �
MN2 implies ∀g ∈ Gn: (νg)MN1 � (νg)MN2 (by Lemma 15), which in turn
implies (νg)M1 � (νg)M2 (by Def. 2 and Lemma 4). Therefore, whenever
M1 �M2 then (νg)M1 � (νg)M2.
• M1 � M2 implies MN1 � MN2 (from Definition 2 and Lemma 4). MN1 �
MN2 implies for any N ∈ N, and N ≡ NN where, NN ∈ Nnf : (MN1 |NN ) �
(MN2 |NN ) (by Lemma 15), which in turn implies (M1|N) � (M2|N) (by
Def. 2 and Lemma 4). Therefore, whenever M1 � M2 then (M1|N) �
(M2|N).

� is preserved by all the node contexts for the ω0-calculus. Hence, � is a
congruence for the ω0-calculus. ut
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