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Abstract. We present theω-calculus, a process calculus for formally modeling
and reasoning aboutMobile Ad Hoc Wireless Networks(MANETs) and their pro-
tocols. Theω-calculus naturally captures essential characteristics of MANETs,
including the ability of a MANET node to broadcast a message to any other node
within its physical transmission range (and no others), andto move in and out
of the transmission range of other nodes in the network. A keyfeature of theω-
calculus is the separation of a node’s communication and computational behav-
ior, described by anω-process, from the description of its physical transmission
range, referred to as anω-processinterface.

Our main technical results are as follows. We give a formal operational seman-
tics of theω-calculus in terms of labeled transition systems and show that the
state reachability problem is decidable for finite-controlω-processes. We also
prove that theω-calculus is a conservative extension of theπ-calculus, and that
late bisimulation (appropriately lifted from theπ-calculus to theω-calculus) is
a congruence. Congruence results are also established for aweak version of late
bisimulation, which abstracts away from two types of internal actions:τ -actions,
as in theπ-calculus, andµ-actions, signaling node movement. Finally, we illus-
trate the practical utility of the calculus by developing and analyzing a formal
model of a leader-election protocol for MANETs.

1 Introduction
A Mobile Ad Hoc Network (MANET) is a network of autonomous mobile nodes con-
nected by wireless links. Each nodeN has a physical transmission range within which
it can directly transmit data to other nodes. Any node that falls within N ’s transmission
range is considered aneighborof N . Nodes can move freely in a MANET, leading to
rapid change in the network’s communication topology.

Two aspects of MANETs make them especially difficult to modelusing existing for-
mal specification languages such as process algebras. First, MANETs use wireless links
for local broadcast communication: a MANET node can transmit a message simulta-
neously to all nodes within its transmission range, but the message cannot be received
by any node outside that range. Secondly, the neighborhood of nodes that lie within the
transmission range of a node can change unpredictably due tonode movement, thereby
altering the set of nodes that can receive a transmitted message.

Ideally, the specification of a MANET node’s control behavior should be indepen-
dent of its neighborhood information. Since, however, the eventual recipients of a local
broadcast message depend on this information, a model of a MANET-based protocol
given in a traditional process calculus must intermix the computation of neighborhood
information with the protocol’s control behavior. This tends to render such models un-
natural and unnecessarily complex.
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In this paper, we present theω-calculus, a conservative extension of theπ-calculus
that has been designed expressly to address the MANET modeling problems outlined
above. A key feature of theω-calculus is the separation of a node’s communication and
computational behavior, described by anω-process, from the description of its physical
transmission range, referred to as anω-processinterface. This separation allows one to
model the control behavior of a MANET protocol, usingω-processes, independently
from the protocol’s underlying communication topology, using process interfaces. (A
similar separation of concerns has been achieved in severalrecently introduced process
calculi for wireless and mobile networks [5, 8, 9, 12], but not, as we argue in Section 6,
as simply and naturally as in theω-calculus.)

As discussed further in Section 2,ω-process interfaces are comprised ofgroups,
which operationally function as local broadcast ports. Mobility is captured in theω-
calculus via the dynamic creation of new groups and dynamically changing process
interfaces. The group-based abstraction for local broadcast in a wireless network is a
natural one; it appears also in [6], where it is shown how to model MANETs in the
UPPAAL model checker for timed automata.

Main Contributions. The rest of the paper is organized around our main technical
results, which include the following:

– Section 2 provides an informal introduction to the basic features of theω-calculus.
– Section 3 presents the formal operational semantics of theω-calculus in terms of la-

beled transition systems and structural-congruence rules. The calculus is presented
in three stages:ω0, the core version of the calculus, focuses on local broadcast and
mobility; ω1 extendsω0 with unicast communication and scope extrusion;ω2 ex-
tendsω1 by allowing multi-threaded behavior at the process level. Unless otherwise
noted, the expression “theω-calculus” refers toω2, the most general version of the
calculus. We in fact show in Section 4 thatω2 is a conservative extension of the
π-calculus.

– Section 4 defines bisimulation for theω-calculus and proves that it is a congruence.
We obtain similar results for a weak version of bisimulation, which treats as unob-
servable two types of internal actions:τ -actions, as in theπ-calculus, andµ-actions,
signaling node movement. Full proofs of these results appear in [16].

– Section 5 illustrates the practical utility of the calculusby developing and analyzing
a formalω-calculus model of a leader-election algorithm for MANETs [17].

Section 6 considers related work and Section 7 offers our concluding remarks.

2 Theω-Calculus: An Informal Introduction
As an illustrative example of theω-calculus, consider the MANET of Fig. 1(a) compris-
ing the four nodesN1, N2, N3, N4. The dotted circle centered around a node indicates
the node’s transmission range, and all nodes are assumed to have the same transmission
range. Thus,N1 is within the transmission range ofN2, N3, andN4 and vice versa,
andN2 andN4 are in each other’s transmission range. Fig. 1(b) highlights themaxi-
mal sets of neighboring nodesin the network, one coveringN1, N2, andN4, and the
other coveringN1 andN3. A maximal set of neighboring nodes corresponds to amax-
imal clique in the network’s node connectivity graph (Fig. 1(c)), and, equivalently, to
anω-calculusgroup(local broadcast port), as illustrated in Fig. 1(d). The setof groups
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Fig. 1.Multiple views of a MANET network.

to which a node is connected is specified by theinterfaceof the underlying process;
i.e. the process executing at the node. Thus, theω-calculus expression for the network
is the parallel compositionN1|N2|N3|N4, whereN1 = P1 : {g1, g2}, N2 = P2 : {g1},
N3 = P3 :{g2}, N4 = P4 :{g1}, for process expressionsP1, P2, P3 andP4.

Note that process interfaces may contain groups that do not correspond to maximal
cliques. Such groups are redundant in the sense that do not represent any additional
connectivity information. Groupg2 of Fig. 2 is an example of a redundant group. A
canonicalform for ω-calculus expressions can be defined in which redundant groups
are elided.

Fig. 1 provides multiple views of the topology of the MANET ata particular mo-
ment in time. As discussed below, the network topology may change over time due
to node movement, a feature of MANETs captured operationally in theω-calculus via
dynamic updates of process interfaces.

Local Broadcast in theω-calculus. Theω-calculus action to locally broadcast a value
x is bx, whiler(y) is the action for receiving a valuey. Thus, when a process transmits
a message, only the messagex to be sent is included in the specification. The set of
possible recipients depends on the process’s current interface: only those processes that
share a common group with the sender can receive the message and this information
is not part of the syntax of local broadcast actions. In the example of Fig. 1, ifP2 can
broadcast a message andP1, P3, P4 are willing to receive it, then the expression

N = r(x).P ′
1 :{g1, g2} | bu.P ′

2 :{g1} | r(y).P ′
3 :{g2} | r(z).P ′

4 :{g1}

may evolve to

N = P ′
1{u/x} :{g1, g2} | P ′

2 :{g1} | r(y).P ′
3 :{g2} | P ′

4{u/z} :{g1}

Observe thatP3 does not receive the message sinceN3 is not inN2’s neighborhood.
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Fig. 2. (a) Node Connectivity Graph afterN3’s movement and (b) View inω-calculus.

Node mobility in the ω-calculus. Node mobility is captured through the dynamic
creation of new groups and dynamically changing process interfaces. Fig. 2 shows the
topology of the network of Fig. 1 afterN3 moves away fromN1’s transmission range
and intoN4’s transmission range.N3’s movement means that theω-calculus expression

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} | P3 :{g2} | P4 :{g1})

evolves to

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} | (νg3)(P3 :{g3} | P4 :{g1, g3}))

The new groupg3 in the above expression represents the new maximal set of neighbor-
ing nodesN3 andN4 that arises post-movement. We use the familiarνg notation for
group-name scoping.

Nodes vs. Processes.In anω-calculus specification, nodes typically represent physi-
cal devices; as such, the calculus does not provide a primitive for node creation. Process
creation, however, is supported, as processes model programs and other executables that
execute within the confines of a device.

3 Syntax and Transitional Semantics of theω-Calculus
We begin this section by presenting the syntax and semanticsof ω0, our core calculus
for MANETs. We then introduce the extensions toω0 that result in the more expressive
ω1- andω2-calculi.

3.1 Syntax ofω0

A system description in theω0-calculus comprises a set ofnodes, each of which runs a
sequentialprocessannotated by itsinterface. We useN andP to denote the sets of all
nodes and all processes, respectively, withM, N ranging over nodes andP, Q ranging
over processes. We also use names drawn from two disjoint sets:Pn andGn. The names
in Pn, calledpnamesfor process names, are used for data values. The names inGn,
calledgnamesfor group names, are used for process interfaces. We usex, y, z to range
overPn andg (possibly subscripted) to range overGn. Theω0-calculus has a two-level
syntax describing nodes and processes, respectively.

The syntax ofω0-calculus processes is defined by the following grammar:

P ::= nil | Act.P | P + P | [x = y]P | A(
⇀
x)

Act ::= bx | r(x) | τ
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N1. M ≡ M | 0
N2. M1 |M2 ≡ M2 |M1

N3. (M1 |M2) |M3 ≡ M1 | (M2 |M3)
N4. (νg)M ≡ M, if g /∈ fgn(M)
N5. (νg)M |N ≡ (νg)(M |N), if g /∈ fgn(N)
N6. (νg1)(νg2)M ≡ (νg2)(νg1)M
N7. M ≡N, if M ≡α N

N8. P :G≡Q :G, if P ≡Q
N9. P :G≡ (νg)(P :G ∪ {g}), if g /∈ G

P1. P + Q ≡ Q + P
P2. (P + Q) + R ≡ P + (Q + R)
P3. P ≡Q, if P ≡α Q

Table 1.Structural congruence relation.

Action bx represents the local broadcast of a valuex, while the reception of a locally
broadcasted value is denoted byr(x). Internal (silent) actions are denoted byτ . Pro-
cessnil is the deadlocked process;Act.P is the process that can perform actionAct and
then behave asP ; and+ is the operator for nondeterministic choice. Process[x = y]P
(wherex andy are pnames) behaves asP if namesx andy match, and asnil otherwise.
A(

⇀
x ) denotesprocess invocation, whereA is a process name (having a corresponding

definition) and
⇀
x is a comma-separated list of actual parameters (pnames) of the invo-

cation. A process definition is of the formA(
⇀
x)

def
= P , and associates a process name

A and a list of formal parameters
⇀
x (i.e. distinct pnames) with process expressionP .

Process definitions may be recursive.
The following grammar defines the syntax ofω0-calculus node expressions:

M ::= 0 | P :G | (νg)M | M |M

0 is the inactive node, whileP : G is a node with processP having interface (set of
gnames)G. The operator(νg) is used to restrict the scopes of gnames.M |N represents
the parallel composition of node expressionsM andN . Node expressions of the form
P :G are calledbasic node expressions, while those containing the restriction or parallel
operator are calledstructured node expressions. Note that gnames occur only at the node
level, capturing the intuition that, in an ad hoc network, the behavioral specification of
a (basic) node (represented by its process) is independent of its underlying interface.

Free and Bound Names.Pnamex is free inbx.P and bound inr(x).P . Gnameg
is bound in(νg)M , and all gnames inG are free inP : G. In a process definition of

the formA(
⇀
x )

def
= P ,

⇀
x are the only names that may occur free inP . The set of all

names, free names and bound names in a process expressionP are denoted byn(P ),
fn(P ) andbn(P ), respectively. Similarly, the set of all pnames and gnames in a node
expressionM are denoted bypn(M) andgn(M), and those that occur free are denoted
by fpn(M) andfgn(M), respectively. The set of all free names in a node expressionM
is given byfn(M) = fpn(M) ∪ fgn(M). An expression without free names is called
closed. An expression that is notclosedis said to beopen. The theory developed in the
following sections is applicable to bothopenandclosedsystems (expressions).

3.2 Transitional Semantics ofω0

The transitional semantics of theω0-calculus is defined in terms of a structural congru-
ence relation≡ (Table 1) and a labeled transition relation

α
−→⊆ N × N, whereα is
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Rule Name Rule Side Condition

MCAST
(bx.P ):G

Gx
−→ P :G

RECV
(r(x).P ):G

G(x)
−→ P :G

CHOICE
P :G

α
−→ P ′:G

(P + Q):G
α

−→ P ′:G

MATCH
P :G

α
−→ P ′:G

([x=x]P ):G
α

−→ P ′:G

DEF
P{

⇀
y /

⇀
x}:G

α
−→ P ′:G

A(
⇀
y ):G

α
−→ P ′:G

A(
⇀
x)

def
= P

Table 2.Transition rules for basic node expressions.

Rule Name Rule Side Condition

STRUCT
N ≡M M

α
−→ M ′ M ′ ≡N ′

N
α

−→N ′

MOBILITY ( I)
M |P :G

µ
−→ M |P :G′

G′ 6= G,
G′ ⊆ G ∪ fgn(M),
χ(M |P :G) |= I =⇒

χ(M |P :G′) |= I

PAR
M

α
−→ M ′

M |N
α

−→ M ′ |N
bn(α) ∩ fn(N) = ∅

COM
M

Gx
−→ M ′ N

G′(y)
−→ N ′

M |N
Gx
−→ M ′ |N ′{x/y}

G ∩ G′ 6= ∅

GNAME-RES1
M

α
−→ M ′

(ν g)M
α\{g}
−→ (ν g)M ′

GNAME-RES2
M

Gx
−→ M ′

(ν g)M
τ

−→ (ν g)M ′
G = {g}

Table 3.Transition rules for structured node expressions.

the transition label. As such, only node expressions have transitions, and theseare of
the formM

α
−→ M ′. There are several varieties of transition labels. When a node of

the formP :G broadcasts a valuex, it generates a transition labeled byGx. WhenP :G
receives a broadcast valuex, the corresponding transition label isG(x). Actionsµ and
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τ also serve as transition labels, withµ, as explained below, indicating node movement,
andτ representing internal (silent) actions.

For transition labelα, the sets of bound names and gnames ofα are denotedbn(α)
andgn(α), respectively, and defined as follows:

bn(Gx) = ∅, bn(G(x)) = {x}, bn(µ) = ∅, bn(τ) = ∅.
gn(Gx) = G, gn(G(x)) = G, gn(µ) = ∅, gn(τ) = ∅.
The transitional semantics of theω0-calculus is given by the inference rules of Ta-

bles 2 and 3, with the former supplying the inference rules for basic node expressions
and the latter for structured node expressions. Rules CHOICE, MATCH, and DEF of
Table 2 are standard. Rules MCAST and RECV of Table 2, together with COM of Ta-
ble 3, define a notion oflocal broadcastcommunication. RECV states that a basic node
with process interfaceG can receive a local broadcast on any gname inG. This, to-
gether with COM, means that a local-broadcast sender can synchronize with any local-
broadcast receiver with whom it shares a gname (i.e. the receiver is in the transmission
range of the sender).

Local-broadcast synchronization results in a local-broadcast transition label of the
form Gx, thereby enabling other receivers to synchronize with the original send action.
In contrast to the broadcast calculi of [4, 12], a node that iscapable of receiving a local
broadcast is not forced to synchronize with the sender. The semantics of local broadcast
in theω-calculus allows a receiver to ignore a local-broadcast event even if this node is
in the transmission range of the broadcasting node. A semantics of this nature captures
the lossy transmission inherent in MANETs. The semantics oflocal broadcast can easily
be modified to force all potential receivers to receive a local broadcast.

GNAME-RES1 and GNAME-RES2 define the effect of closing the scope of a
gname. GNAME-RES1 states that a restricted gname cannot occur in a transition la-
bel. In GNAME-RES1, letG be the set of gnames inα; i.e., G = gn(α). Then the
transition labelα \ {g} in the consequent of this rule denotesα with the occurrence of
gnames inα replaced byG \ {g}, given thatG \ {g} 6= ∅ andα /∈ {τ, µ}. Note that if
α = τ (α = µ), thenα \ {g} = τ ( α \ {g} = µ). GNAME-RES2 states that when all
gnames of a local-broadcast-send action are restricted, itbecomes aτ -action. MCAST,
GNAME-RES1 and GNAME-RES2 together mean that a local-broadcast send is non-
blocking; i.e., it can be performed on a set of restricted groups even when there are
no corresponding receive actions. In contrast, other actions containing gnames, such as
local-broadcast receive, are not covered by GNAME-RES2, and hence have blocking
semantics: a system cannot perform actions involving restricted gnames unless there is
a corresponding synchronizing action.

The notion of structural congruence (Table 1) considered inrule STRUCT is defined
for processes (rules P1-P3) in the standard way—P andQ are structurally congruent
if they are alpha-equivalent or congruent under the associativity and commutativity of
the choice (‘+’) operator—and then lifted to nodes (rules N1-N9). Two basic node
expressions are structurally congruent if they have identical process interfaces and run
structurally congruent processes (rule N8). Rules N4-N6 are for restriction on gnames.
Rule N9 allows basic nodes to create and acquire a new group name or drop a local
group name. Structural congruence of nodes includes alpha-equivalence (rule N7) and
the associativity and commutativity of the parallel (‘|’) operator (rules N2 and N3).
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Semantics of mobility. The semantics of node movement is defined by the MOBIL-
ITY rule, which states that the process interface of nodeP :G can change fromG to G′

whenever the node is in parallel with another nodeM . In particular, the side condition
G′ ⊆ G∪ fgn(M) stipulates thatP may drop gnames from its interface or acquire free
gnames fromM .

The MOBILITY rule reflects the fact thatP ’s interface may change when node
P : G, or the nodes around it, are in motion. A change inP ’s interface may further
result in a corresponding change in the overall network topology. Note that the rule
does not specify which nodes moved, only that the topology has been updated as the
result of movement of one or more nodes.

Process interfaces provide an abstract specification of network topology in terms of
node connectivity graphs. Formally, thenode connectivity graphof a node expression
M , denoted byχ(M), is an undirected graph(V, E) such thatV , the set of vertices, are
the basic nodes ofM (i.e. subexpressions ofM of the formP : G) andE, the set of
edges, is defined as follows. There is an edge between two verticesP1 :G1 andP2 :G2

of χ(M) only if P1 andP2’s interfaces overlap; i.e.G1 ∩ G2 6≡ ∅ (assuming bound
names ofM are unique and distinct from its free names). The node connectivity graph
for theω0 node expression of Fig. 1(d) is given in Fig. 1(c).

The third side condition to the MOBILITY rule, expressed in terms of node connec-
tivity graphs, allows one to impose different models of nodemovement on the calculus.
Specifically, the side condition decrees that, wheneverM

µ
−→ M ′ is derived using the

MOBILITY rule, the resulting transition must preserve amobility invariantexpressed
as a property over the node connectivity graph. A mobility invariant is a decidable
property over undirected graphs. For example,k-connectedness, for a givenk, is a can-
didate mobility invariant, as istrue , indicating no constraints on node movement. We
write G |= I to indicate that undirected graphG possesses propertyI. We thus have
that the MOBILITY rule in particular, and the calculus’s semantics in general, are pa-
rameterized by the mobility invariant, thus taking into account the constraints on node
movement.

3.3 Theω1- and ω2-Calculi

Theω1- andω2-calculi are defined in a modular fashion by adding new syntactic con-
structs, and associated inference rules for their semantics, to theω0-calculus.

Extendingω0 to ω1. Syntactically, we obtainω1 from ω0 as follows:

– We add restriction operators forpnamesfor both process-level and node-level ex-
pressions. We use the standard notation of(νx)P for a pnamex restricted to a
process expressionP , and(νx)N for a pnamex restricted to a node expressionN .
As usual,x is bound in(νx)P and(νx)N .

– We introduce unicast communication as a prefix operator for process expressions.
Although unicast in principle can be implemented on top of broadcast, we prefer
to give it first-class status, as it is a frequent action in MANET protocols. Doing
so also facilitates concise modeling and deterministic reasoning (only the intended
recipient can receive a unicast message). We use the standard notation ofxy to
denote the sending of namey alongx, andx(y) to denote the reception of a name
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Rule Name Rule Side Condition

UNI-SEND
(zx.P ):G

z:Gx
−→ P :G

UNI-RECV
(z(x).P ):G

z:G(x)
−→ P :G

UNI-COM
M

z:Gx
−→ M ′ N

z:G′(y)
−→ N ′

M |N
τ

−→ M ′ |N ′{x/y}
G ∩ G′ 6= ∅

Table 4.Transition rules for unicast communication inω1-calculus.

alongx that will bind toy. As usual,x andy are free in the expressionxy.P , andx
is free andy is bound inx(y).P .

Semantically, the introduction of scoped pnames needs new inference rules to han-
dle scope extrusion. We add OPEN and CLOSE rules (as in theπ-calculus [11]) and, in
addition to the broadcast communication rule (COM) ofω0, a rule for communication
of bound names. We also add RES rules at the process and node levels to disallow com-
munication over a restricted name. These additional rules follow closely the standard
rules for handling scopes and scope extrusion in theπ-calculus; details are omitted. New
structural congruence rules are added to take the restriction of pnames into account. For
instance, restriction of pnames and gnames commute (i.e.(νx)(νg)N ≡ (νg)(νx)N ),
and the restriction operator can be pushed into or pulled outof node and process ex-
pressions as long as free names are not captured. At first glance, it may appear that the
structural congruence rules for scope extension of pnames are redundant in the presence
of the scope-extrusion rules (OPEN/CLOSE). However, the OPEN/CLOSE rules are es-
sential for reasoning about open systems, and the scope extension rules are essential for
defining normal forms; see [16].

The addition of unicast communication raises certain interesting issues with respect
to mobility. Recall thatgroupsencapsulate the locality of a process. When two pro-
cesses share a private name, they can use that name as a channel of communication.
However, after establishing that link, if the processes move away from each other, they
may no longer be able to use that name as a channel. In summary,unicast channels
should also respect the locality of communication. We enforce this in theω1-calculus
by annotating unicast action labels with the interfaces of the participating processes, and
allowing synchronization between actions only when their interfaces overlap (meaning
that the processes are in each other’s transmission range).Hence, the execution of a
unicast send action of valuex on channelz by a basic node with process interfaceG is
represented by action labelz :Gx; the corresponding receive action is labeledz :G(x).

The semantic rules for unicast send (UNI-SEND), receive (UNI-RECV), and syn-
chronization (UNI-COM) are given in Table 4. Scope extrusion via unicast communica-
tion is accomplished by naturally extending theirπ-calculus counterparts (OPEN/CLOSE)
rules as follows. Bound-output actions (due to OPEN) are annotated with the interface
of the participating process, and the CLOSE rule applies only when the interfaces over-
lap. These extensions are straightforward, and the detailsare omitted.
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Note that the scope of a name may encompass different processes regardless of their
interfaces, and hence two processes may share a secret even when they are outside each
others transmission ranges. The restriction we impose is that shared names can be used
as unicast channels only when the processes are within each others transmission ranges.

Extending ω1 to ω2. We obtain theω2-calculus by adding the parallel composition
(‘ |’) operator at the process level, thereby allowing concurrent processes within a node.
This addition facilitates e.g. the modeling of communication between layers of a pro-
tocol stack running at a single node; it also renders theπ-calculus a subcalculus of
theω2-calculus. Inω2, the actions of two processes within a node may be interleaved.
Moreover, two processes within a node can synchronize usingunicast (binary) commu-
nication. We add PAR, COM and CLOSE rules corresponding to intra-node interleav-
ing, synchronization and scope extrusion, respectively; these rules are straightforward
extensions of the corresponding rules in theπ-calculus.

4 Bisimulation, Congruence Results and Other Properties ofthe ω-Calculus
In this section, we prove some fundamental properties of theω-calculus, including con-
gruence results for strong bisimulation and a weak version of bisimulation that treatsτ -
andµ-actions as unobservable.

Embedding of theπ-Calculus. The ω-calculus is a conservative extension of theπ-
calculus [11]. That is, every process expressionP in theπ-calculus can be syntactically
translated to anω-node expressionM such that the transition system generated byM
directly corresponds to the one generated byP . This property is formally stated by the
following theorem, which is readily proved by induction on the length of derivations.

Theorem 1 Let P be a process expression in theπ-calculus. ThenP : {g} is a node
expression in theω-calculus, whereg is a fresh group name not inP . Moreover,P

α
−→

P ′ is a transition derivable from the operational semantics ofthe π-calculus if and

only if P : {g}
α′

−→ P ′ : {g} is derivable from the operational semantics of theω-
calculus, and one of the following conditions hold: (i)α = α′ = τ ; (ii) α = x(y)
and α′ = x : {g}(y); (iii) α = xy and α′ = x : {g}y ; or (iv) α = (νy)xy and
α′ = (νy)x : {g}y, for some namesx, y.

Decidability of the Finite-Control Fragment.In thefinite-controlfragment of theπ-
calculus, recursive definitions are not allowed to contain the parallel operator (‘|’) nor
unguarded occurrences of process identifiers. Reachability properties are decidable for
closed process expressions (i.e. those without free names)specified in the finite-control
fragment [3]. We can extend the notion of finite control to theω-calculus, and show
that reachability remains decidable for closed node expressions. Formally, we say that
anω-calculus expressionN is reachablefrom M (denoted byM−→∗N ) if there is a
finite sequence of transitionsM

α1→ M1
α2→ M2 · · ·

αn→ N . We then have the following
result.

Theorem 2 Let M be a finite-controlω-calculus expression such thatM is closed
w.r.t. names. Then, the set of node expressions reachable fromM modulo the structural
congruence relation, i.e.,{N | M−→∗N}≡, is finite.

Theorem 2 is of practical importance in verifying MANET system specifications.
Its proof is based on the observation that, in theω-calculus, the physical notion of

10



neighborhood is represented abstractly by group-based connectivity information. This
ensures that only a finite number of equivalent configurations need be analyzed.

Bisimulation for the ω-calculus. The definition of strong (late) bisimulation for the
π-calculus [11] can be extended to theω-calculus.

Definition 1 A relationS ⊆ N × N on nodes is astrong simulationif M S N implies:

– fgn(M) = fgn(N), and
– wheneverM

α
−→ M ′ wherebn(α) is fresh then:

• if α ∈ {G(x), z :G(x)}, there exists anN ′ s.t.N
α

−→ N ′ and for each pnamey,
M ′{y/x} S N ′{y/x},

• if α /∈ {G(x), z :G(x)}, there exists anN ′ s.t.N
α

−→ N ′ andM ′ S N ′.

S is a strong bisimulationif bothS andS−1 are strong simulations. NodesM andN
arestrong bisimilar, writtenM ∼ N , if M S N , for somestrong bisimulationS.

Proposition 3 (i) ∼ is an equivalence; and (ii)∼ is the largest strong bisimulation.

Strong bisimulation is a congruence for theω-calculus, as formally stated in Theorem 4.

Theorem 4 (Congruence)∼ is a congruence relation; i.e., for all nodesM1, M2 ∈ N,
the following hold:

(i) M1 ∼ M2 implies∀x ∈ Pn : (νx)M1 ∼ (νx)M2;
(ii) M1 ∼ M2 implies∀g ∈ Gn : (νg)M1 ∼ (νg)M2; and
(iii) M1 ∼ M2 implies∀N ∈ N : M1|N ∼ M2|N .

We have also defined a notion ofweak bisimulationfor the ω-calculus, in which
τ - andµ-actions are treated as unobservable. Its definition is similar to that for strong
bisimulation (Definition 1) and is given in [16]. There, we also establish that weak
bisimulation, like its strong counterpart, is a congruencefor theω-calculus.

5 Case Study: Modeling and Verifying a Leader Election Protocol for MANETs

Syntactic extensions to theω-calculus. Theω-calculus provides the basic mecha-
nisms needed to model MANETs. In order to make specificationsmore concise, we
extend the calculus to a polyadic version (along the same lines as the polyadic pi-
calculus [10]) and also add support for data types such as bounded integers and struc-
tured terms. The matching prefix is extended to include equality over these types. Terms
composed of these types can be used as values in a unicast or local broadcast transmis-
sion, or as actual parameters for a process invocation. The modifications to the theory
developed in the preceding sections (Sections 3-4) to account for these syntactic exten-
sions to the calculus are straightforward.

A leader election protocol for MANETs. The algorithm of [17] elects the node
with the maximum id among a set of connected nodes as the leader of the connected
component. A node that initiates the leader election sends an election message to its
neighboring nodes. The recipients of theelection message mark the node from which
they received the message as their parent and send theelection message to their neigh-
bors, thereby building a spanning tree with the initiator asthe root. After sending an
election message, a node awaits acknowledgements from its children in the spanning
tree. A child noden sends its parent an acknowledgementack with the maximum id in
the spanning tree rooted atn. The maximum id in the spanning tree is propagated up the
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Fig. 3.Message flow in leader election protocol

tree to the root. The root node then announces the leader to all the nodes in its spanning
tree by sending aleader message. To keep track of the neighbors of a node,probe and
reply messages are used periodically. When a node discovers that it is disconnected
from its leader, it initiates an election process. The flow ofelection, ack, andleader
messages is depicted in Fig. 3, where the node with id1 is the initiator.

Description of the protocol in the ω-calculus. We model a network as the par-
allel composition of basicω-nodes, whose process interfaces reflect the initial topol-
ogy of the network. Each node runs an instance of processnode(id, chan, init, elec,
lid, pChan) defined in Fig. 4. The meaning of this process’s parameters isthe follow-
ing: id is the node identifier;chanis an input channel;init indicates whether the node
initiates the election process;elecindicates whether the node is part of the election pro-
cess;lid represents the node’s knowledge of the leader id; andpChanis the parent’s
input channel. These parameters are represented by pnames and integers.

A node may receiveelection, ack, andleader messages, representing an election
message, an acknowledgement to the election process, and a leader message, respec-
tively. We need not considerprobe andreply messages in our model because a node
can broadcast to its neighbors without knowing its neighbors, and the effect of discon-
nection between nodes can be modeled using the choice operator. Theω-calculus model
of the protocol is given in Fig. 4. The messages, their parameters, and the parameters
used in the definitions appearing in Fig. 4 are explained below:

Messages:election(sndrChan); ack(maxid); leader(maxid).

Message parameters:sndrChan: input channel of the sender of the message;maxid:
maximum id seen so far by the sender of the message.

Definition parameters:id: id of the node,chan: input channel of the node;init: 1 if
node initiated the election process, 0 otherwise;elec: 1 if node is participating in the
election process, 0 otherwise;lid: node’s knowledge of the leader id;pChan: input
channel of the node’s parent in the spanning tree;sndrChan: input channel of the
sender node of the message;maxid: maximum id seen so far by the node.

An example specification of an eight-node network running the leader election pro-
tocol of Fig. 4 is given in Fig. 5. The initial network topology is the same as that of
the network of Fig. 3. The node with id1 (initElection) is designated to be the initia-
tor of the leader-election process. The last parameternone in the process invocations
indicates that the parent channel is initially not known to the processes.

12



/* A node may receive anelection or aleader message. */

node(id, chan, init, elec, lid, pChan)
def
=

r(election(sndrChan)). processElection(id, chan, init, 1, lid, pChan, sndrChan)
+ r(leader(maxid)). processLeader(id, chan, init, elec, lid, pChan, maxid)

/* Node that initiates election process broadcastselection msg and awaitsack in stateawaitAck. */

initElection(id, chan, init, elec, lid, pChan)
def
=

b election(chan). awaitAck(id, chan, init, 1, id, none)

/* When a node receives anelection message it reaches theprocessElection state where it broad-
casts theelection message and goes to stateawaitAck. */

processElection(id, chan, init, elec, lid, pChan, sndrChan)
def
=

b election(chan). awaitAck(id, chan, init, elec, lid, sndrChan)

/* A node in awaitAck state may receive anack and reachprocessAck state or it may nondeter-
ministically conclude that it has receivedack from all its children in the spanning tree. In the latter
case, it declares the leader by broadcasting aleader message if it is the initiator. Otherwise, it sends
(unicast) anack to its parent node (pChan) with the maximum id in the spanning tree rooted at this
node. */

awaitAck(id, chan, init, elec, lid, pChan)
def
=

chan(ack(maxid)). processAck(id, chan, init, elec, lid, pChan, maxid)

+ [init = 1]b leader(lid). node(id, chan, init, 0, lid, pChan)

+ [init = 0] pChan ack(id, lid). node(id, chan, init, elec, lid, pChan)

/* On receiving anack, a node stores the maximum of the ids received inack messages. */

processAck(id, chan, init, elec, lid, pChan, maxid)
def
=

[maxid >= lid] awaitAck(id, chan, init, elec, maxid, pChan)
+ [maxid < lid] awaitAck(id, chan, init, elec, lid, pChan)

/* On receiving aleader message, a node sets itslid parameter to themaxid in theleader message.
If maxid is less thanlid, then either the node was not part of the election process or did not report
ack to its parent node (probably because it moved away from its parent). In either case, it broadcasts
its lid as the maximum id. */

processLeader(id, chan, init, elec, lid, pChan, sndrChan, maxid)
def
=

[maxid = lid](

[elec = 1] b leader(maxid). node(id, chan, init, 0, lid, pChan)
+ [elec = 0] node(id, chan, init, 0, lid, pChan)

)

+ [maxid > lid] b leader(maxid). node(id, chan, init, 0, maxid, pChan)

+ [maxid < lid] b leader(lid). node(id, chan, init, 0, lid, pChan)

Fig. 4.ω-calculus encoding of the leader election protocol for MANETs.
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M = (νa)(νb)(νc)(νd)(νe)(νh)(νi)(νj)(νg1)(νg2)(νg3)(νg4)(νg5)(νg6)(νg7)
(initElection(1, a, 1, 0, 1, none) : {g1, g2}

|node(2, b, 0, 0, 2, none) : {g1, g3, g4}
|node(3, c, 0, 0, 3, none) : {g4}

|node(4, d, 0, 0, 4, none) : {g2, g5}
|node(5, e, 0, 0, 5, none) : {g3}
|node(6, h, 0, 0, 6, none) : {g5, g6, g7}

|node(7, i, 0, 0, 7, none) : {g6}
|node(8, j, 0, 0, 8, none) : {g7})

Fig. 5.ω-calculus specification of leader election protocol for an 8-node tree-structured
network.

Verifying the leader election protocol model. Following our earlier encoding of the
semantics of value-passing CCS and theπ-calculus [15, 19] using the XSB tabled logic-
programming system [18], we encoded the transitional semantics of theω-calculus us-
ing Prolog rules. Each inference rule of the semantics is encoded as a rule for a predicate
trans , which evaluates the transition relation of a givenω-calculus model. We also
encoded a weak bisimulation checker for theω-calculus in Prolog. The weak version
of the transition relation, abstractingτ - andµ-transitions, is encoded as thedtrans
predicate. The predicatenb(S1, S2) checks if twoω-specificationsS1 andS2 are
weak bisimilar. Using this implementation, we verified the following correctness prop-
erty for the leader election protocol for MANETs:Eventually a node with the maximum
id in a connected component is elected as the leader of the component, and every node
connected to it (via one or more hops) learns about it.

The verification was performed on models havingtree- andring-structured initial
topologies. A distinguished node (with maximum id, for example, node 8 marked ‘M’
for “mobile” in Fig. 3) was free to move as long as the network remained connected.
A mobility invariant was used to constrain the other nodes toremain connected to their
neighbors. For verification purposes, we added a nodefinal to the model that remains
connected to all other nodes. A node, upon learning its leader, forwards this infor-
mation to nodefinal. After final receives messages from every other node with their
leader ids equal to the maximum id in the network, it performsthe observable action
action(leader(MaxId)). The closedω-specification of the protocol was checked for
weak bisimilarity with anω-specification that emitsaction(leader(MaxId)) as the
only observable action. Weak bisimilarity between these two specifications indicates
that the correctness property is true of the system.

We verified the correctness property for networks containing 5 through 8 nodes. Ta-
ble 5 lists the states, transitions and time (in seconds) it took our Prolog implementation
of the calculus and weak bisimulation checker to verify the property for networks with
initial tree and ring topologies. We consider this implementation to be a prototype. Its
main purpose is to demonstrate the feasibility and straightforwardness of implementing
the calculus in a tabled logic-programming system. As future work, we plan to develop
an optimizing compiler for theω-calculus, along the lines of one for theπ-calculus
implemented in the MMC model checker [20]. As these prior results demonstrate, this
should significantly improve the performance of our implementation.
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Nodes Tree Ring
States Transitions Time(sec) States Transitions Time(sec)

5 77 96 0.97 98 118 1.22
6 168 223 3.35 212 281 4.45
7 300 455 11.55 453 664 17.58
8 663 1073 45.85 952 1560 71.22

Table 5.Verification statistics forω-calculus model of leader election protocol.

We observed a number of benefits in using theω-calculus to model the leader elec-
tion protocol for MANETs. (1) The concise and modular natureof our specification is
a direction consequence of the calculus’s basic features, including separation of control
behavior (processes) from neighborhood information (interfaces), and modeling sup-
port for unicast, local broadcast, and mobility. (2) The mobility constraints imposed on
the model are specified independently of the control logic using a mobility invariant.
For the case at hand, the invariant dictates that all nodes other than a distinguished node
(node 8 in Fig. 3) remain connected to their initial neighbors. Thus, during protocol ex-
ecution, process interfaces may change at will as long as themobility invariant is main-
tained. (3) Our specification of the protocol is given in the finite-control sub-calculus
of theω-calculus, thereby rendering it amenable to automatic verification (bisimulation
checking); see also Theorem 2.

6 Related Work
Several process calculi have recently been developed for wireless and mobile ad hoc
networks. The closest to our work are CBS# [12], CWS [9], CMN [8], and CMAN [5].
These calculi provide local broadcast and separate controlbehavior from neighborhood
information. However, there are significant differences between these calculi and ours,
which we now discuss. CBS# [12], based on the CBS process algebra of [14], supports
a notion of located processes. Node connectivity information is given independently
of a system specification in terms of node connectivity graphs. The effect of mobility
is achieved by nondeterministically choosing a node connectivity graph from a family
of such graphs when a transition is derived. In contrast, theω-calculus offers a single,
integrated language for specifying control behavior and connectivity information, and
permits reasoning about changes to connectivity information within the calculus itself.

In CWS [9], node location and transmission range are a part ofthe node syntax.
Node movement is not supported, although the authors suggest the addition of prim-
itives for this feature. CWS is well-suited for modeling device-level behaviors (e.g.,
interference due to simultaneous transmissions) in wireless systems.

In CMN [8], a MANET node is a named, located sequential process that can broad-
cast within a specific transmission radius. Both the location and transmission radius
are values in a physical coordinate system. Nodes are designated as mobile or sta-
tionary, and those of the former kind can move to an arbitrarylocation (resulting in
a tau-transition). Bisimulation as defined for CMN is based on a notion of physically
located observers. A calculus based on physical locations may pose problems for model
checking as a model’s state space would be infinite if locations are drawn from a real
coordinate system.

In CMAN [5], each node is associated with a specificlocation. Furthermore, each
noden is annotated by aconnection set: the set of locations of nodes to whichn is
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connected. Connections sets thus determine the network topology. Synchronous local
broadcast is the sole communication primitive. The connection set of a node explic-
itly identifies the node’s neighbors. Consequently, when a node moves, its neighbors
actively participate by removing from (or adding to) their connection sets the location
of the moving node. This explicit handling of connection information affects the mod-
ularity of the calculus’s semantics (the definition of bisimulation, in particular), and
may preclude reasoning about open systems. In contrast, in theω-calculus, neighbor-
hood information is implicitly maintained using groups, thereby permitting us to define
bisimulation relations in a natural way.

Other calculi for mobile processes that have been proposed in the literature include
theπ-calculus [11],bπ-calculus [4], HOBS [13], distributed process calculusDπ [7],
and the ambient calculus [2]. These calculi could be used to model MANETs but not as
in a concise and natural fashion as with theω-calculus.

7 Conclusions and Future Work

Theω-calculus, introduced in this paper, is a conservative extension of theπ-calculus
that permits succinct and high-level encodings of MANET systems and protocols. The
salient aspect of the calculus is its group-based support for local broadcast communi-
cation over dynamically changing network topologies. We have shown that reachability
of system states is decidable for the finite-control fragment of the calculus, and late
bisimulation and its weak counterpart is a congruence. We illustrated the practical util-
ity of the new formalism by using it to develop a model of a leader-election algorithm
for MANETS [17]. We also showed how the calculus’s operational semantics can be
readily encoded in the XSB tabled logic-programming system, thereby allowing us to
generate transition systems fromω-calculus specifications. We used this feature to im-
plement a weak bisimulation checker for theω-calculus, which we then used to verify
certain key properties of our encoding of the leader election algorithm of [17].

We have also considered the problem of adding aπ-calculus-likemismatchoperator
to theω-calculus [16], the introduction of which necessitates a lifting of the calculus’s
transitional semantics to a symbolic one. This is to ensure that terms identified as un-
equal do not violate substitution of free names in expressions. As desired, the congru-
ence results of Section 4 can be established for this extension as well [16].

As mentioned in Section 5, future work involves the development of an optimizing
compiler for theω-calculus, along the lines of one for theπ-calculus implemented in
the MMC model checker [20]. MMC exploits the use of binary synchronization in the
π-calculus, generating specialized rules from which the transition system can be derived
efficiently at model-checking time. The MMC compiler enables MMC to match the ef-
ficiency of model checkers for non-mobile systems. Extending such compilation tech-
niques to broadcast and multicast communication is an open problem. Another avenue
of future work is the development of a compositional model checker for theω-calculus,
such as of those for CCS and theπ-calculus [1, 21]. A model checker of this nature
would permit verification of infinite families of MANETs. Finally, theω-calculus mod-
els bidirectional connectivity between nodes. Since certain MANET protocols rely on
unidirectional node connections, it would be fruitful to extend the calculus with such a
modeling capability.
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