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Abstract. A prominent source of complexity in the verification of ad hocnet-
work (AHN) protocols is the fact that the number of network topologies grows
exponentially with the number of nodes in the network squared. To combat this
instance explosionproblem, we present a query-based verification framework for
AHN protocols that utilizes symbolic reachability analysis. Specifically we con-
sider AHN nodes of the formP : I , whereP is a process andI is an interface:
a set of groups, where each group represents a multicast port. Two processes can
communicate if there interfaces share a common group. To achieve asymbolic
representation of network topologies, we treat process interfaces as variables and
introduce a constraint language for representing topologies. Terms of the lan-
guage are simply conjunctions ofconnectionand disconnectionconstraints of
the formconn(Ji,Jj) anddconn(Ji,Jj), whereJi andJj are interface vari-
ables. Oursymbolic reachability algorithmexplores the symbolic state space of
an AHN in breadth-first order, accumulating topology constraints as multicast-
transmit and multicast-receive transitions are encountered. We demonstrate the
practical utility of our framework by applying it to the problem of detecting un-
resolved collisions in the LMAC protocol for sensor networks.

1 Introduction
An ad-hoc network(AHN) is a local area network (LAN) that is built spontaneously as
wireless devices connect. Instead of relying on a base station to coordinate the flow of
messages between nodes in the network, individual nodes forward packets to and from
each other. Because of its ah-hoc nature, ann-node AHN can assume any one of the
possibleO(2n2

) topologies. A number of network protocols have been developed for
AHNs, including routing, MAC-layer, and transport protocols.

Due to the vast space of possible network topologies, the verification of AHN pro-
tocols is a computationally intensive if not intractable task. Consider, for example, the
verification of the LMAC medium access control [13] protocolperformed in [5]. (We
also consider this protocol in Section 6.) The approach taken in [5] was to separately
model check each of the possible network topologies (moduloisomorphism) for a fixed
number of nodes in order to detect those that might lead tounresolved collisions. An
unresolved collision occurs when neighboring nodes (connected by at most two links)
without a common neighbor attempt to transmit within the same time slot; due to the
lack of a common neighbor, the collision remains undetected. The problem with this
approach is that as the number of nodes in the network grows, the number of possible
topologies grows exponentially, posing aninstance explosionproblem for verification.

To combat instance explosion, we present in this paper a new,constraint-basedsym-
bolic verification technique for ad-hoc network protocols. The basic idea behind our
approach is as follows. As in [11], we represent AHNs as a collection of nodes of the
form P : I, whereP is a sequential process andI is aninterface. An interface is a set



of groups, with each group corresponding to a clique in the network topology. Dually,
a group is used as a local-broadcast (multi-cast) communication port. Two nodes in the
network can communicate (are within each other’s transmission range) only if there
respective interfaces have a non-null intersection (sharea common group).

To achieve asymbolicrepresentation of an AHN, we treat process interfaces as
variables and introduce a constraint language for representing topologies. Terms of the
language are simply conjunctions ofconnectionanddisconnection constraintsof the
form conn(Ji,Jj) anddconn(Ji,Jj), respectively. Here,Ji andJj are interface vari-
ables, andconn(Ji,Jj) signifies thatJi andJj are connected (Ji ∩ Jj 6= ∅), while
dconn(Ji,Jj) means thatJi andJj are disconnected (Ji ∩ Jj = ∅). As such, each
term of the language symbolically represents asetof possible topologies.

Given this symbolic representation of AHNs, one can now askmodel-checking
queriesof the form: under what evaluations (i.e. topologies) of thesymbolic interface
variables does the reachability property in question hold?Oursymbolic reachability al-
gorithmexplores the symbolic state space of an AHN. Asymbolic stateis a pair of the
form (s, γ), wheres is a network state comprising both the locations of the component
processes and valuations of their local variables, andγ is a term from our topology con-
straint language. A symbolic transition from(s, γ) to (s′, γ′) is constructed by adding
constraints toγ to obtainγ′ whenever a communication (local broadcast) occurs. As-
suming the communication involves processPi as the broadcaster, the following con-
straints will be added: those of the formconn(Ji,Jj), wherePj is a process capable of
performing a corresponding receive action and deemed to fall within the transmission
range ofPi; and those of the formdconn(Ji,Jk), wherePk is also a process capable
of performing a receive action and deemednot to fall within Pi’s transmission range.

We describe an efficient symbolic reachability algorithm toverify reachability prop-
erties of symbolic AHNs. We moreover show that our symbolic reachability algorithm
can be extended without major modification to query-based model checking of LTL
properties. To demonstrate the practical utility of our symbolic verification technique
for AHN protocols, we applied it to the problem of detecting unresolved collisions in
the above-described LMAC protocol [13]. Our results show that our symbolic approach
to query-based model checking is highly effective: in the case of a 6-node network, our
symbolic reachability algorithm explored only 2,082 symbolic topologies, compared to
a possible 32,768 actual topologies. Moreover, all 2,082 symbolic topologies were con-
sideredin a single verification run. In contrast, for the same property, the authors of [5]
considered no more than a 5-node network, using 61 separate verification runs, one for
each unique (modulo isomorphism) concrete topology.

Main Contributions. The rest of the paper is organized around our main technical
results, which include the following:
– Section 4 presents our modeling framework for AHNs, its concrete and symbolic

semantics, and a correspondence result relating the two semantics.
– Section 5 considers our query-based verification techniquebased on symbolic reach-

ability analysis, and its extension to LTL properties.
– Section 6 illustrates the practical utility of our technique by analyzing a formal

model of the LMAC [13] protocol, a MAC layer protocol for sensor networks.
Additionally, Section 2 discusses our concrete and symbolic representations for AHN
network topologies, Section 3 describes related work, and Section 7 offers our conclud-
ing remarks and directions for future work. Due to space limitations, complete proofs
are omitted.
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Fig. 1.Example topologies for collision and collision-detectionin the LMAC protocol.

2 An Example of Topologies and Topology Constraints
Below we illustrate the use of a constraint language for representing sets of network
topologies. In the LMAC protocol of [13], which is used to allocate transmission
slots in a sensor network MAC layer, collision, i.e. simultaneous transmission between
two nodes with overlapping ranges, is detected by neighborscommon to both nodes.
Fig. 1(a) shows a network topology for which a collision between nodes 1 and 2 can be
detected due to the presence of a common neighbor (node 4). Fig. 1(b) shows a topol-
ogy for which a collision between 1 and 2 remains undetected since they do not share a
neighbor.

As described in Section 1, we consider AHN nodes of the formP : I, where
P is a process andI is an interface. Further, an interface is a set ofgroups, with
each groupg representing a shared communication channel and dually correspond-
ing to a clique in the network topology [11]. Figs. 2(a) and 2(b) provide a group-
based view and concrete representation based on process interfaces of the network
topology of Fig. 1(a). A symbolic representation of the sametopology is given in
Fig. 2(c) using connection (conn) and disconnection(dconn) constraints over interface
variablesJ1–J4, as mentioned in Sec. 1. The language in which symbolic topology
constraints is expressed is formally described in Section 4. The symbolic representation
permits us to compactly representsetsof topologies. For instance, consider the con-
straintconn(J1,J2) ∧ conn(J1,J4) ∧ conn(J2,J3) ∧ conn(J3,J4). This represents
topologies that contain edges(1, 2), (1, 4), (2, 3) and(3, 4). The topologies in this set
may or may not contain edges(1, 3) and/or(2, 4). Hence the above constraint represents
four 4-node topologies, including the ones in Fig. 1. We use topology constraints when
constructing a symbolic verification proof (by reachability or model checking) to con-
sider a set of topologies simultaneously. These constraints may get refined as needed as
we progress in the proof, corresponding to case splits amongthe set of topologies. The
constraint representation and lazy case-splitting enableus to consider a large number of
topologies simultaneously within a single verification run.

3 Related Work
Our symbolic approach to query-based model checking of AHN protocols can be con-
sidered a form ofconstraint-based model checking. Traditionally this technique has
been used for the verification of infinite-state systems [4, 10], data-independent sys-
tems [12], systems with non-linear arithmetic constraints[3], timed automata [7], and
imperative infinite-state programs [6]. In these works, constraints were used to com-
pactly represent sets of states of a system being verified. Incontrast to these, our ap-
proach uses variables in the system specification (to represent interconnections) and
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Fig. 2.Concrete and symbolic views of network topology of Fig. 1(a).

finds their valuations (in this case, topologies) for which aproperty holds. In this sense,
our approach is closely related to temporal logic query checking, introduced in [2],
which addresses the following problem: given a Kripke structure and a temporal logic
formula with a placeholder, determine all propositional formulasφ such that whenφ
is inserted in the placeholder, the resulting temporal logic formula is satisfied by the
Kripke structure. Query checking has been extended in a number of ways, including
query checking of a wide range of temporal logics using a new class of alternating au-
tomata [1]; the application of query checking to a variety ofmodel exploration tasks,
ranging from invariant computation to test case generation[9]; and its adaptation to
solving temporal queries in which formulas may contain integer variables [15].

Recently, symbolic representation of the set topologies has been used in [8] to ana-
lyze ad hoc networks. The constraint language in that work can only express the pres-
ence of connections between nodes, and not the absence of connections, in contrast to
our work. It should be noted that the undetected collision problem in the LMAC proto-
col (see Section 6) is due to absence of connections, and cannot be detected using the
constraint language of [8].

As mentioned in Section 1, the correctness of the 4-node and 5-node LMAC proto-
col [13] has been previously established in [5] using the UPPAAL model checker for
timed automata. By systematically considering all 11 topologies for the 4-node case
and all 61 topologies for the 5-node case (modulo isomorphism), they report all net-
work topologies for which collisions may remain undetectedin the LMAC protocol.
They also iteratively improve the protocol model so that thenumber of topologies for
which the protocol may fail is reduced. In contrast, our query-based approach verifies
a property related to unresolved collisions using a single symbolic reachability run,
thereby allowing us to additionally consider the 6-node case.

4 Modeling Framework
4.1 Syntax

We formally define the syntax and semantics of our framework.Systems in our frame-
work are modeled as composition ofnodes. Following the notion of separation of a
node’s communication and computation behavior presented in theω-calculus [11], we
consider a node to consist of aprocess(computational behavior) and aninterface(com-
munication capability). We present the notations used in defining our framework, fol-
lowed by formal definitions of the components of our framework, namely a process, an
interface, a node, and a system.

Let D be a non-emptydomainwith a set ofoperationsF andrelationsR defined
over it, andVar be a countable set ofvariablesover domainD. For instance,D may
be a set of finite integers, withF containing arithmetic operations, andR comprising



equality, dis-equality and relational operations over integers. Symbolsx, y (possibly
subscripted) range over elements ofVar. An environmentθ : X 7→ D, whereX ⊆ Var
is a mapping from variables inVar to values in domainD. SymbolΘ is used to denote
the set of all environments overVar andD. We useE to denote the set ofexpressions,
which are terms over elements ofD ∪Var ∪F . Expressions are represented by symbol
e (possibly subscripted). Aprimitive conditionis a term with a symbol fromR whose
arguments are elements ofE . A conditionis a conjunction of primitive conditions. An
assignmentis of the formx := e, wherex ∈ Var ande ∈ E . Following traditional
programming language semantics, we use[[.]] to represent semantics for expressions,
conditions and assignments. For an expressione, conditioncond, and assignmentasgn,
[[e]] : Θ 7→ D, [[cond]] : Θ 7→ Bool, and [[asgn]] : Θ 7→ Θ are mappings from an
environment to domainD, Bool = { true , false }, and an environment, respectively.
Semantics of a single assignment can be extended to a set of simultaneous assignments
in the standard way.

The syntactic definition of a process is as follows.

Definition 1 (Process)A process= 〈L, X, Σ, δ, l0, η0〉, is an extended finite state au-
tomaton over domainD, where:
– L is a finite set oflocations.
– X ⊆ Var is a set oflocal variablesfor the process.
– Σ is a finite set ofaction labelscontaining

• b e, e ∈ E (broadcastaction).
• r (x), x ∈ X (receiveaction).

– δ is a finite set oftransitions. A transition is a tuple(l, α, l′, 〈ρ, η〉), where
• l, l′ ∈ L are sourceand targetlocations, respectively.
• α ∈ Σ is anaction label.
• ρ, a condition, is atransition guard.
• η is a set ofsimultaneous assignmentsof the formx1 := e1, . . . , xn := en,

where thexi are pairwise distinct.
– l0 ∈ L is thestart location.
– η0 is the set ofinitial assignmentsof the formx := c, ∀x ∈ X , andc ∈ D.

In the above definition of a process, we require that a variable that is used in a receive
transition should not be assigned in the same transition.

An interface, represented by symbolI (possibly subscripted), is a finite set of names
calledgroup names. Group names are denoted by symbolg (possibly subscripted). We
useI to denote the set of all interfaces. AnodeP :I denotes a processP with interface
I. Henceforth we usen to denote the set{1, . . . , n}, andPi, i ∈ n, to denote the
process〈Li, Xi, Σ, δi, l0,i, η0,i〉 over domainD.

Definition 2 (Ad Hoc Network, AHN) For i ∈ n, Pi = 〈Li, Xi, Σ, δi, l0,i, η0,i〉 s.t.
Xi ⊆ Var are pairwise disjoint, thenΠi∈nPi :Ii is anAHN.

4.2 Concrete Semantics

We provide a labeled transition system (LTS) based semantics for AHNs. An LTS is
a 4-tuple(S, Act,−→, s0), whereS is a set of states,Act is a set of labels,−→⊆
S × Act × S is a ternary relation of labeled transitions, ands0 ∈ S is the initial state.
A labeled transition(s, α, t) ∈−→, is also represented ass

α
−→ t.



Definition 3 (Semantics of an AHN) The semantics of an AHNΠi∈nPi : Ii, denoted
as[[Πi∈nPi : Ii]], is the LTS(S, Act, T, s0) such that:

– S = L × Θ, whereL = L1 × . . . × Ln, Θ is the set of all possible environments
X 7→ D, X = X1 ⊎ · · · ⊎ Xn.

– Act = {b v | v ∈ D}.

– −→ is such that(l, θ)
b v
−→ (l

′
, θ′), wherel = (l1, . . . , ln), l

′
= (l′1, . . . , l

′
n),

θ′ = [[η]]θ, v = [[e]]θ if:
• ∃i ∈ n: (li,b e, l′i, 〈ρi, ηi〉) ∈ δi, and
• k = {k|(lk, r (xk), l′k, 〈ρk, ηk〉) ∈ δk, k ∈ n, k 6= i, Ii ∩ Ik 6= ∅}, such that :

∗ ∀j ∈ n \ (k ∪ {i}): l′j = lj

∗ ρ = ρi ∧
∧

k∈k
ρk, [[ρ]]θ is true

∗ η = ηi ∪
⋃

k∈k
ηk[v/xk] ∪ {xk := v}

– s0 = (l0, θ0), wherel0 = 〈l0,1, . . . , l0,n〉, θ0 = [[
⋃

i∈n
η0,i]]θǫ, andθǫ is the empty

environment.

In the description of the transition relation (−→) in Definition 3,i denotes the index of a
process capable of performing a broadcast (b e) action, andk denotes the set of indices
of processes that are able to receive a value broadcast by processPi. Note that processes
not participating in the synchronization remain in the samelocation. For a transition to
be enabled, the guards of synchronizing processes must be true. When a transition is
taken, the value transmitted by the broadcaster is propagated to all receivers, and the
assignments of the participating processes are performed.

4.3 Symbolic System Specification

We define a symbolic semantics for AHNs in which process interfaces are treated as
variables. For example, for a nodeP : I, I is treated as a variable in contrast to the
concrete semantics, whereI represents a set of group names. We useJ to denote the
set of interface variables andJ (possibly subscripted) to denote elements ofJ.
Topology Constraint Language. Constraints on process interface variables are given
by the following grammar. SymbolΓ represents the constraint language andγ (possibly
subscripted) represents elements ofΓ .

Γ ::= true | false | conn(J,J) | dconn(J,J) | Γ ∧ Γ

A valuationϑ : J → I maps an interface variableJ to an interfaceI. A valuationϑ is
a model of a constraintγ, written asϑ |= γ, defined as follows:

ϑ |= true
ϑ 6|= false
ϑ |= conn(J1,J2) if ϑ(J1) ∩ ϑ(J2) 6= ∅
ϑ |= dconn(J1,J2) if ϑ(J1) ∩ ϑ(J2) = ∅
ϑ |= Γ1 ∧ Γ2 if ϑ |= Γ1 ∧ ϑ |= Γ2

A constraint of the formconn(J1,J2) requires that nodes with interface variables
J1 andJ2 be connected, enabling them to communicate with each other.Constraint
dconn(J1,J2) requires nodes with interface variablesJ1 andJ2 to be disconnected.
A constraintγ is satisfiable, if there exists an interface valuationϑ that assigns each
interface variable inγ a value (set of group names) such thatϑ |= γ. Two constraints
γ1 andγ2 areequivalent (≡) if for every valuationϑ s.t.ϑ |= γ1, it holds thatϑ |= γ2,
and vice-versa.



Proposition 1 Satisfiability of topology constraints is decidable.

Proof Sketch:The following procedure determines the satisfiability of conjunction of
primitive constraints over interface variables, and returns a satisfying assignment if
there exists one.
Consider a constraintγ over interface variablesJ1, . . . ,Jn.
– Step 1: For every constraint of the formconn(Ji,Jj), add a fresh namegij to Ji

andJj (so thatJi ∩ Jj 6= ∅).
– Step 2: For everyJi that is not assigned a value in Step 1, initializeJi to singleton

set{gi}, such thatgi has not been assigned to any interface variable in Step 1.
– Step 3: For every constraint of the formdconn(Ji,Jj), if Ji ∩ Jj = ∅, then con-

straintγ is satisfiable, otherwiseγ is unsatisfiable.
This procedure terminates and ifγ is satisfiable, returns one satisfying assignment.⊓⊔

For example, solution to the constraintconn(J1,J2)∧ conn(J1,J4)∧ conn(J2,J3)∧
conn(J3,J4), isJ1 = {g1,2, g1,4},J2 = {g1,2, g2,3},J3 = {g2,3, g3,4},J4 = {g1,4, g3,4}.

A symbolic AHN is an AHN for which topology is represented using interface vari-
ables.

Definition 4 (Symbolic AHN) For i ∈ n, Pi = 〈Li, Xi, Σ, δi, l0,i, η0,i〉 s.t.Xi ⊆ Var
are pairwise disjoint, thenΠi∈nPi :Ji is asymbolic AHN.

Definition 5 (Semantics of a symbolic AHN)The semantics of a symbolic AHNΠi∈nPi : Ji,
denoted as[[Πi∈nPi : Ji]], is the symbolic LTS(S, Act, T, s0), such that:

– S = L × Θ×Γ , whereL = L1× . . .×Ln, Θ is the set of all possible environments
X 7→ D, X = X1 ⊎ · · · ⊎ Xn.

– Act = {b v | v ∈ D}.

– ; is such that(l, θ, γ)
b v
; (l

′
, θ′, γ′), wherel = (l1, . . . , ln), l

′
= (l′1, . . . , l

′
n),

θ′ = [[η]]θ, v = [[e]]θ if:
• ∃i ∈ n: (li,b e, l′i, 〈ρi, ηi〉) ∈ δi, and
• k = {k|(lk, r (xk), l′k, 〈ρk, ηk〉) ∈ δk, k ∈ n, k 6= i}, ∃kc,kd : k = kc ⊎ kd

such that:

∗ ∀j ∈ n \ (kc ∪ {i}): l′j = lj

∗ ρ = ρi ∧
∧

k∈kc
ρk, [[ρ]]θ is true

∗ η = ηi ∪
⋃

k∈kc
ηk[v/xk] ∪ {xk := v}

∗ γ′ = γ ∧
∧

k∈kc
conn(Ji,Jk) ∧

∧
k∈kd

dconn(Ji,Jk) is satisfiable

– s0 = (l0, θ0, true ), wherel0 = 〈l0,1, . . . , l0,n〉, θ0 = [[
⋃

i∈n
η0,i]]θǫ, andθǫ is the

empty environment.

In the clause for transition relation (;) in Definition 5,i denotes the index of a process
enabled to do a broadcast (b e) action, andk denotes the set of indices of processes
that are enabled to perform a receive action.kc andkd form a partition ofk such that
kc is the set of indices of processes that synchronize with thePi; thusconn constraint
is generated for processes inkc. Processes with indices inkd do not synchronize with
broadcast action ofPi, and thus are not connected toPi, anddconn constraint is gener-
ated for the transition. Note that, as in the concrete semantics, processes not involved in
the synchronization remain in their locations. The guards and assignments are treated
exactly as in the concrete semantics, considering only the synchronizing processes.



Theorem 2 (Correspondence)The symbolic semantics is sound and complete w.r.t.
the concrete semantics; i.e.(s, γ)

α
; (s′, γ′) in [[Πi∈nPi :Ji]] iff ∀ interface valuations

ϑ s.t.ϑ |= γ′, s
α

−→ s′ in [[Πi∈nPi :ϑ(Ji)]].

Proof Sketch:

– Soundness:Consider a symbolic transition(s, γ)
α
; (s′, γ′) in Πi∈nPi :Ji. From

the semantics of the symbolic transitions,γ′ =⇒ γ. For all ϑ s.t.ϑ |= γ′ (also
ϑ |= γ), there exists a concrete transitions

α
−→ s′ in Πi∈nPi :ϑ(Ji).

– Completeness:Consider a concrete transitions
α

−→ s′ in Πi∈nPi : Ii. Let ϑ be
an interface valuation,γ′ be a constraint, and fori ∈ n, Ji be interface variables,
such thatϑ(Ji) = Ii, andϑ |= γ′. Then∃γ : γ =⇒ γ′, and(s, γ)

α
; (s′, γ′) in

Πi∈nPi :Ji. ⊓⊔

5 Constraint-Based Verification
5.1 Verification of Reachability Properties

We first consider verification of symbolic AHNs for reachability properties, which is
done by constructing and traversing the symbolic transition system.

Definition 6 (Reachability) For an AHNAC = Πi∈nPi : Ii, the set of states reach-
able from a states in [[AC ]], denoted byReachC(s, AC), is the smallest set such that
s ∈ ReachC(s, AC) and for everys′ ∈ ReachC(s, AC) and for everyα ∈ Act if
s′

α
−→ s′′ ∈ [[AC ]] thens′′ ∈ ReachC(s, AC)

For a symbolic AHNAS = Πi∈nPi :Ji, the set of states reachable from a symbolic
state(s, γ) in the [[AS ]], denoted byReachS((s, γ), AS), is the smallest set such that
(s, γ) ∈ ReachS((s, γ), AS), and for every(s′, γ′) ∈ ReachS((s, γ), AS) and for
everyα ∈ Act if (s′, γ′)

α
; (s′′, γ′′) then(s′′, γ′′) ∈ ReachS((s, γ), AS).

Satisfaction of a Property. A property over a concrete AHNAC , denoted byφ is
either a proposition, defined over the states ofAC , or of the formEFp, wherep is a
proposition. We uses |= φ to denote satisfaction of propertyφ in states. We say that
s |= EFp if there is some states′ reachable froms such thats′ |= p. The notion of
satisfaction of a property is lifted to symbolic states, denoted as(s, γ) |= φ, if γ is
satisfiable, andφ is true ins in every topologyϑ such thatϑ |= γ. The following propo-
sition establishes that when verifying a reachability property for a symbolic AHN, it is
sufficient to examine a subset of symbolic states. In particular, once(s, γ) is visited and
(s, γ) |= φ, all states(s, γ′) such thatγ′ =⇒ γ can be discarded from consideration.

Proposition 3 For a given symbolic state(s0, γ0), symbolic AHNAS , and propertyφ,
if ∃(s, γ) ∈ ReachS((s0, γ0), AS) s.t.(s, γ) |= φ, then∀(s, γ′) ∈ ReachS((s0, γ0), AS)
s.t.γ′ =⇒ γ, (s, γ′) |= φ.

Algorithm SymReach (Fig. 3) uses Prop. 3 to prune the search space for prov-
ing reachability properties. For a given predicatep, a symbolic AHN and a start state
(s0, γ0) in the AHN, AlgorithmSymReach returns the set of most general constraints
CSsuch that for allγ ∈ CS(s0, γ) |= EFp. The set of reachable states are stored inR
and a working setWS is used to store unvisited states (Line 3) during a breadth-first
traversal of the transition system. At the beginning of eachiteration (Line 4) states in
R−WS have been completely explored. Since each transition only adds to the topology
constraints, we discard symbolic states whose topologies are already known to satisfy
the reachability property (Line 8). Line 9 uses Prop. 3 to prune the search space. In
Line 13,mg chooses the most general set of constraints from a given set of constraints.



Algorithm SymReach

Input : predicatep ; symbolic AHNAS ; initial symbolic state(s0, γ0)
Output : CS the set of most general constraints in states that satisfyp and are

reachable from initial state(s0, γ0)

1.
2.

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

R := {(s0, γ0)}

CS :=



{γ0} if (s0, γ0) |= p
∅ otherwise

ff

WS:= {(s0, γ0)} // working set (FIFO queue)
while (WS6= ∅)

let (s, γ) ∈ WS
WS:= WS\ (s, γ)

for each transition(s, γ)
α
; (s′, γ′) in [[AS]]

if γ′ not subsumed by any constraint inCS

if there exists no(s′, γ′′) ∈ R such thatγ′ =⇒ γ′′

WS:= WS∪ {(s′, γ′)}
R := R ∪ {(s′, γ′)}
if (s′, γ′) |= p

CS := mg(CS ∪ {γ′})
returnCS

Fig. 3.Refined Symbolic Reachability Algorithm

AlgorithmSymReach returns theCS set upon termination. It is easily shown that for
a finite-state AHN AlgorithmSymReach terminates.

The following theorem formally states the correctness of the algorithm: that the
set of topology constraints computed bySymReach exactly covers the topology con-
straints inReachS (Def. 6).

Theorem 4 (Correctness)Let CS ′ = {γ | (s, γ) ∈ ReachS((s0, γ0), AS), (s, γ) |=
φ} be the set of all constraints that are part of the reachable symbolic states(s, γ) for
whichφ holds. LetCS be the set returned by AlgorithmSymReach (Figure 3). Then
∀γ′ ∈ CS ′ ∃γ ∈ CS : γ′ =⇒ γ, and∀γ ∈ CS ∃γ′ ∈ CS ′ : γ ≡ γ′.

The choice of breadth-first search (BFS) in AlgorithmSymReach is important for
the following two reasons. First, subsumption-based pruning of search space is more
effective with BFS because general constraints are visitedbefore more specific con-
straints. Secondly, the use of BFS makes it easy to show the tight bound on the total
number of symbolic transitions, used in the complexity analysis.

5.2 Complexity Analysis for theSymReach Algorithm

Consider a concrete AHNAC with n nodes. Let the total number of states inAC be|S|,
and the total number of transitions inAC be |T | = O(|S|2). The time for reachability
analysis from a given initial state inAC is bounded by the number of transitions and is
equal to|T | = O(|S|2). The total number of topologies for ann-node AHN isO(2n2

).
Therefore, the time complexity for exploring states reachable from a given state in all
n-node AHNs (all possible topologies) isO(2n2

) × |T | = O(2n2

|S|2).
Let AS = Πi∈nPi : Ji be a symbolic AHN andAC the set of all concrete AHNs

ACj
= Πi∈nPi : Ii,j , where indexj indicates one of theO(2n2

) possible topologies
for ann-node network. Recall that each state ofAS is of the form(s, γ), wheres is a
location-environment pair, andγ is a topology constraint. Let|S| be the largest number



of states of any concrete AHNAC ∈ AC . Since the number of distinctγ’s is O(2n2

),
the total number of symbolic states is bounded byO(2n2

|S|).
The number of symbolic transitions is bounded by the total number of concrete

transitions for all possible topologies. We can establish this bound by defining a 1-1
mapping between symbolic transitions from a symbolic state(s, γ) in AS to a transition
from concrete states in AC . Consider associating each state inR andWSwith an index
which is the length of the shortest path from the initial state to(s, γ). Now, let(s, γ) be
the selected state with indexi at some iteration of the algorithm. There is no state(s, γ′)
in R − WS(i.e. visited state) such thatγ =⇒ γ′ (due to the use of subsumption, line 9
of the algorithm). First consider the case when there is no other state(s, γ′) in R with
indexi. It follows from Theorem 2 that for every concrete topology that satisfiesγ, state
s is reachable ini or fewer steps. In fact, there is a concrete topologyϑ |= γ for which
the shortest path to reachs is of lengthi. The symbolic transition that placed(s, γ) in
WScan then be mapped to the corresponding concrete transitionin the topology given
by ϑ. Now consider the case when there is another state(s, γ′) in R with index i. If
(s, γ) and (s, γ′) can be reached using a single transition from a common state,say
(s′′, γ′′), then the symbolic transition that placed(s, γ) in WScan then be mapped to
the corresponding concrete transition in a topology that satisfiesγ ∧ ¬γ′. Otherwise,
(s, γ) and(s, γ′) descend from two distinct states, both of which have the sameindex.
We can then associate with the symbolic transition to(s, γ) the same concrete instance
ϑ used to map the transition to its parent (and similarly with(s, γ′)).

We now show that reachability computation over symbolic state space takes no
additional time, in the asymptotic sense, than reachability over concrete state spaces.
The main additional cost of symbolic reachability algorithm is constraint subsumption
(line 9 of the algorithm). We can do this operation in amortized constant time, as fol-
lows. First, consider computing and storing the subsumption lattice for the constraints
a priori. The construction cost of this lattice isO(2n2

) but is paid only once. We can
associate a set, initially empty, with each constraint in the lattice. To determine whether
(s, γ) should be added toR, we check ifs is in the set associated withγ in the lattice.
This check can be done in constant time. When(s, γ) is added toR, we adds to the sets
associated with constraints more specific thanγ. This operation may takeO(2n2

) in the
worst case, but note that an elements may be added to the set associated withγ at most
once, and hence maintaining this data structure incurs a total cost ofO(2n2

|S|) over the
entire run of the algorithm. Hence symbolic reachability can be done inO(2n2

|S|2),
the same complexity as that of the concrete algorithm.

The space complexity is bounded by the size of the set of reachable states,R. The
number of elements of this set is2n2

|S|. The size of each element isO(n2) due to the
size of the topology constraint, but this factor gets down-played in the asymptotic case.
Hence the asymptotic space complexity for the symbolic algorithm isO(2n2

|S|).

5.3 Model Checking Symbolic AHNs.

The symbolic transition system can be readily used for checking LTL properties of
AHNs. We can use the standard procedure of constructing the product between a Büchi
automaton (corresponding to the negation of a given LTL property) and the symbolic
transition system and look for reachable accepting cycles in the product graph. Note that
for every symbolic transition of the form(s, γ) ; (s′, γ′), it holds thatγ′ =⇒ γ. Hence
it follows that if (s, γ) and(s, γ′) are two states in a cycle, thenγ ≡ γ′. Hence the con-



straint component of states in a cycle are all equivalent. Let (s1, γ), (s2, γ), . . . (sn, γ)
be states in an accepting cycle such that(si, γ) ; (si+1, γ) for 1 ≤ i < n, and
(sn, γ) ; (s1, γ). It follows from Theorem 2 that for every concrete topologyϑ such
thatϑ |= γ, the statess1, s2, . . . , sn will be in an accepting cycle. Hence reachable good
cycles in the symbolic case mean that there are reachable good cycles in the concrete
case. This forms the basis for LTL model checking of symbolicAHNs.

Model checking of other temporal logics such as CTL and CTL* can be performed
over symbolic AHNs by using the standard algorithms over thesymbolic transition
system. From the complexity results for reachability checking, it follows that model
checking for symbolic AHNs can be done in time and space comparable to the total
time and space for model checking of concrete AHNs for all topologies.

6 Verification of the LMAC Protocol
We built a prototype implementation ofSymReach in the XSB logic programming
system [14]. XSB adds the capability of memoizing inferences to a traditional Prolog-
based system, which simplifies the implementation of fixed point algorithms such as
SymReach . Below we present the results of verifying the LMAC protocol[13], a
medium access control protocol for wireless sensor networks, using this prototype.

LMAC protocol for Wireless Sensor Networks

The LMAC protocol aims to allocate each node in the sensor network a time slot during
which the node can transmit without collisions. Note that for collision freedom, direct
(one-hop) neighbors as well as two-hop neighbors must have pairwise different slots.
The protocol works by nondeterministically assigning slots, and resolving any colli-
sions that result from this assignment. We apply our query-based verification technique
to this protocol to compute the set of topologies for which there are undetected and
hence unresolved collisions.

Protocol Decription [13]. In schedule-based MAC protocols, time is divided into slots,
which are grouped into fixed length frames. Every node is allocated one time slot in
which it can carry out its transmission in a frame without causing collision or inter-
ference with other transmissions. Each node broadcasts a set of time slots occupied by
its (one-hop) neighbors and itself. When a node receives a message from a neighbor
it marks the respective time slot as occupied. The four phases of the LMAC protocol
involved in allocating time slots to nodes are as follows.Initialization phase:a node
listens on the wireless medium to detect other nodes. On listening from a neighboring
node, the node synchronizes by learning the current slot number and transitions to the
wait phase.Wait phase:a node waits for a random period of time and then continues
with the discover phase.Discover phase:a node listens to its one-hop neighbors during
one entire frame and records the time slots occupied by them and their neighbors. On
gathering information regarding the occupied time slots, the node randomly chooses a
time slot from the available ones (time slots that do not interfere in its one-hop and two-
hop neighborhood), and advances to the active phase.Active phase:a node transmits
a message in its own time slot and listens during other time slots. When a neighboring
node informs that there was a collision in the time slot of thenode, the node transitions
to the wait phase to discover a new time slot for itself. Collisions can occur when two
or more one-hop or two-hop neighboring nodes choose the sametime slot for trans-
mission. Nodes causing a collision cannot detect the collision themselves, they need
to be informed by their neighboring nodes about the collision. When a node detects a
collision it transmits information about the collision in its time slot.



Passive LMAC Process :< L, X, Σ, δ, l0, η0 >
L = {init, init1, init2, listening0, recOne0, done0, choice0, choice, active, sent,

listening, recOne, recTwo, collision detected}
X = {Current, RecV ec, Counter, SlotNo, F irst, Second, Col, Collision}
Σ = {r (msg(Sslot,Scollision, Sfirst)), r (eos),b msg(slot, collision, first)}
l0 = init
η0 = {Current := −1, RecV ec := ∅, Counter := 0, SlotNo := −1, F irst := ∅,

Second := ∅, Col := −1, Collision := −1}
Transitions(l, α, l′, 〈ρ, η〉) ∈ δ are given below:
Init
[r (msg(Sslot, , ))] init → init1 & Current′ := Sslot
[r (eos)] init1 → listening0 & Current′ := (Current + 1)%frame, Counter′ := 0
[r (msg( , , ))] init1 → init2
[r (eos)] init2 → init

Discover
[r (msg( , , Sfirst))] listening0 → recOne0 & RecV ec′ := Sfirst,

F irst′ := {Current} ∪ First
[r (msg( , , ))] recOne0 → done0 & if Collision < 0 then Collision′ :=Current,

RecV ec′ := ∅
[r (eos)] done0 → choice0 & Current′ := (Current + 1)%frame
[r (eos)] recOne0 → choice0 & Current′ := (Current + 1)%frame,

Second′ := RecV ec ∪ Second, RecV ec′ := ∅
[r (eos)] listening0 → choice0 & Current′ := (Current + 1)%frame
[ ] choice0 & Counter < frame − 1 → listening0 & Counter′ := Counter + 1
[ ] choice0 & Counter >= frame − 1 → choice & Second′ := First ∪ Second

Choice
[ ] choice & Second 6= AllSlots → active & SlotNo′ ∈ AllSlots \ Second,

Second′ := ∅
[ ] choice & Second = AllSlots → listening0 & Counter′ := −1, Collision′ := −1,

F irst′ := ∅, Second′ := ∅
Active
[bmsg(SlotNo, Collision, F irst)] active & Current=SlotNo → sent & Collision′:=−1
[ ] active & Current 6= SlotNo → listening

Send
[r (eos)] sent → active & Current′ := (Current + 1)%frame

Listen
[r (msg( , Scollision, ))] listening → recOne & Col′ := Scollision,

F irst′ := Current ∪ First
[r (eos)] listening → active & Current′ := (Current + 1)%frame
[r (msg( , , ))] recOne → recTwo & if Collision′ < 0 then Collision′ :=Current
[r (eos)] recTwo → active & Current′ := (Current + 1)%frame
[r (eos)] recOne & Col 6= SlotNo → active & Current′ := (Current + 1)%frame

Collision Reported
[r (eos)] recOne & Col = SlotNo → collision detected & First′ := ∅, RecV ec′ := ∅

Current′ := (Current + 1)%frame,
Counter′ := 0, SlotNo′ := −1,
Col′ := −1, Collision′ := −1

[ ] collision detected → listening0

Fig. 4. LMAC protocol model.



Modeling the LMAC protocol in our framework. Our encoding of the LMAC pro-
tocol in our framework follows the encoding used in [5]. We carry over the underlying
assumption in the LMAC protocol, that the local clocks of nodes are synchronous. Since
there is no support for modeling time in our prototype framework, we define a special
timer node that informs other nodes about the end of a time slot by broadcasting anend
of slotmessage. Nodes update their local information at the end of every time slot.

An encoding of a process in an AHN model of LMAC is presented inFig. 4. At the
beginning, we assume that one distinguished node is “active” (i.e. in active location)
and the rest are “passive” (i.e. ininit location). Note that the figure gives the definition
of a passive node; the definition of the active node is identical except for its initial state.
The (symbolic) system specification for a 3-node network is shown below.

A = timer : J1 | activenode: J2 | passivenode: J3 | passivenode: J4

Transitions in Fig. 4 are specified in the form[label] l & ρ → l′ & η, wherelabel
is the label of the transition,l andl′ are the source and destination locations,ρ is the
(optional) guard andη is the set of simultaneous assignments. We use the standard no-
tation ofprimedvariables to denote variables in the destination state. We use “epsilon”
transitions (denoted by action label[ ] in the figure) to simplify the encoding. We can
derive the epsilon-free description (as in the formal definition of AHNs, Defn. 1) using
standard automata construction techniques. In our model ofLMAC, locationsinit, init1
andinit2 correspond to theinitialization phase; locationslistening0, recOne0,
done0, choice0andchoiceto thediscover phase; and locationsactive, sent, listen-
ing, recOne, recTwo, andcollision detectedto theactive phase. It should be noted
that thewait phase of the protocol is not modeled, since its function is toonly separate
the initialization and discover phases by an arbitrary period of time.

The length of a time frame i.e. number of slots (= 5 for 5-node network) is repre-
sented byframe, andAllSlotsdenotes the set of all time slots. The state variables of
a node are:Current (the current slot number w.r.t. the beginning of a frame),RecVec
(auxiliary set to record the slots occupied by one-hop and two-hop neighbors),Counter
(used to count the number of slots seen by the node in a frame),SlotNo(slot number
of the node),First (set of slots occupied by one-hop neighbors of the node),Second
(set of slots occupied by two-hop neighbors of the node),Col (collision slot reported
by another node),Collision (slot in which the node detects a collision). The parameters
of messages (msg) exchanged between nodes are:Slot, Collision, andFirst variables of
the sender node.

Analysis of the LMAC protocol. The property “every collision is eventually de-
tected” can be encoded in LTL asG(collision⇒ Fcollision detected), wherecollision
andcollision detectedare propositions that are true in states where collision andcol-
lision detection occur, respectively. Although LTL model checking of symbolic AHNs
can be done as outlined in 5, our current prototype implementation supports only reach-
ability checking. We hence checked a related property “there is a detected collision”
(EFcollision detected). LetCSbe the set of all topology constraints computed using al-
gorithmSymReach when checking for reachability of propositioncollision detected.
Let ϑ be a valuation such thatϑ 6|= γ for anyγ ∈ CS. Note that in the LMAC protocol,
there may be a collision between any two neighboring nodes. If γ does not represent
a fully disconnected topology, then we can conclude that there is an undetected colli-
sion inγ. Hence, by checking for reachability of propositioncollision detected, we can
compute (a subset of) topologies which have undetected collision. Moreover, using this



Nodes # Topologies # States # Transitions CPU Time Memory (MB)
Symbolic/Concrete

2 1/2 36 36 0.08 sec 2.42
3 5/8 110 123 0.24 sec 2.46
4 25/64 458 667 3.38 sec 3.05
5 181/1024 2204 5223 69.51 sec 5.09
6 2082/32768 29012 110194 2 hr 51 min 46 sec 49.79

Table 1.Verification statistics for the LMAC protocol fordetected collisions.

method is sound: if there is an undetected collision in some topology, we will find at
least one representative.

Verification Statistics and Results.We did symbolic reachability checking for 2- to
6-node networks. The performance results are shown in Table1. The results were ob-
tained on a machine with Intel Xeon 1.7GHz processor and 2Gb memory running Linux
2.6.18, and with XSB Prolog version 3.1. For 2- and 3-node cases there were no colli-
sions. For 4-, 5- and 6-node cases, topologies containing one-hop neighboring (directly
connected) node pairs that appeared in a ring in the topologyand did not have a common
direct neighbor were found to be in collision that remained undetected.

The second column in the table gives two numbersξs/ξc, whereξs is the number of
symbolic topology constraints explored in a reachability run, i.e. the number of distinct
γ such that(s, γ) ∈ R as per the algorithm in Fig. 3; andξc is the total number of
possible concrete topologies. Observe that for the 6-node case the number of symbolic
topology constraints examined is smaller than the number ofconcrete topologies by a
factor of more than5. It should also be noted that the same property was verified for
a 5-node network in [5] by using 61 separate verification runs, one for each unique
(modulo isomorphism) concrete topology. In contrast, we verified a related property
using a single symbolic reachability run.

The third and fourth columns in Table 1 give the number of symbolic states and
transitions explored, respectively; and the last two columns give the CPU time and total
memory used. Observe that the performance of our prototype implementation is effi-
cient enough to be used for topologies of reasonable size (e.g. 6 nodes). It should be
noted that our technique and its implementation does not exploit the symmetry inherent
in the problem by identifying isomorphic topologies. At a high level, symmetry reduc-
tion can be incorporated by using a check in line 9 ofSymReach ) that recognizes
constraints representing the same set of topologies moduloisomorphism. Doing so will
enable the technique to scale to large network sizes.

7 Conclusions
We presented an efficient query-based verification technique for ad hoc network pro-
tocols. Network topologies are represented symbolically using interface variables, and
the model-checking process generates constraints on the topology under which a sys-
tem specification satisfies a specified property. As such, a term in our constraint lan-
guage compactly represents a set of concrete topologies that may lead to the satisfac-
tion of the property in question. We demonstrated the practical utility of our approach
by considering the verification of a medium access control protocol for sensor networks
(LMAC) [13], identifying topologies under which collisionmay remain unresolved.

The basic data structure for query-based verification is thesymbolic transition sys-
tem, where each state carries with it a topology constraint.If a symbolic state is reach-
able, then, for every topology satisfying its constraint, the corresponding concrete state



is reachable. This structure makes it possible to infer topologies under which reacha-
bility properties hold. As described in the paper, it is alsopossible to verify properties
specified in temporal logics such as LTL over symbolic transition systems, inferring
sets of topologies under which the properties hold. Extending our prototype implemen-
tation to handle verification with an expressive temporal logic is a topic of future work.
There are several avenues for further improving the efficiency of the symbolic veri-
fication technique. Some of these are optimizations to common low-level operations,
subsumption checks, while others are high-level state-space reductions, e.g. by exploit-
ing symmetries in systems and topologies.

In this work, the focus is on a verification technique and not on the modeling lan-
guage. We considered ad hoc networks whose topology does notchange with time. We
deliberately considered only closed systems and chose a simple language that uses in-
terfaces to separate node behavior from network topology asin theω-calculus [11]. As
part of our future work, we plan to extend this work to open systems specified in the
ω-calculus, and consider compositional verification in thatsetting.
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