Query-Based Model Checking of
Ad Hoc Network Protocols

Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka

Department of Computer Science, Stony Brook Universitgn$Brook, NY 11794-4400, USA
E-mail:{ anusi ngh, cram sas} @s. sunysb. edu

Abstract. A prominent source of complexity in the verification of ad huet-
work (AHN) protocols is the fact that the number of networkdtogies grows
exponentially with the number of nodes in the network sgdiafe combat this
instance explosioproblem, we present a query-based verification framewark fo
AHN protocols that utilizes symbolic reachability analsBpecifically we con-
sider AHN nodes of the forn® : I, whereP is a process and is an interface:

a set of groups, where each group represents a multicasflparfprocesses can
communicate if there interfaces share a common group. Tewselsymbolic
representation of network topologies, we treat processfantes as variables and
introduce a constraint language for representing topeigrerms of the lan-
guage are simply conjunctions obnnectionand disconnectionconstraints of
the formconn(J;, J;) anddconn(J;, J;), whereJ; and J; are interface vari-
ables. Ouisymbolic reachability algorithnexplores the symbolic state space of
an AHN in breadth-first order, accumulating topology caaisiis as multicast-
transmit and multicast-receive transitions are encoedteéWWe demonstrate the
practical utility of our framework by applying it to the prigmn of detecting un-
resolved collisions in the LMAC protocol for sensor netwark

1 Introduction

An ad-hoc networKAHN) is a local area network (LAN) that is built spontanelyuess
wireless devices connect. Instead of relying on a basesttiicoordinate the flow of
messages between nodes in the network, individual nodesfdipackets to and from
each other. Because of its ah-hoc naturepamode AHN can assume any one of the

possible0(2"2) topologies. A number of network protocols have been dewldpr
AHNSs, including routing, MAC-layer, and transport protéeo

Due to the vast space of possible network topologies, thiécatiron of AHN pro-
tocols is a computationally intensive if not intractablskkaConsider, for example, the
verification of the LMAC medium access control [13] protopelformed in [5]. (We
also consider this protocol in Section 6.) The approachrtakg5] was to separately
model check each of the possible network topologies (madaloorphism) for a fixed
number of nodes in order to detect those that might leatchtesolved collisionsAn
unresolved collision occurs when neighboring nodes (coteakeby at most two links)
without a common neighbor attempt to transmit within the sdime slot; due to the
lack of a common neighbor, the collision remains undetectbe problem with this
approach is that as the number of nodes in the network growsyumber of possible
topologies grows exponentially, posing iastance explosioproblem for verification.

To combat instance explosion, we present in this paper acmnstraint-basesym-
bolic verification technique for ad-hoc network protocdl$ie basic idea behind our
approach is as follows. As in [11], we represent AHNs as eectithn of nodes of the
form P : I, whereP is a sequential process aids aninterface An interface is a set

of groups with each group corresponding to a clique in the networlokogy. Dually,
a group is used as a local-broadcast (multi-cast) commtimicport. Two nodes in the
network can communicate (are within each other’s transamissange) only if there
respective interfaces have a non-null intersection (sha@mmon group).

To achieve asymbolicrepresentation of an AHN, we treat process interfaces as
variables and introduce a constraint language for reptiesgtopologies. Terms of the
language are simply conjunctions adnnectionand disconnection constraintsf the
form conn(J;, J;) anddconn(J;, J;), respectively. Here7; and.7; are interface vari-
ables, andonn(7;, J;) signifies that7; andJ; are connectedf; N J; # 0), while
deonn(J;, J;) means that7; andJ; are disconnectedf N 7, = (). As such, each
term of the language symbolically represengetof possible topologies.

Given this symbolic representation of AHNs, one can now REldel-checking
queriesof the form: under what evaluations (i.e. topologies) of simbolic interface
variables does the reachability property in question h@ldPsymbolic reachability al-
gorithmexplores the symbolic state space of an AHNsymbolic statés a pair of the
form (s,), wheres is a network state comprising both the locations of the camepb
processes and valuations of their local variables jaisch term from our topology con-
straint language. A symbolic transition frof®,) to (s’,~’) is constructed by adding
constraints toy to obtainy’ whenever a communication (local broadcast) occurs. As-
suming the communication involves procd3sas the broadcaster, the following con-
straints will be added: those of the fomonn(7;, J;), whereP; is a process capable of
performing a corresponding receive action and deemed ltoviiddin the transmission
range ofP;; and those of the forrdconn(7;, Ji), whereP;, is also a process capable
of performing a receive action and deenmad to fall within P;’s transmission range.

We describe an efficient symbolic reachability algorithmeoify reachability prop-
erties of symbolic AHNs. We moreover show that our symbda&chability algorithm
can be extended without major modification to query-basedehohecking of LTL
properties. To demonstrate the practical utility of our bgiit verification technique
for AHN protocols, we applied it to the problem of detectingesolved collisions in
the above-described LMAC protocol [13]. Our results shoat thur symbolic approach
to query-based model checking is highly effective: in theecaf a 6-node network, our
symbolic reachability algorithm explored only 2,082 syribtopologies, compared to
a possible 32,768 actual topologies. Moreover, all 2,082mic topologies were con-
sideredn a single verification runin contrast, for the same property, the authors of [5]
considered no more than a 5-node network, using 61 separafieation runs, one for
each unique (modulo isomorphism) concrete topology.

Main Contributions. The rest of the paper is organized around our main technical
results, which include the following:
— Section 4 presents our modeling framework for AHNS, its cetecand symbolic
semantics, and a correspondence result relating the twarges.
— Section 5 considers our query-based verification techriigaed on symbolic reach-
ability analysis, and its extension to LTL properties.
— Section 6 illustrates the practical utility of our technéghy analyzing a formal
model of the LMAC [13] protocol, a MAC layer protocol for semsetworks.
Additionally, Section 2 discusses our concrete and syrlvefresentations for AHN
network topologies, Section 3 describes related work, autiéh 7 offers our conclud-
ing remarks and directions for future work. Due to spacetétions, complete proofs
are omitted.

€
aee Cans
€ >

(a) Topology with (b) Topology with
detected collision undetected collision

Fig. 1. Example topologies for collision and collision-detectiarthe LMAC protocol.

2 An Example of Topologies and Topology Constraints
Below we illustrate the use of a constraint language foreegnting sets of network
topologies. In the LMAC protocol of [13], which is used toadhte transmission
slots in a sensor network MAC layer, collision, i.e. simokaus transmission between
two nodes with overlapping ranges, is detected by neightxmrsmon to both nodes.
Fig. 1(a) shows a network topology for which a collision beém nodes 1 and 2 can be
detected due to the presence of a common neighbor (nodeg4)L (B) shows a topol-
ogy for which a collision between 1 and 2 remains undetedtentghey do not share a
neighbor.

As described in Section 1, we consider AHN nodes of the fétm I, where
P is a process and is aninterface Further, an interface is a set gfoups with
each groupy representing a shared communication channel and dualhgsmond-
ing to a clique in the network topology [11]. Figs. 2(a) andb)2provide a group-
based view and concrete representation based on procesdes of the network
topology of Fig. 1(a). A symbolic representation of the saimgology is given in
Fig. 2(c) using connectiorcénn) and disconnectiofdconr) constraints over interface
variables7,—J4, as mentioned in Sec. 1. The language in which symbolic tapol
constraints is expressed is formally described in Sectidiné symbolic representation
permits us to compactly represesgtsof topologies. For instance, consider the con-
straintconn 71, J2) A conn(J1, Ju) A conn(Ja, J3) A conn(Js, J4). This represents
topologies that contain edgés, 2), (1,4), (2,3) and(3,4). The topologies in this set
may or may not contain edgék, 3) and/or(2, 4). Hence the above constraintrepresents
four 4-node topologies, including the ones in Fig. 1. We use tapptmnstraints when
constructing a symbolic verification proof (by reachapitit model checking) to con-
sider a set of topologies simultaneously. These constraialy get refined as needed as
we progress in the proof, corresponding to case splits anfanget of topologies. The
constraint representation and lazy case-splitting enable consider a large number of
topologies simultaneously within a single verification.run

3 Related Work

Our symbolic approach to query-based model checking of Alrtigeols can be con-
sidered a form otonstraint-based model checkingraditionally this technique has
been used for the verification of infinite-state systems (4, data-independent sys-
tems [12], systems with non-linear arithmetic constraj8jstimed automata [7], and
imperative infinite-state programs [6]. In these works, stoaints were used to com-
pactly represent sets of states of a system being verifiecbritrast to these, our ap-
proach uses variables in the system specification (to reptésterconnections) and

AHN H1§i§4pi : ._72

@ @ conn(J1, J2)
AHN H1§i§4P¢ I COf'll'(L717 ._74)
I = {gl} Conr(jg, jg)
Iy = {g1, 92} conn(Jz2, Ja)
Is = {92} Conr(jg, j4)
a 0 @ I = {g1,92} deonr(J1, J5)

(a) Group-Based View (b) Concrete Repre- (c) Symbolic Represen-
sentation of Interfaces tation of Interfaces

Fig. 2. Concrete and symbolic views of network topology of Fig. 1(a)

finds their valuations (in this case, topologies) for whigir@perty holds. In this sense,
our approach is closely related to temporal logic query kimgg introduced in [2],
which addresses the following problem: given a Kripke dtriteeand a temporal logic
formula with a placeholder, determine all propositionahfalas¢ such that whenb

is inserted in the placeholder, the resulting temporalddgrmula is satisfied by the
Kripke structure. Query checking has been extended in a ruwfways, including
query checking of a wide range of temporal logics using a ressoof alternating au-
tomata [1]; the application of query checking to a varietyraddel exploration tasks,
ranging from invariant computation to test case genergd8fnand its adaptation to
solving temporal queries in which formulas may containgetevariables [15].

Recently, symbolic representation of the set topologiesiezn used in [8] to ana-
lyze ad hoc networks. The constraint language in that wonkardy express the pres-
ence of connections between nodes, and not the absencer#fatimms, in contrast to
our work. It should be noted that the undetected collisiabfam in the LMAC proto-
col (see Section 6) is due to absence of connections, aneéthardetected using the
constraint language of [8].

As mentioned in Section 1, the correctness of the 4-node aratlé LMAC proto-
col [13] has been previously established in [5] using the AKPmodel checker for
timed automata. By systematically considering all 11 togas for the 4-node case
and all 61 topologies for the 5-node case (modulo isomonphithey report all net-
work topologies for which collisions may remain undetediedhe LMAC protocol.
They also iteratively improve the protocol model so thatrihenber of topologies for
which the protocol may fail is reduced. In contrast, our gtesised approach verifies
a property related to unresolved collisions using a singhat®lic reachability run,
thereby allowing us to additionally consider the 6-nodescas

4 Modeling Framework
4.1 Syntax

We formally define the syntax and semantics of our framew®yktems in our frame-
work are modeled as composition nbdes Following the notion of separation of a
node’s communication and computation behavior presentékeiv-calculus [11], we
consider a node to consist opeocesgcomputational behavior) and amterface(com-
munication capability). We present the notations used fimihg our framework, fol-
lowed by formal definitions of the components of our framegoamely a process, an
interface, a node, and a system.

Let D be a non-emptgomainwith a set ofoperationsF' andrelations R defined
over it, andVar be a countable set afariablesover domainD. For instanceD may
be a set of finite integers, with' containing arithmetic operations, alticomprising

equality, dis-equality and relational operations oveegars. Symbols:, y (possibly
subscripted) range over elementdaf-. An environmend : X — D, whereX C Var
is a mapping from variables Mar to values in domai®. Symbol© is used to denote
the set of all environments ov&ur andD. We usef to denote the set afxpressions
which are terms over elements®fUVar U F'. Expressions are represented by symbol
e (possibly subscripted). frimitive conditionis a term with a symbol froni® whose
arguments are elements &f A conditionis a conjunction of primitive conditions. An
assignmenis of the formz := e, wherex € Var ande € £. Following traditional
programming language semantics, we {igeto represent semantics for expressions,
conditions and assignments. For an expressja@onditioncond, and assignmertsgn
[e] : © — D, [cond] : ©® — Bool, and[asgf : © — © are mappings from an
environmentto domaif®, Bool = { true , false }, and an environment, respectively.
Semantics of a single assignment can be extended to a setdfaneous assignments
in the standard way.

The syntactic definition of a process is as follows.

Definition 1 (Process)A processs (L, X, X, 6,1, n0), is an extended finite state au-
tomaton over domaif®, where:
— Lis afinite set oflocations
— X C Var is a set oflocal variabledor the process.
— Y is afinite set ofaction labelgontaining
e be, e € £ (broadcasaction).
e r (z), xz € X (receiveaction).
— ¢ is a finite set oftransitions A transition is a tuplél, o, l’, {p, 1)), where
1,I' € L are sourceandtargetlocations, respectively.
a € X is anaction label
p, a condition, is aransition guard

7 is a set ofsimultaneous assignmerdéthe formzy, := ey, ..., x, = ey,
where ther; are pairwise distinct.

— lg € L is thestart location
— 1o is the set ofinitial assignmentsf the formz := ¢, Vo € X, andc € D.

In the above definition of a process, we require that a vagitidt is used in a receive
transition should not be assigned in the same transition.

Aninterface represented by symbblpossibly subscripted), is a finite set of names
calledgroup namesGroup names are denoted by symbdpossibly subscripted). We
useZ to denote the set of all interfacesnddeP : I denotes a proceg3 with interface
I. Henceforth we use to denote the sefl,...,n}, andP;,i € n, to denote the
processL;, X;, X, ;,1o.i, mo,;) over domairD.

Definition 2 (Ad Hoc Network, AHN) Fori € n, P, = (L;, X;, X, 6;,10,i,m0,i) St
X, C Var are pairwise disjoint, ther/;c,, P; : I; is anAHN.

4.2 Concrete Semantics

We provide a labeled transition system (LTS) based sensafdicAHNS. An LTS is
a 4-tuple(S, Act,—, s0), where S is a set of statesdct is a set of labels— C
S x Act x S is a ternary relation of labeled transitions, afde S is the initial state.

A labeled transitior(s, a, t) €—, is also represented as—— t.

Definition 3 (Semantics of an AHN) The semantics of an AHN,, P; : I;, denoted
as[ienP; : I;], is the LTSS, Act, T, s¢) such that:
- S=1L x 6,whereL = L; x ... x L,, O is the set of all possible environments
XD, X=X14---¥X,.
— Act ={bwv |v € D}.
b v /

— —is such that,0) 2% (7,0), wherel = (I1,....1,), T = (I,...,1"),
0 = [n]o,v = [e]@ if:
o Jien: (I;,be,l, (pi,n)) €9;, and

o k= {k|(lk,r (xk), s {prs k) € Ok, k € n, k # 4,1, N I), # 0}, such that :
s Vjen\ (kU{i}): =1
* p=pi N N\gex P, [p]0 s true
* 0 =0 UUgex melv/ze] U{zg == v}
— s0 = (lo,00), wherely = (lo.1, ..., lon), o = [U;cn m0.:]0c, andé, is the empty
environment.

In the description of the transition relation) in Definition 3,7 denotes the index of a
process capable of performing a broadchst)(action, andk denotes the set of indices
of processes that are able to receive a value broadcast bggs/¢). Note that processes
not participating in the synchronization remain in the sémeation. For a transition to

be enabled, the guards of synchronizing processes musti®eWthen a transition is

taken, the value transmitted by the broadcaster is propddatall receivers, and the
assignments of the participating processes are performed.

4.3 Symbolic System Specification

We define a symbolic semantics for AHNs in which process faters are treated as
variables. For example, for a node: I, I is treated as a variable in contrast to the
concrete semantics, wheferepresents a set of group names. We Jise denote the
set of interface variables anfl (possibly subscripted) to denote elementd of

Topology Constraint Language. Constraints on process interface variables are given
by the following grammar. Symbdl represents the constraint language affpossibly
subscripted) represents elementd of

I' == true | false | conn(J,J) | dconn(J,J) | AT

A valuationd : J — Z maps an interface variablg to an interfacd . A valuation? is
a model of a constraint, written as = ~, defined as follows:

¥ | true

9 £ false

9 = conn(Fr, J2) if I(T) N I(T2) #0

)): dconn(Jl,Jg) if 19(j1) M 19(._72) =0

VEDAND f 9= A9 =T,
A constraint of the formconn(J:, J2) requires that nodes with interface variables
J1 and J> be connected, enabling them to communicate with each dffogrstraint
dconn(J1, J2) requires nodes with interface variablgs and 7> to be disconnected.
A constrainty is satisfiable if there exists an interface valuatighthat assigns each
interface variable iny a value (set of group names) such tital= 4. Two constraints
~1 and~, areequivalent €) if for every valuationy s.t.9 |= 1, it holds thatd = s,
and vice-versa.

Proposition 1 Satisfiability of topology constraints is decidable.

Proof SketchThe following procedure determines the satisfiability ofijcmction of
primitive constraints over interface variables, and mesua satisfying assignment if
there exists one.
Consider a constraint over interface variabled, . . ., 7,.
— Step 1: For every constraint of the forronn(J;, J;), add a fresh name;; to 7;
andJ; (so that7; N J; # 0).
— Step 2: For every/; that is not assigned a value in Step 1, initialiZeto singleton
set{g;}, such thay; has not been assigned to any interface variable in Step 1.
— Step 3: For every constraint of the fononn(7;, J;), if 7; N J; = 0, then con-
strainty is satisfiable, otherwise is unsatisfiable.
This procedure terminates andifs satisfiable, returns one satisfying assignment.

For example, solution to the constragunn 7, J2) A conn(J1, Ja) A conn(Ja, J3) A
connJs, Ja),ish ={g1,2, 91,4}, o ={91,2, 923}, T3 = {92,3, 93,4}, T1 = {914, 3.4}

A symbolic AHN is an AHN for which topology is representedngiinterface vari-
ables.

Definition 4 (Symbolic AHN) Fori € n, P, = (L;, X;, X, 0;,l0.i,70.;) S.t. X; C Var
are pairwise disjoint, thedl;c, P; : J; is asymbolic AHN
Definition 5 (Semantics of a symbolic AHN) The semantics of a symbolic AHNc, P; : 7,
denoted a§l;cn P; : Ji], is the symbolic LTSS, Act, T, so), such that:

- S=Lx6OxI whereL =L, x...xL,,Oisthe set of all possible environments

XD, X=X10---0X,.
— Act ={bv|v e D}.
bv

— ~issuch that7,0,v) X¥ (7,0,+), wherel = (Iy,....1,),1 = (I},...,1.),
o' = [n]o, v = [e]d if:
e Jiemn: (l;,bell, (pi,n)) € d;, and
e k = {k|(lk,r (Ik),l;w <pk777k>) € 0,k € n, k 75 i}, Jke, kg : k = ke Wkg
such that:

* Vjen\ (keU{i}): l.;- =1,

* p=pi N N\pex, Pro [p10 s true

* 1 =1 UlUpew, melv/zr] U{zy := v}

x v =N /\kekc conn(Ti, Tr.) N /\kekd dconn(J;, Ji) is satisfiable

— S0 = (ZQ, 90, true), Wherefo = <lo_]1, . ,lo_’n>, 0y = [[Uien 7’]071']]96, andd, is the
empty environment.

In the clause for transition relationA) in Definition 5,7 denotes the index of a process
enabled to do a broadcast ¢) action, andk denotes the set of indices of processes
that are enabled to perform a receive actionandky form a partition ofk such that

k. is the set of indices of processes that synchronize witiPthéhusconn constraint

is generated for processeskp. Processes with indices ky do not synchronize with
broadcast action aP;, and thus are not connected®y anddconn constraint is gener-
ated for the transition. Note that, as in the concrete saogprocesses notinvolved in
the synchronization remain in their locations. The guard @ssignments are treated
exactly as in the concrete semantics, considering onlyythetsonizing processes.

Theorem 2 (Correspondence)The symbolic semantics is sound and complete w.r.t.
the concrete semantics; i@, v) ~ (s',7)in [I1ien P;: ;] iff ¥V interface valuations
IstdEq,s — §in[[LienP;: ()]

Proof Sketch:

— SoundnesgConsider a symbolic transitios, v) ~ (s',') in I;cn P;: J;. From
the semantics of the symbolic transitions, — ~. For all9 s.t. ¥ | +/ (also
Y [=), there exists a concrete transition—— s’ in ;e P; :0(7;).

— CompletenessConsider a concrete transition — 5" in IT;c, P; : I;. Let 9 be
an interface valuationy’ be a constraint, and fare n, 7; be interface variables,
such that(7;) = I;, andy |= o/. Then3y : v = +/, and(s,y) > (s/,7/)in
Hicn P2 Ji. O

5 Constraint-Based Verification
5.1 \Verification of Reachability Properties

We first consider verification of symbolic AHNs for reachétiiproperties, which is
done by constructing and traversing the symbolic transiigstem.

Definition 6 (Reachability) For an AHN A¢ = Il;en P; : I;, the set of states reach-
able from a states in [A¢], denoted byReachc (s, Ac), is the smallest set such that
s € Reachc(s, Ac) and for everys’ € Reachc(s, Ac) and for everya € Act if

s' 2 s" € [Ac] thens” € Reacho(s, Ac)
For a symbolic AHNAg = 11, P; : J;, the set of states reachable from a symbolic

state(s,) in the [Ag], denoted byReachs((s,v), As), is the smallest set such that
(s,v) € Reachs((s,v),As), and for every(s’,7’') € Reachs((s,7),As) and for

everya € Actif (s',9') < (s”,~") then(s",~") € Reachs((s,7), As).

Satisfaction of a Property. A property over a concrete AHM ¢, denoted by is
either a proposition, defined over the statesdef, or of the formEFp, wherep is a
proposition. We use = ¢ to denote satisfaction of properdyin states. We say that
s = EFp if there is some state’ reachable frons such thats’ = p. The notion of
satisfaction of a property is lifted to symbolic states, ated as(s,~) = ¢, if v is
satisfiable, and is true ins in every topology such that} = ~. The following propo-
sition establishes that when verifying a reachability grdypfor a symbolic AHN, it is
sufficient to examine a subset of symbolic states. In pdaicance(s,) is visited and
(s,7) = ¢, all stateqs,~’) such thaty’ = ~ can be discarded from consideration.

Proposition 3 For a given symbolic statésg, 7o), symbolic AHNA g, and propertyy,
if 3(s,v) € Reachs((s0,70), As) S.t.(s,7) = ¢, thenV(s,~") € Reachs((s0,70), As)
sty = v, (s,7) Eo

Algorithm SymReach (Fig. 3) uses Prop. 3 to prune the search space for prov-
ing reachability properties. For a given predicate symbolic AHN and a start state
(s0,70) in the AHN, AlgorithmSymReach returns the set of most general constraints
CSsuch that for ally € CS(sg,) = EFp. The set of reachable states are storefin
and a working setV.S is used to store unvisited states (Line 3) during a breadsh-fi
traversal of the transition system. At the beginning of eiéetation (Line 4) states in
R—W S have been completely explored. Since each transition atly & the topology
constraints, we discard symbolic states whose topologealeeady known to satisfy
the reachability property (Line 8). Line 9 uses Prop. 3 tongrthe search space. In
Line 13,mg chooses the most general set of constraints from a giveri sehetraints.

Algorithm SymReach
Input : predicatep ; symbolic AHN A; initial symbolic statgso, 7o)
Output : CS the set of most general constraints in states that satiafid are
reachable from initial statéso, v0)
1. = {(s0,70)}
2. cS = {70} if (50: ’YO) ': p
0 otherwise
3. WS:= {(s0,70)} !/ working set (FIFO queue)
4. while (WS ()
5. let(s,v) € WS
6. WS:= WS\ (s,7)
7. for each transition(s,y) ~ (s',v') in [As]
8. if v/ not subsumed by any constraintdit
9. if there exists nqs’,v”) € R such thaty = ~"
10. WS:=WSU {(s',7)}
11 R:=R U {(s',7)}
12, if (s',7) £ p
13. CS :=mgCSU{y})
14. returnCS

Fig. 3. Refined Symbolic Reachability Algorithm

Algorithm SymReach returns the”'S set upon termination. It is easily shown that for
a finite-state AHN AlgorithnSymReach terminates.

The following theorem formally states the correctness ef dlgorithm: that the
set of topology constraints computed 8ymReach exactly covers the topology con-
straints inReachg (Def. 6).

Theorem 4 (Correctness)Let CS' = {v | (s,v) € Reachs((so,%), As), (s,7) =
¢} be the set of all constraints that are part of the reachabtalsglic stategs,) for
which ¢ holds. LetC'S be the set returned by AlgorithBymReach (Figure 3). Then
Vv e 08" Iy e CS : v = v,andVy € CS Iy € CS' : v =+,

The choice of breadth-first search (BFS) in AlgoritSyimReach is important for
the following two reasons. First, subsumption-based pgioif search space is more
effective with BFS because general constraints are vidigfdre more specific con-
straints. Secondly, the use of BFS makes it easy to showdhelibund on the total
number of symbolic transitions, used in the complexity gsial

5.2 Complexity Analysis for theSymReach Algorithm

Consider a concrete AHX ¢ with n nodes. Let the total number of statesdp be|S],
and the total number of transitions it be |T'| = O(|S|?). The time for reachability
analysis from a given initial state iA¢ is bounded by the number of transitions and is
equal to|T'| = O(|S|2). The total number of topologies for aanode AHN isO(2").
Therefore, the time complexity for exploring states reddddrom a given state in all
n-node AHNS (all possible topologies)(2™") x |T| = O(2""|5|?).

Let As = IT;cn P : J; be a symbolic AHN and4. the set of all concrete AHNs
Ac,; = HienP; : 1; 5, where indexj indicates one of thé)(2"2) possible topologies
for ann-node network. Recall that each state4y is of the form(s, v), wheres is a
location-environment pair, angis a topology constraint. Lef| be the largest number

of states of any concrete AHN¢ € Ac¢. Since the number of distinets is O(2"),

the total number of symbolic states is boundedtg"’|S|).

The number of symbolic transitions is bounded by the totahbber of concrete
transitions for all possible topologies. We can establigk bound by defining a 1-1
mapping between symbolic transitions from a symbolic state) in Ag to a transition
from concrete statein Ac. Consider associating each statéimndWSwith an index
which is the length of the shortest path from the initial stat(s, v). Now, let(s,y) be
the selected state with indéxt some iteration of the algorithm. There is no state/’)
in R — WS(i.e. visited state) such that=— +’ (due to the use of subsumption, line 9
of the algorithm). First consider the case when there is heratatgs, 7’) in R with
indexi. It follows from Theorem 2 that for every concrete topologgttsatisfies, state
s is reachable in or fewer steps. In fact, there is a concrete topolddy ~ for which
the shortest path to reactis of lengthi. The symbolic transition that placéd, v) in
WScan then be mapped to the corresponding concrete transitibe topology given
by 9. Now consider the case when there is another state’) in R with index:. If
(s,v) and(s,~") can be reached using a single transition from a common saye,
(s”,~"), then the symbolic transition that placéd +) in WScan then be mapped to
the corresponding concrete transition in a topology thasfssy A —'. Otherwise,
(s,v) and(s,~’) descend from two distinct states, both of which have the sadex.
We can then associate with the symbolic transitiofstey) the same concrete instance
9 used to map the transition to its parent (and similarly withy’)).

We now show that reachability computation over symbolitesgpace takes no
additional time, in the asymptotic sense, than reachglmirer concrete state spaces.
The main additional cost of symbolic reachability algamitis constraint subsumption
(line 9 of the algorithm). We can do this operation in amadizonstant time, as fol-
lows. First, consider computing and storing the subsumgtttice for the constraints
a priori. The construction cost of this lattice @(2”2) but is paid only once. We can
associate a set, initially empty, with each constraint el#itice. To determine whether
(s,7v) should be added t®, we check ifs is in the set associated within the lattice.
This check can be done in constanttime. Wheny) is added taR, we adds to the sets

associated with constraints more specific thafhis operation may tak@(2"2) in the
worst case, but note that an elememnbtay be added to the set associated wyitt most

once, and hence maintaining this data structure incurabdost 01‘0(2"2 |S|) overthe

entire run of the algorithm. Hence symbolic reachability & done inO(2""|S[2),
the same complexity as that of the concrete algorithm.

The space complexity is bounded by the size of the set of eddelstatesR. The
number of elements of this set3&”|S|. The size of each elementd(n?) due to the
size of the topology constraint, but this factor gets dovayed in the asymptotic case.

Hence the asymptotic space complexity for the symbolicrétiym is 0(2”2 [S])-

5.3 Model Checking Symbolic AHNSs.

The symbolic transition system can be readily used for cingckTL properties of
AHNSs. We can use the standard procedure of constructingtitupt between a Biichi
automaton (corresponding to the negation of a given LTL erty) and the symbolic
transition system and look for reachable accepting cyoléss product graph. Note that
for every symbolic transition of the fors, v) ~ (s’,+’), itholds thaty’ = ~. Hence
it follows that if (s, v) and(s,~’) are two states in a cycle, then= +'. Hence the con-

straint component of states in a cycle are all equivalerit(k€~), (s2,7), ... ($n,7)

be states in an accepting cycle such taty) ~ (si+1,7y) for 1 < ¢ < n, and
(S$n,7y) ~ (s1,7). It follows from Theorem 2 that for every concrete topolagguch
thaty = ~, the statesy, so, . . ., s, will be in an accepting cycle. Hence reachable good
cycles in the symbolic case mean that there are reachabteqyotes in the concrete
case. This forms the basis for LTL model checking of symbaHtNs.

Model checking of other temporal logics such as CTL and CTari be performed
over symbolic AHNs by using the standard algorithms oversymmbolic transition
system. From the complexity results for reachability chiegkit follows that model
checking for symbolic AHNs can be done in time and space coafpato the total
time and space for model checking of concrete AHNSs for albtogies.

6 Verification of the LMAC Protocol

We built a prototype implementation &fymReach in the XSB logic programming
system [14]. XSB adds the capability of memoizing inferemicea traditional Prolog-
based system, which simplifies the implementation of fixeitpaigorithms such as
SymReach. Below we present the results of verifying the LMAC proto¢dB], a
medium access control protocol for wireless sensor netsyarging this prototype.

LMAC protocol for Wireless Sensor Networks

The LMAC protocol aims to allocate each node in the sensavoréta time slot during
which the node can transmit without collisions. Note thatdollision freedom, direct
(one-hop) neighbors as well as two-hop neighbors must havige different slots.
The protocol works by nondeterministically assigning sl@nd resolving any colli-
sions that result from this assignment. We apply our quased verification technique
to this protocol to compute the set of topologies for whicbréhare undetected and
hence unresolved collisions.

Protocol Decription [13]. In schedule-based MAC protocols, time is divided into slots
which are grouped into fixed length frames. Every node iscalied one time slot in
which it can carry out its transmission in a frame withoutsiag collision or inter-
ference with other transmissions. Each node broadcastatime slots occupied by
its (one-hop) neighbors and itself. When a node receivesssage from a neighbor
it marks the respective time slot as occupied. The four ghatthe LMAC protocol
involved in allocating time slots to nodes are as followstialization phase:a node
listens on the wireless medium to detect other nodes. Gamlisg from a neighboring
node, the node synchronizes by learning the current slobeund transitions to the
wait phaseWait phase:a node waits for a random period of time and then continues
with the discover phas®iscover phasea node listens to its one-hop neighbors during
one entire frame and records the time slots occupied by thmehiteeir neighbors. On
gathering information regarding the occupied time sldts,rtode randomly chooses a
time slot from the available ones (time slots that do notrfete in its one-hop and two-
hop neighborhood), and advances to the active phfade/e phasea node transmits
a message in its own time slot and listens during other timis.siVhen a neighboring
node informs that there was a collision in the time slot ofribde, the node transitions
to the wait phase to discover a new time slot for itself. Galins can occur when two
or more one-hop or two-hop neighboring nodes choose the sameslot for trans-
mission. Nodes causing a collision cannot detect the amllithemselves, they need
to be informed by their neighboring nodes about the collisMWhen a node detects a
collision it transmits information about the collision i3 time slot.

Passive LMAC Process < L, X, X, 4,1, 1o >

L = {init, initl, init2, listening0, recOne0, done0, choice, choice, active, sent,
listening, recOne, recT'wo, collision_detected}

X = {Current, RecVec, Counter, SlotNo, First, Second, Col, Collision}

Y = {r (msg(Sslot, Scollision, Sfirsy), r (eos), b msg(slot, collision, first) }

lo = init

no = {Current :== —1, RecVec :=), Counter := 0, SlotNo := —1, First := (),
Second := 0, Col := —1,Collision := —1}

Transitions(l, o, I, {p,n)) € § are given below:

Init

[r (msg(Sslot, _,-))] init — initl & Current’ := Sslot

[r (eos)] initl — listening0 & Current’ := (Current + 1)%frame, Counter’ :=

[r (msg(5, -, -))] initl — indt2

[r (eos)] init2 — init

Discover
[r (msg(., -, Sfirsh)] listeningd — recOned & RecVecd := Sfirst
First' := {Current} U First
[r (msg(-, -, -))] recOned — done0 & if Collision < 0 then Collision’ :=Current
RecVecd =10
[r (e0s)] doneO — choiceO & Current’ := (Current + 1)% frame
[r (eos)] recOned — choiceO & Current’ := (Current + 1)%frame,
Second’ := RecVec U Second, RecVec =)
[r (eos)] listeningd — choice0 & Current’ := (Current + 1)%frame

[] choice0 & Counter < frame —1 — listening0 & Counter’ := Counter + 1

[] choice0 & Counter >= frame —1 — choice & Second’ := First U Second

Choice

[] choice & Second # AllSlots — active & SlotNo' € AllSlots\ Second,

Second' :=

[] choice & Second = AllSlots — listening0 & Counter’ := —1, Collision’ := —1,
First' := (), Second’ := ()

Active

[bmsg(Slot No, Collision, First)] active & Current=SlotNo — sent & Collision':=—1
[] active & Current # SlotNo — listening

Send
[r (e0s)] sent — active & Current’ := (Current + 1)% frame
Listen
[r (msg(, Scollision, .))] listening — recOne & Col’ := Scollision,
First' := Current U First
[r (eo0s)] listening — active & Current’ := (Current + 1)% frame
[r (msg(-, - -))] recOne — recTwo & if Collision’ < 0 then Collision’ :=Current
[r (e0s)] recTwo — active & Current’ := (Current + 1)% frame

[r (eos)] recOne & Col # SlotNo — active & Current’ := (Current + 1)% frame

Collision Reported

[r (eos)] recOne & Col = SlotNo — collision_detected & First' := 0, RecVec := 0
Current’ := (Current + 1)% frame,
Counter’ := 0, SlotNo' := —1,
Col' := —1, Collision’ := —1

[] collision_detected — listening0

Fig. 4. LMAC protocol model.

Modeling the LMAC protocol in our framework. Our encoding of the LMAC pro-
tocol in our framework follows the encoding used in [5]. Wergaover the underlying
assumption in the LMAC protocol, that the local clocks of esdre synchronous. Since
there is no support for modeling time in our prototype fraragwywe define a special
timer node that informs other nodes about the end of a time slotdgdwasting aend

of slotmessage. Nodes update their local information at the endeoy éime slot.

An encoding of a process in an AHN model of LMAC is presenteliq 4. At the
beginning, we assume that one distinguished node is “ddtieein act i ve location)
and the rest are “passive” (i.e.iimi t location). Note that the figure gives the definition
of a passive node; the definition of the active node is idah&gcept for its initial state.
The (symbolic) system specification for a 3-node network @ below.

A =timer: J; | activenode: J; | passivenode: [J5 | passivenode: 7,

Transitions in Fig. 4 are specified in the foffabel | & p — I’ & 7, wherelabel
is the label of the transitiori,and!’ are the source and destination locationss the
(optional) guard ang is the set of simultaneous assignments. We use the standard n
tation ofprimedvariables to denote variables in the destination state. $&€'epsilon”
transitions (denoted by action lajel] in the figure) to simplify the encoding. We can
derive the epsilon-free description (as in the formal dafiniof AHNs, Defn. 1) using
standard automata construction techniques. In our mode¥&{C, locationsinit, init1
andinit2 correspond to theni ti al i zat i on phase; locationbsteningQ recOneQ
doneQ choiceOandchoiceto thedi scover phase; and locatiorective sent listen-
ing, recOne recTwq andcollision_detectedo theact i ve phase. It should be noted
that thewait phase of the protocol is not modeled, since its function iy separate
the initialization and discover phases by an arbitraryqebadf time.

The length of a time frame i.e. number of slots (= 5 for 5-nodewvork) is repre-
sented byframe andAllSlotsdenotes the set of all time slots. The state variables of
a node areCurrent (the current slot number w.r.t. the beginning of a franfigcVec
(auxiliary set to record the slots occupied by one-hop amditap neighbors)Counter
(used to count the number of slots seen by the node in a fra&@t@No(slot number
of the node) First (set of slots occupied by one-hop neighbors of the no8legond
(set of slots occupied by two-hop neighbors of the no@e),(collision slot reported
by another nodeX;ollision (slot in which the node detects a collision). The parameters
of messagesfisg exchanged between nodes &t Collision, andFirst variables of
the sender node.

Analysis of the LMAC protocol. The property “every collision is eventually de-
tected” can be encoded in LTL &¥collision = F'collision_detectedl, wherecollision
andcollision_detectedare propositions that are true in states where collisioncatd
lision detection occur, respectively. Although LTL modikcking of symbolic AHNs
can be done as outlined in 5, our current prototype impleatemt supports only reach-
ability checking. We hence checked a related property &heta detected collision”
(E Fcollision_detectell LetCSbe the set of all topology constraints computed using al-
gorithmSymReach when checking for reachability of propositicnllision_detected
Let ¥ be a valuation such that}~ ~ for any~y € CS Note that in the LMAC protocol,
there may be a collision between any two neighboring nodesdoes not represent
a fully disconnected topology, then we can conclude thaktiean undetected colli-
sion in~y. Hence, by checking for reachability of propositicoilision_ detectedwe can
compute (a subset of) topologies which have undetectediooll Moreover, using this

Nodes # Topologies| # Stateq # Transitiong CPU Time | Memory (MB)
Symbolic/Concrete

2 1/2 36 36 0.08 sec 2.42

3 5/8 110 123 0.24 sec 2.46

4 25/64 458 667 3.38 sec 3.05

5 181/1024 2204 5223 69.51 sec 5.09

6 2082/32768| 29012 110194 2 hr 51 min 46 seq 49.79

Table 1. Verification statistics for the LMAC protocol fatetected collisions

method is sound: if there is an undetected collision in savpelogy, we will find at
least one representative.

Verification Statistics and ResultsWe did symbolic reachability checking for 2- to
6-node networks. The performance results are shown in Tablbe results were ob-
tained on a machine with Intel Xeon 1.7GHz processor and 2&hany running Linux
2.6.18, and with XSB Prolog version 3.1. For 2- and 3-nodes#sere were no colli-
sions. For 4-, 5- and 6-node cases, topologies containiaghop neighboring (directly
connected) node pairs that appeared in aring in the topalodylid not have a common
direct neighbor were found to be in collision that remainadetected.

The second column in the table gives two numigers.., whereg, is the number of
symbolic topology constraints explored in a reachabilitiy,ri.e. the number of distinct
~ such that(s,v) € R as per the algorithm in Fig. 3; ar@d is the total number of
possible concrete topologies. Observe that for the 6-nage the number of symbolic
topology constraints examined is smaller than the numbeon€rete topologies by a
factor of more thard. It should also be noted that the same property was verified fo
a 5-node network in [5] by using 61 separate verification yume for each unique
(modulo isomorphism) concrete topology. In contrast, wefieel a related property
using a single symbolic reachability run.

The third and fourth columns in Table 1 give the number of sglebstates and
transitions explored, respectively; and the last two calsigive the CPU time and total
memory used. Observe that the performance of our prototypé&ementation is effi-
cient enough to be used for topologies of reasonable sige @nodes). It should be
noted that our technique and its implementation does ndoixpe symmetry inherent
in the problem by identifying isomorphic topologies. At ghilevel, symmetry reduc-
tion can be incorporated by using a check in line $ginReach) that recognizes
constraints representing the same set of topologies mashrworphism. Doing so will
enable the technique to scale to large network sizes.

7 Conclusions
We presented an efficient query-based verification tecleniqguad hoc network pro-
tocols. Network topologies are represented symbolicalpgiinterface variables, and
the model-checking process generates constraints on ploéotyy under which a sys-
tem specification satisfies a specified property. As suchina ite our constraint lan-
guage compactly represents a set of concrete topologiemtnalead to the satisfac-
tion of the property in question. We demonstrated the praktitility of our approach
by considering the verification of a medium access contrtiqmol for sensor networks
(LMAC) [13], identifying topologies under which collisiomay remain unresolved.
The basic data structure for query-based verification isynebolic transition sys-
tem, where each state carries with it a topology constrHiatsymbolic state is reach-
able, then, for every topology satisfying its constraing torresponding concrete state

is reachable. This structure makes it possible to inferltgies under which reacha-
bility properties hold. As described in the paper, it is glessible to verify properties
specified in temporal logics such as LTL over symbolic tramsisystems, inferring
sets of topologies under which the properties hold. Extamdur prototype implemen-
tation to handle verification with an expressive temporgidas a topic of future work.
There are several avenues for further improving the effagiesf the symbolic veri-
fication technique. Some of these are optimizations to comimw-level operations,
subsumption checks, while others are high-level stateespaductions, e.g. by exploit-
ing symmetries in systems and topologies.

In this work, the focus is on a verification technique and nottee modeling lan-
guage. We considered ad hoc networks whose topology doehange with time. We
deliberately considered only closed systems and chosemeslanguage that uses in-
terfaces to separate node behavior from network topology the w-calculus [11]. As
part of our future work, we plan to extend this work to opentasys specified in the
w-calculus, and consider compositional verification in getting.

Acknowledgements. We thank the anonymous reviewers for their valuable comsnent
on an earlier version of this paper. This work was supportgit by NSF grants CNS-
0509230, CNS-0627447, CNS-0721665, and ONR grant NOOODRE?B.

References

1. G. Bruns and P. Godefroid. Temporal logic query checkind.ICS pages 409—-417, 2001.

2. W. Chan. Temporal-logic queries. GAV, volume 1855, pages 450-463. Springer, 2000.

3. W. Chan, R. Anderson, P. Beame, and D. Notkin. Combinimgiaint solving and symbolic
model checking for a class of a systems with non-linear caimgs. INCAV, pages 316-327.
Springer-Verlag, 1997.

4. G. Delzanno and A. Podelski. Model checking in CLPTACAS pages 223-239. Springer-
Verlag, 1999.

5. A. Fehnker, L. van Hoesel, and A. Mader. Modelling andfieation of the LMAC protocol
for wireless sensor networks. IRM, pages 253-272, 2007.

6. C. Flanagan. Automatic software model checking via cairgtlogic. Sci. Comput. Pro-
gram, 50(1-3):253-270, 2004.

7. L. Fribourg. Constraint logic programming applied to rabdhecking. Inin Proc. 9th
Int. Workshop on Logic-based Program Synthesis and Tramsfiton (LOPSTR’99), LNCS
1817, pages 30-41. Springer-Verlag, 1999.

8. F. Ghassemi, W. Fokkink, and A. Movaghar. Equationalorem) on ad hoc networks. In
Proceedings of the Third International Conference on Fundatals of Software Engineer-
ing(FSEN) 2009.

9. A. Gurfinkel, M. Chechik, and B. Devereux. Temporal logitety checking: A tool for
model exploration]EEE Trans. Software Eng29(10):898-914, 2003.

10. A. Podelski. Model checking as constraint solvingPhaceedings of the 7th International
Symposium on Static Analysis (SA®)ges 22—-37. Springer-Verlag, 2000.

11. A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A processulus for mobile ad hoc
networks. INCOORDINATIONpages 296—-314, 2008.

12. B. S. Starosta and C. R. Ramakrishnan. Constraint-basmtel checking of data-
independent systems. Imternational Conference on Formal Engineering Methods
(ICFEM), volume 2885 ofLecture Notes in Computer Sciengages 579-598. Springer,
2003.

13. L. van Hoesel and P. Havinga. A lightweight medium acpestcol (LMAC) for wireless
sensor networks: Reducing preamble transmissions anscemer state switches. st
International Workshop on Networked Sensing Systems JI[&&es 205-208, 2004.

14. XSB. The XSB logic programming systeimt t p: / / xsb. sour cef or ge. net .

15. D.Zhang and R. Cleaveland. Efficient temporal-logiageeecking for presburger systems.
In ASE pages 24-33. ACM, 2005.

