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synthesis in situ is especially difficult due to the stringent re-
source constraints, unreliable wireless communication, and
complex distributed algorithms and network protocols re-
quired to manipulate the data. Recently, a declarative pro-
gramming language called Snlog [5] has been developed to
address this problem. However, statistical reasoning for
modeling noise in the context of sensor networks has not
been addressed in Snlog. In this paper, we develop a method-
ology based on the PRISM [36] framework, which integrates
logical and statistical reasoning, for specifying sensor net-
work programs that deal with noisy data and tolerate faults
in the network. The relationship between high-level (synthe-
sized) and low-level (observed) data is captured by logical
rules, while statistical models are used to specify computa-
tions in the presence of noise and faults. We illustrate our
methodology with three examples: (i) estimating tempera-
ture at various points in a region, (ii) evaluating the tra-
jectory of an object observed by a sensor network, based on
the Hidden Markov Model, and (iii) evaluating most reliable
communication paths between sensor nodes. We analyze the
results of simulations as well as an experimental deployment
to evaluate the practical feasibility of our approach.
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1. INTRODUCTION

Sensor networks are multi-hop wireless networks consist-
ing of a large number of sensor nodes each having very lim-
ited computing and energy resources. They are particularly
useful in monitoring poorly accessible environments such as
the ocean floors, disaster areas, etc.

A sensor network generates low-level sensor data that are
typically represented by streams of numeric values. How-
ever, applications based on such networks often require that
low-level data be automatically synthesized into high-level
conceptual knowledge, such as “a vehicle has stopped mov-
ing”, “several individuals have assembled in a place”, etc.

Programming a sensor network application to synthesize
such semantic knowledge remains a difficult task, since the
programmer is burdened with low-level details related to
distributed computing, careful management of limited re-
sources, unreliable infrastructure, noisy sensor data and en-
ergy optimizations. Thus, developing a powerful program-
ming framework for sensor networks is critical to realizing
their full potential as collaborative monitoring systems. Ide-
ally, we would like a user to be able to specify the desired
computations associated with the application at a high-level,
and automatically translate the specification into efficient
distributed code that runs on individual nodes.

Towards such a goal, a declarative programming language
Snlog was recently proposed [5]. Snlog is in essence an an-
notated Datalog program which is the function-free subset
of the logic programming language Prolog. A Datalog pro-
gram consists of rules of the form head :- body where head
is an atomic formula and body is a conjunct of literals. The
head is true whenever the body is true. A head with an
empty body represents a fact that is unconditionally true.
The set of all rules with identical names for their head, say
pred, define the predicate pred.

Figure 1(a) is a Datalog specification for the reach predi-



cate in a network. The first rule says that node D is reach-
able from node S if there is a link from S to D. The second
rule says that the other way D is reachable from S is if there
is a link from S to some node T and D is reachable from
T. The three facts specify the links in the network, namely,
there are links from node a to node b (first fact), node b to
node ¢ (second fact) and node b to node d (third fact).

Executing a Datalog program amounts to posing queries
and evaluating their truth using the rules and the facts in
the program. For instance the query “?’reach(a,X)” will re-
turn all the bindings for the variable X that make the query
true. These will be b, ¢ and d in the example. In relational
database terminology the rules of a predicate constitute a
(relational) view definition and query evaluation amounts to
computing tuples in a relation, e.g. the tuples (a,b), (a,c)
and (a,d) in the reach relation for the query above.

To facilitate distributed evaluation, Snlog programs are
annotated with a location specifier. Specifically, one argu-
ment of the predicate is annotated with the “@” symbol to
indicate that the value of this argument in any tuple speci-
fies the sensor node where that tuple is stored. For example,
in Figure 1(b) link(@QS, D) denotes that the tuple (S, D) in
the link relation is located at the sensor node S. Similarly
reach(@S, D) and reach(QT, D) denote the tuples (S, D)
and (T, D) respectively hosted at nodes S and T. So at
runtime, evaluation of the reach query using the second rule
in Figure 1(b) will require a network communication from
node T to node S so that node S knows what tuples (7', D)
are in reach.

Although Snlog demonstrated the power and potential of
the logic-style declarative programming paradigm for de-
veloping sensor network applications, it did not take into
account an important aspect of sensor networks, namely,
that sensor data is inherently noisy and the nodes are prone
to failures. For instance, given a probability distribution
for node failures, one would like to know the “likelihood” of
reachability between nodes in the sensor network. Thus, it is
important that the declarative programming approach facil-
itate specifications to capture aspects of uncertainty associ-
ated with the sensor network. Queries evaluated w.r.t. such
specifications will return likelihood values (ranging from 0
to 1) instead of just yes/no answers.

Such a declarative framework is offered by PRISM, a lan-
guage for specifying statistical models as logic programs [36].
In this paper, we present a methodology for the specifica-
tion and evaluation of logical-statistical models of high-level
events in sensor networks using PRISM. The noisy nature
of the network is captured by the statistical aspect of the
language while the logic encodes its high-level behavior. It
should be noted that any statistical model that can be rep-
resented as a directed acyclic graphical model can be en-
coded in the PRISM language. Furthermore, the PRISM
framework incorporates an EM learning algorithm [18] to
estimate the distributions of random variables (statistical
parameters) in a program from examples. In this paper,
however, we focus only on evaluation of statistical models
with known distributions, and do not consider the problem
of learning the distributions.

In order to facilitate distributed evaluation, we extend
PRISM with annotations analogous to those in Snlog pro-
grams. We then automatically generate Snlog programs
that evaluate maximum likelihood queries over annotated
PRISM models. The resulting Snlog programs can be di-

rectly evaluated on motes. We show the practical feasibility
of our approach by encoding problems typically solved us-
ing sensor networks, such as estimation of temperature at
locations within a region, and computation of communica-
tion routes. We also illustrate the power and flexibility of
PRISM-based sensor network programming methodology by
encoding and evaluating a problem that involves temporal
reasoning, namely, that of evaluating trajectories using Hid-
den Markov Models.

The rest of the paper is organized as follows. Section 2
gives preliminaries on the PRISM framework. Section 3 de-
scribes modeling of sensor network applications in PRISM.
Our methodology for translating centralized PRISM specifi-
cations to Snlog programs is given in Section 4. Experimen-
tal evaluation of trajectory detection in a sensor network
using our modeling and inferencing approach is presented in
Section 5. Related work is discussed in Section 6, followed
by concluding remarks in Section 7.

2. PRISM FRAMEWORK

We briefly review the PRISM language using an encod-
ing of Hidden Markov Models (HMMs) as an example. An
HMM is a stochastic finite state automaton, where the tran-
sitions from a state have an associated probability distribu-
tion. When a state in an HMM is reached, an observation
symbol is emitted; the emissions again have an associated
probability distribution. HMMs are typically used to model
temporal or sequential phenomena. In the context of sensor
networks, the states may correspond to the events that we
want to detect (e.g. position of a vehicle), and the observa-
tions may correspond to the actual sensor readings.

A PRISM program for an arbitrary HMM is given in Fig-
ure 2(a). PRISM programs have Prolog-like syntax: we use
identifiers beginning with upper-case letters to denote vari-
ables, and terms consisting of integers, floating point num-
bers, and identifiers to denote data. A PRISM program
consists of a set of rules, each of which partially defines a re-
lation. Syntactically, each rule is of the form “head :- body”,
read as “head if body”. The head of a rule is a predicate
instance used to define a set of tuples in a given relation.
The body of a rule is a sequence of predicate instances rep-
resenting a conjunction of conditions under which the tuple
defined by the head is in the given relation. For instance,
the first rule of Figure 2(a) can be seen as defining tuples of
the form (0,8) in the hmm relation whenever tuples of the
form (init,S) are present in the msw relation (which is a
special relation in PRISM, as explained below). Thus each
rule defines a set of tuples in a relation. As usual, a PRISM
program may have more than one rule defining a single re-
lation. Then the set of tuples in the relation is the union of
all tuples defined by each rule.

In a PRISM program the msw relation (“multi-valued switch”)
has a special meaning: msw(X,V) says that V is the value
of a finite-domain random variable X. Thus, the msw rela-
tion provides the mechanism for defining and using random
variables, thereby allowing us to weave together statistical
and logical aspects of a model into a single program. For
instance, consider the program in Figure 2(a) which de-
fines a relation describing the sequence of states in a run
of an HMM. The binary predicate hmm has two parameters:
hmm (I, S) means that state S is at index position I in the
state sequence. The program assumes that the correspond-
ing sequence of observations is given by another relation obs



% hmm(I, S): S is the state at the % mle(hmm(I, S), P, E): E is the most likely state sequence ending

I-th position in a run of the HMM % at state S at index I; P is the probability of E.
hmm(0, S) :- mle(hmm(I, S), <MAX(P)>, <ARGMAX(E,P)>) :-
msw(init, S). eval (hmm(I, S), P, E).
hmm (I, S) :-
hmm (PrevI, PrevS), % eval(hmm(I, S), P, E): E is a likely state sequence ending
I is PrevI + 1, % at state S at index I; P is the probability of E.
I>0,
msw(tr(PrevS), S), eval (hmm(0, S), P, [S]) :-
obs(I, A), distr(init, S, P).
msw(out(S), A). eval (hmm(I, S), P, [S|PrevE]) :-

(a)

mle (hmm(PrevI, PrevS), PrevP, PrevE),
I is Prevl + 1,

I>0,
distr(tr(PrevS), S, TransP),
obs (I, A),

distr(out(S), A, EmitP),
P is PrevP * TransP * EmitP.

(b)

Figure 2: (a) PRISM model of an HMM; (b) Evaluation of most likely state sequence for HMMs

such that obs(I,A) means that A is the symbol at the I-th
position in the observation sequence. Note that the state
and observation sequences may unfold over time, hence the
index I can be treated as a clock value (corresponding to
discrete time). In the following discussion, we use notions
of index and time instance interchangeably.

The first rule of hmm says that S is the state at the 0-th time
instant (hmm(0,8) on the left hand side of the rule) whenever
S is the value of random variable “init” (msw(init, S) in
the body of the rule). Thus the random variable “init”
represents the initial state distribution of the HMM. The
second rule for hmm defines the conditions under which we can
go to state S at position I from state PrevS at position Prevl,
where I is PrevI+1 (i.e. the next index in the sequence):

1. msw(tr(PrevS), S) which means that S is the value
of random variable tr(PrevS), i.e. the next state is
generated using the random variable tr (PrevS).

2. obs(I,A) which means that symbol A is at the I-th
position in the observation sequence

3. msw(out(S), A) which means that A is also the value
of random variable out (S).

The family of random variables tr(-) and out (-) correspond
to the transition and emission probabilities of states in an
HMM: tr(S) gives the transition probabilities from state S,
and out (S) gives the emission probabilities from state S.
The meaning of a PRISM program is given in terms of a
distribution semantics [36], explained at a high level as fol-
lows. We can treat the PRISM program as a logic program
defined over a set of facts (external database, or EDB, in
Datalog terms) that define the msw relation. An instance of
the msw relation defines one choice of values of all random
variables. The probability of this instance can be found us-
ing the probability distribution of each random variable. A
query over a PRISM program can be evaluated by first gen-
erating an instance of the msw relation, treating the PRISM
program and this msw instance together as a single logic pro-
gram, and evaluating the query over the resulting program.
Unlike a Prolog program, the PRISM framework can be
used to compute the probability of each answer to a query

when the distributions of random variables is known. More-
over, PRISM can be used to find the most likely explanation
for an answer. In the following, we describe how the above
computations are done in PRISM.

2.1 Evaluating the Probabilistic Models

In the case of HMM models, a typical query of interest is
to find the most likely state sequence that can result in the
given observation sequence generated by the sensor network.
Viterbi’s algorithm [34] provides an efficient way to find such
a state sequence using dynamic programming. Given an
HMM with |S| states, and given an observation sequence of
length N, Viterbi’s algorithm has O(|S|? N) time complexity.
Conceptually, for each state S; and time instant ¢, Viterbi’s
algorithm computes the value §;¢; which is the probability
corresponding to the most likely state sequence ending at
S; for the observation sequence until time instant ¢t. The
value d;; can be recursively defined as [34]

dje = lgl%xn(éi(t,l)a,—j)bj(OtL

where a;; is the state transition probability from S; to Sj,
and b;(0¢) is the probability of emitting the observation
symbol O; at state S;. In our context of sensor networks, the
observation symbol Oy is the vector of emissions by all nodes
in the network at the time instant ¢, and a state corresponds
to a low-level event and its location in the network. For
instance, in the case of HMM for vehicle trajectories, there
is a state for each “grid location” in the network where a
vehicle is detected.

A logic program that computes the §’s using the above
recursive equation is given in Figure 2(b). The top-level
query mle evaluates the most likely state sequence over the
HMM model encoded by hmm. This is done by finding likely
state sequences and their probabilities (using eval) and,
over all such sequences, selecting the one with the maxi-
mum probability (<MAX P> which selects the maximum P,
and <ARGMAX (E,P)> which selects E that maximizes P). Pred-
icate distr encodes the probability distributions associated
with random variables; for instance, in distr(X,V,P), P
is the probability that random variable X has value V. It
should be noted that evaluation based on caching (such as



temp (X0, I, TO) :-
not sensor(X0),
PrevI is I-1,
neighbors (X0, Neighbors),
neighbortemps (Neighbors, PrevI, NeighborTemps),
msw(reg(X0, NeighborTemps), TO).

temp (X0, I, TO) :-
sensor (X0),
sense (X0, I, S0),
PrevI is I-1,
neighbors (X0, Neighbors),
neighbortemps (Neighbors, PrevI, NeighborTemps),
msw(sreg(X0, [SO|NeighborTemps]), TO).

neighbortemps([1, I, [1).
neighbortemps ([XilXs], I, [Til|Ts]) :-
temp(Xi, I, Ti),
neighbortemps(Xs, I, Ts).

Figure 3: Temperature Estimation Model

the bottom-up evaluation [40]) do not repeat the same com-
putation twice, thereby ensuring that the most likely state
sequence is computed in time comparable to Viterbi’s dy-
namic programming algorithm.

For every query result over a logic program, we can con-
struct a derivation, i.e. a proof for that result. Note that
there may be more than one proof for a result. In a prob-
abilistic program, if the probability of each derivation is in-
dependent of the others, then we can find the probability
of a query result as the sum of probabilities of all possible
derivations for this result. In the case of the HMM pro-
gram in Figure 2(a), the different state sequences ending at
state S at time instant I that may result in the given ob-
servation sequence correspond to the different proofs for the
query hmm(I, S). Hence the probability corresponding to
the most likely state sequence for a given observation is the
maximum among the probabilities of the associated proofs.
The program in Figure 2(b) finds the probability of the most
likely proof for the program in Figure 2(a). As the similar-
ity between the two programs suggests, the program to find
the probability of the most likely proof can be automatically
generated from given PRISM programs and queries.

3. MODELING SENSOR NETWORK APPLI-

CATIONSIN PRISM

In this section we describe PRISM models of three sen-
sor network applications: a temperature estimation model,
a trajectory evaluation model based on HMMs, and a model
to compute the most reliable communication paths in a net-
work. We focus on the modeling aspects in this section;
distributed in-network evaluation of these models form the
topic of Section 4.

3.1 A Simple Temperature Estimation Model

We begin with a simple model for temperature estimation
in a region of interest. We assume that the area over which
we want to estimate temperature is discretized into a (suit-
ably dense) finite set of points. Some (but not all) points in
the area have a temperature sensor. We also assume that
the temperature values form a finite set. We model tem-
perature at each point (and at each instant of time) by a
finite-domain random variable.

We first consider estimating temperature at points that do

not have a sensor. If X is such a point, we say the tempera-
ture at X is dependent on the temperature estimates (at the
previous time instant) at some surrounding points, called
the neighbors of X. This relationship is modeled as a con-
ditional probability distribution, and the statistical model
for temperature estimation is encoded in the PRISM model
shown in Figure 3. In the figure, the relation neighbors
relates each point to the set of its neighbors. The pred-
icate neighbortemps accumulates (in its third argument)
the temperatures at a set of points (its first argument) at
a given time instant (second argument). Thus the variable
NeighborTemps will hold the value of the temperatures at
neighbors of X0 at time I-1. The last predicate, msw, in the
definition of temp states that the temperature at point X0 is
determined by random variable reg whose probability dis-
tribution depends on the point X0 and the temperatures at
the neighbors.

Now consider estimating temperature at the points with
sensors. Note that since a sensor may be faulty, the actual
temperature at a point may differ from the sensed value.
We hence model the actual temperature at a sensed point
as a random variable that is dependent both on the sensed
value at that point as well as the estimated temperatures
at its neighbors. The second rule in Figure 3 encodes this
relationship using sreg random variable.

Using this model, one can compute the probability distri-

bution of temperature (and hence the most likely tempera-
ture) at any point and at any instant in time.
Discussion: Any graphical model whose network struc-
ture forms a directed acyclic graph can be encoded and
evaluated in PRISM. The above encoding of the temper-
ature estimation model is one such instance. In general,
let X; be a random variable and parents(X;) be the set
of random variables that X; is conditionally dependent on.
Let values(X;) be the set of values of the parents of X;.
Then msw(rv(values(X;)), Vi) models the conditional de-
pendency between X; and its parents: the value V; of X;
is given by a PRISM random variable rv, whose proba-
bility distribution is dependent on the values of X;’s par-
ents. Given a set of facts that define the parent of each
random variable X; (i.e. the edges in the network structure
of the graphical model), we can compute the values set in
the same way we computed the temperatures at neighbors
in the above temperature model. Thus we can encode any
directed acyclic graphical model along the same lines as the
PRISM program for temperature estimation. The PRISM
framework can be used to evaluate queries over these models
(e.g. value with the maximum probability, probability of a
given value, etc.) as long as the dependencies are acyclic.

3.2 HMM-based Trajectory Evaluation

We consider the problem of evaluating, using a sensor net-
work, the trajectory of an object moving over a region of
interest.  As in the temperature estimation problem, we
divide the space over which the object moves into a (suffi-
ciently dense) discrete set of points (called locations). Sen-
sors are placed at some, but not all, locations. We assume
that sensed data of each sensor ranges over a finite set.

We model the above problem as an HMM whose states
correspond to locations. In other words, the state of the
HMM at any instant of time corresponds to the location of
the object. When the object is at a given location several
sensors may fire. Note that the set of sensors that fire de-



pend only on the location of the object. Hence we do not
directly account for interference or dependencies between
sensor values. Any dependency is captured as a function
of the object’s location. Adding the Markovian assumption
that the object’s location at any given time depends only
on its location at the previous instant of time, we naturally
obtain an HMM.

The transitions of the HMM will be derived from the
movement model of the object. For instance, we can as-
sume that in one time step, the object can either stay in the
same location, or move from one location po to a neighbor-
ing location p;. This would translate to a transition from
state po to p1 in the HMM. The set of all sensors that fire at
time %o is the observation symbol emitted by the HMM at
time to. Thus the set of observation symbols of the HMM
is the power set of observations of all sensor nodes. Note
that the set of sensors that fire when an object is at a given
location is not deterministic; some sensors may misfire (fir-
ing when the object is not nearby) while others may fail
to fire. This uncertainty is captured by the emission prob-
ability of the HMM state. Also note that communication
errors may prevent the observation of a sensor from being
reported. The effect of communication errors due to white
noise is also rolled into the emission probability.

Thus, our trajectory evaluation model is an instance of
the HMM shown in Figure 2(a). Note that in a deployment
of the sensor network, the actual location of the object is
unknown: hence the states of the HMM are “hidden”. What
an observer can see are the sets of sensors that fired at each
time. From this observation, we would like to reconstruct
the position and trajectory of the object. Hence, given a
sequence of observations, where each observation is the set
of sensors that fired:

e We can compute the answer to query mle (hmm(I,S),P,Seq)

which would give the most likely trajectory Seq of the
object up to time I.

e We can compute the likelihood of answer hmm(I,S)
which will give the probability that the object is at
point S at time 1.

Note that the above model is centralized: we have as-
sumed that at each step, we observe all the sensors that fire,
and proceed with the computation based on this observa-
tion. Moreover, the model assumes synchrony, in that the
clocks of all sensors advance simultaneously without skew.
We describe in Section 4 how we can drop these assumptions,
and evaluate “most likely explanation” queries over the gen-
eralized model in a distributed fashion in the network itself.

3.3 Estimating the Most Reliable Communi-
cation Path

We now consider the problem of finding the most reliable
communication path between all pairs of sensors in a sensor
network. Observe that the problem of finding the set of
all connected pairs of sensors (i.e. those with some path
between them) can be solved by using the Snlog program in
Figure 1(b). Figure 4 shows the PRISM model where each
link is associated with a reliability measure.

Note that the PRISM model is very similar to the Datalog
program for computing reachability in graphs (Figure 1(a)).
The difference is that we consider in the PRISM model only
those links that are up. Whether a link is up or not is

reach(S,D) :-
link_up(S,D).

reach(S,D) :-
link_up(S,T),
reach(T,D).

link_up(S,D) :-
1ink(S,D),
msw(status(S,D), up).

Figure 4: Most Reliable Path: Simple Model

reach(X, Y, I) :-
link_up(X, Y, I).

reach(X, Y, I) :-
link_up(X, Z, I),
reach(Z, Y, I).

% HMM model of node failure
node(X, 0, S) :-
msw(init, S).
node(X, I, S) :-
node (X, PrevI, PrevS),
I is PrevI+i,
link_up(X, Y, I) :- 150,
node(X, I, up), msw(tr (PrevS), S),
node(Y, I, up), obs(X, I, A),
1link (X, Y). msw(out(S), A).

Figure 5: Most Reliable Path: a State-Based Model

determined by a random variable status associated with
that link. Now, each explanation of the query reach(S,D)
will correspond to a path in the network. The probability
of an explanation will be the product, over each link in the
path, of the probabilities that the link statuses are up. Thus
the most likely explanation for reach(S,D) will correspond
to the most reliable path in the network.

We can also derive a more elaborate model that takes into
account temporal aspects of link failure. Consider a situa-
tion where sensor nodes may experience transient failures
during which they do not communicate. Such failure modes
can be modeled by HMMs. For instance, a simple two-state
HMM can be used to model the situation where a node may
fail at any time with a fixed probability, and a failed node
may recover at any time with a fixed probability. We may
not be able to directly observe whether a node has failed
or not. However, at each time, a node may send a “hello”
message (again with some fixed probability) when it is up.
By observing a sequence of hello messages, we will be able
to estimate the likelihood of the current state of a node. A
link is up only when both the source and destination nodes
are up. This model of link failure is encoded in PRISM
as shown in Figure 5. Since now the link failure model is
state-dependent, the most reliable path between two nodes
may change over time. This is represented in the PRISM
model by adding a new time parameter to the reach and
link predicates.

Note that the PRISM model in Figure 5 is a combination
of a statistical model (HMM for node failure) and a logi-
cal model (transitive closure over graphs). This model illus-
trates the power of our approach as compared to those based
on Snlog alone (logic-only) or graphical models (statistics-
only). This example also illustrates how we can refine an
existing model at a high level by adding features (node reli-
ability model, time, etc.).

4. IN-NETWORK EXECUTION OF PRISM
MODELS

We describe a methodology for translating a centralized
PRISM specification to an Snlog program. This process is
done in two steps: (i) distributing the PRISM model and (ii)
generating an Snlog program for in-network evaluation of
queries over this model (most likely explanation, likelihood
of an answer, etc.).
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Figure 6: Architecture for In-Network Evaluation of Annotated PRISM Models

The distributed model is obtained by first adding location
annotations to the model’s predicates. The locations in the
distributed model are symbolic names given to the comput-
ing nodes in a distributed network (such as sensor nodes in a
sensor network). Locating a predicate means specifying the
computing node where the tuples of that predicate would
get evaluated and stored. Our translation also modifies the
model using the network structure for localizing communi-
cation between the sensor nodes. The network structure
is specified in form of a ‘neighborhood’ relation ngh(A,B)
meaning that nodes A and B are neighbors.

In Snlog, location information is mixed with the definition
of predicates: one of the arguments of a distributed predi-
cate, distinguished with an “@” symbol, gives the location
of the tuple. In contrast, we separate the location defini-
tions from the predicate definitions themselves. This has
several advantages. First of all, this separates the logic of
the model from its implementation. Secondly, separate loca-
tion definitions makes it possible to specify this information
for some predicates, and automatically infer this informa-
tion for the rest. Thirdly, queries over PRISM models are
implemented using meta programs, i.e., logic programs that
view the PRISM programs as data. Separate location defini-
tions lets us infer the location information for meta programs
based on the location information of the PRISM models.

To evaluate PRISM models in the network in a distributed
fashion, we generate Snlog programs that correspond to the
queries of interest. When generating the final Snlog pro-
gram, we use the location definitions and generate appro-
priate location annotations (“@” variables in Snlog). The
distributed PRISM model may also carry additional anno-
tations used by Snlog, including type declarations (relation
name, types of parameters, primary keys) and materializa-
tion policies (how long the tuples are valid, number of tuples
stored in a relation, etc.), suppressing rule execution, and/or
prioritizing tuple processing.

The architecture of our methodology and the steps in-
volved in the translation of PRISM models to distributed
Snlog programs are summarized in Fig. 6.

4.1 Anillustration of translation methodology:
the HMM example

We describe our methodology for translation of PRISM
specifications to Snlog through the HMM example.

HMM Trajectory Evaluation We adapt the PRISM
model of HMM (Fig. 2(a)) for evaluating trajectories as fol-
lows. The sensed data An from each sensor N at time I
is represented by a predicate of the form sensor(N,I,An).
From this data, we build the observation at time instant I
using the following definition for obs(I,A):

obs(I, <VEC(N, An)>) :-
sensor (N, I, An).

Here the aggregate operation VEC is used to construct a
vector of all sensor readings. The complete definition of the
HMM with this definition of obs is in Fig. 7(a).

Global Local

hmm(0, S) :-
msw(init, S).

hmm(0, S) :-
msw(init, S).

hmm(I, S) :-
hmm (PrevI, PrevS),
I is PrevI + 1,

hmm(I, S) :-
hmm (PrevI, PrevS),
I is PrevI + 1,

I>0, I>0,
msw(tr (PrevS), S), msw(tr (PrevS), S),
obs(I, A), local_obs(S, I, A),

msw(out(S), A). msw(out(S), A).

obs(I, <VEC(N,An)>) :-
sensor(N, I, An).

local_obs(S, I, <VEC(N,An)>) :-
map_state(S,L),
ngh(L,N),
sensor (N, Il; An).

(a)

Figure 7: HMM models for trajectory evaluation
(under synchrony assumption).

From this basic centralized model, we derive a distributed
model of the HMM as follows. We first add location defi-
nitions for predicates in our model. We define a predicate
called map_state to map states of the HMM to the com-
puting units (nodes) in the network. A tuple of the form
map_state(S, N) means that the state S of the HMM is
mapped to node N in the network. Using map_state, we
specify the location of hmm tuples as follows:

location(hmm(I,S), N) :- map_state(S, N).
location(sensor(N,I,An), N).

The above location specifications state that tuples of the
form hmm(I,S) will be computed and stored at node N; and



Synchronous

Asynchronous

hmm(Time, S) :-
clock(0, Time),
msw(init, S).

hmm(Time, S) :-
hmm (PrevTime, PrevS),
clock(PrevT, PrevTime),
T is PrevT + 1,
T>o0,
msw(tr(PrevS), S),
clock(T, Time),
local_obs(S, Time, A),
msw(out(8), A).

local_obs(S, Time, <VEC(N,An)>) :-
map_state(S,L),
ngh(L,N),
sensor (N, Time, An).

(a)

hmm(Time, S) :-

hmm(Time, S) :-

local_obs(S, Time, <VEC(N,An)>) :-

location(localClock(L, T, Time), L).

map_state(S,N),
localClock(N, O, Time),
msw(init, S).

hmm(PrevTime, PrevS),
map_state(PrevS, L),
localClock(L, PrevT, PrevTime),
T is PrevT + 1,

T> o0,

msw(tr(PrevS), S),
map_state(S,N),

localClock(N, T, Time),
local_obs(S, Time, A),
msw(out(S), A).

map_state(S,L),
ngh(L,N),

localClock(L, T, Time),
localClock(N, T, NTime),
sensor (N, NTime, An).

(b)

Figure 8: Synchronous and Asynchronous HMM models with explicit time.

that the sensed values will be stored at the sensor itself. By
default, the other predicates used in the specification of the
PRISM model will be located at all sensor nodes.

Note that definition of obs means that every sensed value
needs to be known to every sensor node. However, each
sensor can sense only over a relatively small area; hence only
a set of sensors near an object are likely to report non-zero
readings. We can hence derive an alternative HMM model
by considering only locally observed sensor readings. We do
this by defining a predicate local_obs, using the structure
of the sensor network. We assume that the predicate ngh
gives the neighborhood information for each node. Using
ngh, we define local_obs as follows:

local_obs(S, I, <VEC(N,An)>) :-
map_state(S, L),
ngh(L, N),
sensor (N, I, An).

location(local_obs(S, I, A), L) :-
map_state(S, L).

While the first rule above defines the local_obs predi-
cate, the location rule specifies where the tuples of this
predicate will be located. With this definition, observe that
each node needs to know only the sensed values of neigh-
boring sensors. The distributed program after this step is
given in Fig. 7(b). This model ensures that sensed values
are communicated only to neighboring nodes, and hence is
suitable for distributed evaluation.

It must be noted that while the distributed model may
localize communication, a single sensor node may have a
large number of “neighbors” if the sensing regions of many
nodes overlap, i.e. if the nodes are densely packed. Note
also that the correlation between neighboring sensors’ read-
ings is naturally captured by this model. In this model, the

sensor readings (at a given time) at neighboring nodes are
not directly dependent on each other but are linked via the
hidden state variable in the HMM.

The above model still assumes that all sensors are syn-
chronous in the sense that they share a single global clock
(hence the shared time instance I). In a sensor network, the
sensor nodes operate independent clocks. To faithfully eval-
uate this model, we would need that all these clocks be syn-
chronized, perhaps using a distributed clock synchronization
protocol. Alternatively, we can develop an asynchronous
model that can be evaluated without clock synchronization.

4.2 Addingtimetothe model

We logically characterize asynchronous computation in
our model by first explicitly specifying a global clock, and
then modifying the specification to use local (asynchronous)
clocks. Temporal models such as HMMs represent transi-
tions in time; hence time is an integral part of the model. In
the previous subsection (Sec. 4.1) the parameter I in hmm (I,
S) represented the logical time for the model and assumed
synchrony among the nodes in the distributed model (all
nodes agreed on same logical time I at any point in time).
Instead of using a logical clock, we turn this parameter into
an explicit global clock.

Assume there is a global clock and its value at discrete
time instants is given through the relation clock(T, Time),
where T is a logical time instant and Time is the actual
global clock time at that instant. The synchronous HMM
model with explicit time is given in Fig. 8(a). The model
hmm (I, S) without an explicit actual clock is now written
as hmm(Time, S) in the timed model where clock(I, Time)
holds.

The explicit-time model reveals where the assumption of
synchronicity comes in, and how this assumption can be
dropped. In particular, consider the predicate local_obs(S,
Time, Obs) which is used to collect, for a given state S and



global time Time, the set of observations Obs at its neighbors.
This set of observations is taken at the same time instant
Time. In an asynchronous model, the observations at each
sensor may be done at different points in time, and moreover,
each sensor node may have its own notion of time. We model
this by associating a local clock with each sensor node, and
relating these local clocks via “global logical time”, which
can be considered as a clock at a particular frame of refer-
ence. We use a predicate called localClock(L, T, Time)
to relate the location L of a clock and its value Time to a
fixed global logical time T. This relation, localClock, is lo-
cally consistent, i.e., given two tuples (I, g1,t1) and (I, g2, t2),
g1 > g2 = t1 > t2 and communication consistent, i.e., if a
message is sent from [; at local time ¢; and received by l2
at local time ¢2, then for all tuples (I1, g1, 1) and (l2, g2,t2)
in the localClock relation, g1 < ga.
Using this localClock relation, we can rewrite the local_obs

predicate as:

local_obs(S, Time, <VEC(N,An)>) :-
map_state(S,L),
ngh(L,N),
localClock(L, T, Time),
localClock(N, T, NTime),
sensor (N, NTime, An).

In the above definition, Time is the local clock at location L,
and NTime is the local clock at a neighbor N. The relationship
between the two local clocks is that they represent the same
global logical time instant T. The asynchronous model of
HMMs is given in Fig. 8(b).

It should be noted that localClock is a modeling notion
that lets us characterize the possible computations in an
asynchronous deployment. In the final deployment, we omit
the explicit use of localClock, using the latest set of sensor
readings as the observation vector at the current instant.

4.3 Maximum Likelihood Evaluation (MLE)
over the Distributed HMM M odel

The maximum likelihood evaluation (MLE) program can
be automatically generated for a PRISM model as illustrated
previously in Section 2. Given an HMM model and the MLE
program over the model, we add the following annotations
to the set of annotations used for the distribution of the
model, and use our translation methodology to generate a
distributed program for the MLE program.

modelParam(mle(M,A1,A2), M).

modelParam(eval (M,A1,A2), M).

location(Pred, S) :- modelParam(Pred, M),
location(M,S).

Note that the mle and eval predicates operate over the
HMM model, treating it as data, and hence the location of
mle and eval tuples are taken from the location of the under-
lying hmm tuples. The MLE program for the asynchronous
distributed HMM model, using the explicit location annota-
tion as in Snlog, is shown in Fig. 9.

Using the above translation methodology we derive dis-
tributed programs for MLE over PRISM models. The dis-
tributed version of an MLE program for a PRISM model
is converted to an Snlog program by adding type declara-
tions and materialization policies for the predicates in the
distributed program.

mle(ON, hmm(Time, S), <MAX(P)>, <ARGMAX(E,P)>) :-
eval(ON, hmm(Time, S), P, E).

eval (@N, hmm(Time, S), Prob, S) :-
map_state(S, N),
localClock(@N, O, Time),
distr(init, S, Prob).

eval (6N, hmm(Time, S), Prob, PrevS) :-
mle(@L, hmm(PrevTime, PrevS), PrevP, PrevE)
map_state(PrevS, L),
localClock(@L, PrevT, PrevTime),
T is PrevT + 1,
T>o,
distr(tr(PrevS), S, TransP),
TransP > 0,
map_state(S, N),
localClock(@N, T, Time),
local_obs(@N, S, Time, A),
distr(out(S), A, OutP),
Prob is PrevP * TransP * OutP.

Figure 9: MLE over HMM model with explicit time.

4.4 Generality of the Approach

We have illustrated our approach for deriving sensor net-
work programs from high-level models using the PRISM
model of HMM as an example. The HMM example was
used to illustrate the manual steps that can be taken to
derive a distributed asynchronous model from a simple cen-
tralized model. It should be noted that models for most sen-
sor applications, including the temperature sensing example
in Section 3, are inherently distributed. For such models,
we need to only specify the location annotations. Once we
have an annotated PRISM model, the program for evalu-
ating maximum likelihood evaluation (MLE) queries over it
can be automatically generated. The MLE program, in turn
can be be automatically translated into an Snlog program
that can then be compiled and deployed for in-network eval-
uation. For instance, for the “most reliable path” example
described in Section 3 (Fig. 5), the following location defi-
nitions are sufficient:

location(reach(X,Y,I), X).
location(link_up(X,Y,I), X).
location(node(X,I,S), X).
location(obs(X,I,4), X).

First of all, note that the models are inherently distributed
and hence the location definitions above will result in local
communication. Secondly, the model is still synchronous
(e.g. link_up needs the state of two different nodes at the
same time instant). We can derive an asynchronous model
following the same steps we took to make the HMM model
asynchronous. Once we introduce local clocks, we can gen-
erate the MLE query over this model and evaluate it in a
distributed fashion in the network itself.

5. EXPERIMENTAL RESULTS

Our trajectory detection experiments were based on the
distributed asynchronous model for HMM in PRISM shown
in Fig. 8(b). We automatically derived the program to evalu-
ate maximum likelihood evaluation (MLE) queries over this
model, shown in Fig. 9. This program was then automat-
ically translated into Snlog, and added Snlog-specific type
and materialization declarations. (These declarations can



be easily lifted to the PRISM model level as well and then
derived by automatic translation, but this was not done in
our current implementation). The DSN system [4] was then
used to derive nesC [13] code from the Snlog program. The
generated code was compiled using the nesC compiler and
with the addition of DSN runtime support a binary image
was generated for execution using TinyOS [7]. Due to un-
availability of interfaces to light sensors in the DSN system,
we could not directly use binary image generated using DSN
for light-sensor network deployment; we hand-generated a
nesC program from the intermediate Snlog program and
used that for deployment. We used both the hand-coded
and automatically-generated nesC programs in our simula-
tion experiments, and the two programs produced nearly
identical results, indicating that our deployment results will
extend to the automatically-generated programs too.

The HMM model parameters used in our simulations and
experiments include: initial state probabilities: any of the
states on the borders of the grid is equally likely to be the
initial state; state transition probabilities: from a given state
all of the neighboring states (1-grid point away in our set-
ting), and the state itself are equally likely to be the next
state; and emission probabilities: for the deployment exper-
iment the emission probabilities were learnt using labeled
data from a real network setting (the same as used for our
deployment experiments), and in our simulation setup nodes
emit binary observations which are correct with probability
0.95.

5.1 Simulation

511 Setup

In this section we describe the different network scenar-
ios and settings used to evaluate the HMM-based trajectory
detection model as described in Sec. 3.2. The states in the
HMM are mapped to sensors in the network. We consider
two scenarios: when the mapping is 1-1, i.e. the number of
states and sensor nodes are same, and when there are more
states than sensor nodes in which case the mapping from
states to sensors is many-to-one. In the latter case, a node
is responsible for performing computation for more than one
state in the model.

In general, lossless data transmission protocols are nec-
essary to ensure that the results computed by distributed
inference is same as that computed by a centralized infer-
ence algorithm. In a probabilistic setting, since the informa-
tion being exchanged are estimated values, simpler, perhaps
lossy, data transmission protocols suffice. When developing
a model, errors due to communication failure can be rolled
into the probability distributions in the model. However,
an iterative model like HMM leads to significant contention
for medium since many nodes may attempt to communicate
simultaneously. We hence experimented with the following
communication modes to analyze their effect on error rates:

e Mode 0: all nodes send all their messages in every
iteration.

e Mode 1: messages are sent selectively i.e., a message is
sent only when its present observation results in a high
probability value that the node’s state is the current
state. Roughly speaking, only the more informative
nodes send as in [37]. This mode reduces bandwidth

Mode | #Msgs | Msg Loss Error | Std
Rate % | Rate % | Dev

0 | 558720 7 11.20 | 0.75

1 | 19400 3 7.80 | 1.17

2 | 27152 2 0.60 | 0.49

Table 1: Effect of Communication Modes on Detec-
tion Error Rates

and contention, and consequently reduces communica-
tion error rates.

e Mode 2: nodes corresponding to highly likely states
resend their messages after performing Mode 1 of com-
munication. This “double send” mode increases band-
width compared to Mode 1, but significantly reduces
the possibility that important messages are lost.

We exploit the fact that we compute probability values, and
hence our computations are relatively tolerant to commu-
nication errors. In contrast, Chu et al’s [3] approach uses
replicated dynamic probabilistic models to minimize com-
munication from sensor nodes to the network’s base station.
The main idea is to exploit spatial correlations across sen-
sor nodes without imposing unnecessary communication be-
tween sensor nodes. Baysail [39] uses a Bayesian approach
to estimate missing values as precisely as possible, as well
as estimate the process parameters for the model generating
those values. While it is possible to obtain more accurate in-
ference without excessive communication costs using either
of these approaches, our experimental results given below
indicate that simple threshold-based message suppression is
sufficient to maintain low error rates for probabilistic infer-
ence.

The robustness of our approach is validated in the pres-
ence of clock drifts and node failures— two factors that are
not considered by the PRISM model. We considered both
transient and permanent node failures, where transient fail-
ures may be due to skips (where a node becomes inactive
without losing state information) or reboots (where a failing
node becomes active again after a reboot).

We also experimented with different network topologies:
a regular grid topology as well as random topologies.

5.1.2 Results

We performed simulations for our generated Snlog pro-
gram for maximum likelihood evaluation over an HMM model
for trajectory detection of a moving object in grid-structured
and random topology 144-node sensor network. The simu-
lations were performed using TOSSIM [21].  In order to
validate our deployment results, we performed simulation
on two types of programs, Snlog compiled using DSN, and
Snlog hand-converted to nesC. The trajectories are given in
terms of the grid points of the grid overlaying the network.
For simulation, the sensor readings (binary 0 or 1) were gen-
erated based on the original trajectory of the object. The
error rates in trajectory detection are computed as the per-
centage of points in the computed trajectory that do not
match with the points in the original trajectory. The mes-
sage loss rates mentioned in the following results indicate
the number of application messages that were sent over the
network but not received. Message loss rate is computed
using the message reception rate which we calculate as the



Nodes % Permanent Failure

Temporary Failure

Skip 10 iterations

Reboot in any iteration

Error Rate % [ Std Dev

Error Rate % | Std Dev

Error Rate % [ Std Dev

20 28.20 0.84 3.67 0.82 1.33 0.52
15 18.80 0.83 2.83 0.98 1.27 0.46
10 14.60 0.89 1.40 0.89 1.20 0.44

7 7.83 0.75 1.02 0.71 0.8 0.47

Table 2: Effect of Node Failure on Detection Error Rates
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Figure 10: Effect of Clock Drift (20% of nodes with
clock drifts, in millisec. per sec.; 1 iteration = 1 sec.)

total number of application messages received by all nodes in
the network divided by the total number of application mes-
sages sent over the network. Overall, Snlog compiled using
DSN, and hand-converted nesC programs showed very sim-
ilar results in simulation for computing trajectories. Each
simulation had 1000 iterations, i.e. the trajectory length
was 1000 points.

Unless otherwise specified, all results were taken using the
distributed HMM model, for detecting a single object in the
region, with one sensor node per point (1-1 mapping). The
results were obtained over 50 simulation runs.

Table 1 gives simulation results for the correctness of our
trajectory detection programs (generated Snlog compiled us-
ing DSN and hand-converted nesC) for a single moving ob-
ject under the three different modes of communication de-
scribed in the setup. The error rate and its standard devi-
ation, total number of application messages sent, and mes-
sage loss rate are given in the table. In mode 1 and mode
2, the number of transmitted messages are reduced and are
thus suitable for energy-constrained sensor nodes. The error
rates are also less for the mode 2 communication strategy
as evident from results in Table 1. This suggests that mode
2 communication strategy is lightweight in terms of mes-
sage communication, and is more accurate because impor-
tant messages, i.e. those that contribute most to the answer
for the application that is being evaluated, are less likely to
be lost. We also measured the energy consumption for ra-
dio and CPU for our application using PowerTOSSIM [3§]
for the TelosB [32] energy model. The energy consumed for
radio and CPU for Mode 0 communication was 2391.6 mJ
and 6.522 mJ, respectively for 60 seconds of simulation.

Table 2 presents simulation results for trajectory detec-
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Figure 11: Effect of Sensor Coverage (Random
topologies)
Mode Event 1 Event 2
Error Std Error Std
Rate % | Dev |[ Rate % Dev
0 13.6 | 0.55 12.8 | 1.4832
1 9.8 | 0.84 8.6 1.34
2 3.8 1.3 3.6 0.55

Table 3: Simultaneous Detection of Two Events

tion of a single event in the presence of node failures (up to
20% of randomly chosen nodes fail) at random times during
the evaluation. Nodes may fail either permanently (die) or
temporarily (reboot or transient failures). The event detec-
tion algorithm (maximum likelihood evaluation over HMM
Model) is resilient to temporary node failures. Interestingly,
it appears that temporary failures due to reboots contribute
to fewer errors than failures due to skipping of iterations. In
case of permanent node failures, the error rates grow higher
with increase in the percentage of permanent node failures.

We also experimented with clock drifts to observe their
effect on error rates (Fig. 10). Clocks of 20% randomly cho-
sen nodes were allowed to drift over time. We observed that
slow rate of clock drifts does not have an adverse effect on
the accuracy of the results. As expected, over longer periods
of simulations, the drifts get accumulated and increase the
error rates.

Results of our simulations with random topologies are
shown in Fig. 11. The topologies were randomly generated
and the error rates were measured for topologies with vary-
ing sensing coverage. The uncovered areas spanned over few
adjacent grid points in the region. The error rates are pro-



(a) Regular topology

(b) Random topology

Figure 12: Sensor setup: Showing 25 sensors deployed on a wall.

portional to the percentage of uncovered area. The numbers
next to the points of error rates in the graph of Fig. 11 rep-
resent the standard deviation for the error rates.

Table 3 evaluates the correctness of trajectory detection
for two simultaneously moving objects within a region. The
column headings ‘Event1l’ and ‘Event2’ in Table 3 indicate
two separate events (moving objects) being simultaneously
detected by the maximum likelihood evaluation over two
HMM models, one model for each event. The error rates are
slightly higher than that for single-object trajectory detec-
tion but are reasonably low.

The above simulation results were for network setting
when the number of HMM states modeling the network and
the number of sensor nodes are equal and the mapping from
states to nodes is one-to-one. We also evaluated trajectory
detection for many-to-one mapping of states to sensor nodes.
The trajectory is represented at a finer level when the states
in the model are more than the sensor nodes in the network.
For many-to-one mapping (4-to-1 mapping in this case) of
states to sensor nodes, mode 2 communication and single
event detection, the message loss rate is 2.5% and error rate
is 10.8% (with 1.13 standard deviation).

These simulation results suggest that our approach to
modeling sensor networks using probabilistic models and
performing inference over these models using maximum like-
lihood evaluation is feasible and robust to network failures.

5.2 Deployment
521 Setup

In our setup for trajectory evaluation, we used a simu-
lated light source as the object to be tracked. The tracking
region was a square with side of 63 inches on a wall. We
superimposed a 10 x 10 grid in this region, so that the dis-
tance between two grid points was 7 inches. A light source
was created with the help of a powerpoint slide. Two con-
centric circles of increasing radii, 5.25 inches and 16 inches,
having increasing intensity of grey color radially outwards,
were drawn on the slide. The rest of the slide was dark
grey. The slide was projected (using a projector placed 16
feet infront of the wall) over the region on the wall so as to
simulate a light source. A trajectory of the light source was
formed by having the circular object change its positions on
the slide. The experiments were done in a dark room and
the projected slide on the wall was the only light source in

the room. The average sensor reading for the light source
centered over a mote was 98. The average reading 14 inches
(2 grid points) away was 80, and was below 20 further away
from the center. The light intensity of the light source at
various grid positions is shown in Fig. 13.

The light source (object) randomly transitioned from one
grid point to a neighboring grid point at 1 second intervals
over the 10 x 10 grid. The trajectory lengths were set to 35.

We experimented with two sensor network deployments—
regular and random topologies— with 25 TelosB motes in
the region (i.e. attached to the wall). For regular topology,
the motes were laid out evenly spaced through the region
forming a 5 x 5 grid of sensors (see Fig. 12(a)). For ran-
dom topology, the motes were laid out randomly within the
region.

As mentioned before, since the current implementation of
Snlog did not provide light sensor interfaces, we used a hand-
converted nesC program in the deployment experiments.
As remarked in the previous subsection, the automatically-
derived Snlog program and the hand-converted nesC pro-
gram gave similar results using simulation. The program
deployed on the motes evaluated, in-network, the most likely
trajectory of the light source in the region. It used the HMM
model for trajectory evaluation with 100 states (10 points).
The nesC program for trajectory evaluation used in deploy-
ment experiments occupied 20.5 KB ROM (code) and 3.54
KB RAM (data) on a TelosB mote.

The projected light source was moved over the region,
while the motes were running an iterative MLE algorithm.
During an iteration (1000 ms duration), each mote senses
light (called observation), transmits its observation and the
probability values for its mapped points from the previ-
ous iteration to its neighboring motes in real time. It then
performs local computation over received observations and
probability values from its neighboring motes. An obser-
vation for a mote is computed by averaging over 20 sensor
readings, each sampled every 10 ms. The sensor observation
was then converted to binary 0 or 1 (based on a threshold
value 75), for use in local computation in every iteration.
The sensors communicated data to each other in every iter-
ation in a TDMA manner to avoid collisions. At the end of
each experiment all the motes sent their computed data to a
basestation (mote) connected to a laptop, and the collected
data was analyzed to estimate the trajectory of the moving
object.



Figure 13: Simulated light source (showing decrease
in light intensity radially outwards).

For the regular topology, the mapping between states and
motes (sensors) is shown in Fig. 14(a). There are 100 points
and each point models a state in the HMM model and the
motes (sensors) are marked as encircled numbers 1-25. Each
mote is responsible for performing computation and real-
time communication for 4 states in the model (marked within
a rounded square in Fig. 14(a)). For random topologies, the
mapping between states and motes (sensors) was such that
each mote performs computation for the states correspond-
ing to the four nearest grid points to the mote (illustrated in
Fig. 14(b)). This might lead to some states being mapped
to multiple motes and some states unmapped.

5.2.2 Results

We ran 20 experiments, for mode 2 communication, where
nodes transmit selectively. For each experiment, we com-
pared the original trajectory with the computed trajectory
For trajectories of length 35 grid points, with the regular
topology, the computed trajectory differed from the original
trajectory on average in 4 grid points. The differences were
off-by-one errors, with the predicted point and the actual
point being next to each other on the 10 x 10 grid. The
deviations in the computed trajectory points did not have
any adverse effect on the entire computed trajectory because
the deviations continued for, on average, only one grid-point,
and in the worst case, two grid points. Fig. 14(a) shows an
example of comparison between the original and computed
trajectories. The original trajectory is marked by dashed
lines and the computed trajectory is marked by solid lines
with arrows on the lines indicating the direction of the tra-
jectories. In this figure, the two trajectories differ in 2 points.
The areas marked by a ‘star’ symbol in Fig. 14(a) indicate
the regions where the computed trajectory deviates from the
original trajectory. For random topologies, the error rates
were slightly higher than for the regular topologies. The er-
ror rates differed mostly because of the uncovered regions
on the grid. An example of the same original trajectory as
Fig. 14(a) which was computed with a random sensor node
deployment is shown in Fig. 14(b). The bigger ‘star’ symbols
indicate higher deviations in the computed trajectory from
the original one. The average error rates using grid-based
topology and uniform random topologies were 11.34% and
15.26%, respectively.

Overall, the experimental platform performed within 5%
of the simulated scenarios. For example, for grid-based
topologies, mode 2 communication and 4-to-1 mapping of
the model states to sensors, the average error rate for tra-
jectory detection in experiments was 11.34%, comparable
with the average error rate of 10.8% for simulations. For
random topologies also, the error rates observed through
experiments were of the same magnitude as that observed
in simulations.

6. RELATED WORK

The importance of programming sensor networks at a
high-level has given impetus to research on this topic span-
ning a gamut of approaches such as operating system proto-
types [7, 13], programming abstractions [41, 42], procedural
languages [15] and distributed database frameworks [2, 24].

A high-level declarative programming paradigm has been
used recently for specification of network routing protocols [23],
overlay architectures [22] and programming sensor networks
in functional [27] and logic programming styles [6, 5]. In
particular the latter [6, 5] describes Snlog, a dialect of the
logic programming language Datalog, for declarative pro-
gramming of sensor networks.

In the context of sensor networks, data is inherently noisy
in nature and the nodes are prone to failures, and thus,
it is important that the programming approach facilitate
reasoning with uncertain or noisy data. The aforementioned
works on programming sensor networks do not address the
uncertainty aspects of sensor data.

Probabilistic models for dealing with noisy sensor data
and doing in-network inferencing over these models have
been reported (e.g. [37, 30]). But the use of a programming
paradigm that allows the specification of statistical models
has not yet been explored for programming sensor networks.

A number of proposals combining logic with probability
have appeared in the research literature [1, 16, 29]. The pri-
mary focus of these early works was on understanding the
semantic underpinnings of the combination. Consequently,
questions about programming using probability-logic com-
bination formalisms were not addressed. Recently Markov
Logic Networks (MLN) have been proposed as a formalism
for the integration [35]. But there is no programming in-
frastructure for computing with MLNs, and programming in
full FOL is not practically feasible, especially for non-trivial
real-life applications.

Several proposals incorporating probabilities into logic pro-
grams have appeared [8, 9, 20, 26, 28, 33]. But all of these
works are limiting in their scope. For instance [8, 20, 28]
impose syntactic restrictions on the programs; [33] imposes
the acyclicity condition on the clauses; the range restric-
tions imposed in [26] exclude even simple predicates such as
membership. In contrast the PRISM language [36] does not
impose such restrictions. Moreover in PRISM the probabil-
ity distributions as embodied by the msw predicates can be
learned [17].

IBAL [31] is a functional language for specifying and com-
bining statistical models, and supports parameter learning,
and provides constructs for direct specification of a large
class of graphical models. BLOG [25] is a language based
on Bayesian logic that can be used for building probabilistic
models with unknown components. These languages can be
used to encode statistical models that cannot be encoded in
PRISM. However, they focus on the probabilistic aspects of
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Figure 14: Example original and computed trajectory

modeling and programming, but do not attempt to combine
non-probabilistic reasoning (deduction) with probabilistic
reasoning. In contrast, our PRISM-based approach can be
used to uniformly treat probabilistic problems (such as those
described in this paper) and non-probabilistic ones (e.g. span-
ning tree construction).

There has also been work on relational learning for model-
ing uncertainty [12, 14, 10, 19]. These works generalize the
propositional Bayesian networks to first order, but logical
reasoning is not their focus.

7. CONCLUSION

In this paper we described a methodology for the speci-
fication and in-network evaluation of statistical models en-
coding the transformation of low-level noisy sensor network
data into high-level knowledge of activities in the network. It
is based on the PRISM language, which integrates both logi-
cal and statistical reasoning within one declarative program-
ming framework. Any statistical model whose network (con-
ditional dependency) structure is a directed acyclic graph
can be encoded as a PRISM program. We illustrated the
utility of our approach using three non-trivial sensor net-
work problems. We have constructed a tool to automatically
generate Snlog programs from annotated PRISM models,
which can then be directly deployed in sensor networks. Ex-
perimental evaluation through simulations and deployment
provide evidence that our approach is feasible and robust
to noisy sensor data. The results from the hardware de-
ployment confirmed our simulation analysis and performed
within 5% of the simulation results.

There are several avenues for future research along the
lines pursued in this paper. We mention two of them here:
The PRISM specifications and their evaluations described
in this paper illustrate the encoding of statistical models in
a logic framework. But the full power of logical reasoning
has not yet been brought to bear on these models — e.g.
methods to reason with missing and inconsistent informa-
tion. Doing so will truly integrate logical and statistical
reasoning and get the “best of the two worlds”. The other
problem concerns the estimation of the probability distribu-

tions. In PRISM such estimations, represented by the msw
predicates are done within the logic using a generalization
of the Expectation-Maximization algorithm [11]. An inter-
esting and intriguing topic will be the translation of this
algorithm to do in-network learning of these distributions
from sensor data.
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