Model-Carrying Code (M CC):
A New Paradigm for Mobile-Code Security

R. Sekar, C.R. Ramakrishnan, I.V. Ramakrishnan and S.A. Smolka
Department of Computer Science
SUNY at Stony Brook, NY 11794

E-mail: {sekar, cram ram sas}@s. sunysb. edu

Abstract

A new approach to ensuring the security of mobile code is presented. Our approach enables a mobile-code
consumer to understand and formally reason about what a piece of mobile code can do; check if the actions of
the code are compatible with his/her security policies; and, if so, execute the code. The compatibility-checking
process is automated, but if there are conflicts, consumers have the opportunity to refine their policies, taking
into account the functionality provided by the mobile code. Finaly, when the code is executed, our framework
uses advanced runtime-monitoring techniques to ensure that the code does not violate the consumer’s (refined)
policies.

At the heart of our method, which we call model-carrying code (MCC), isthe ideathat a piece of mobile code
comes equi pped with an expressive yet concise model of the code's (security-rel evant) behavior. The generation of
such models can be automated. MCC enjoys severa advantages over current approaches to mobile-code security.
Succinctly put, it protects consumers of mobile code from malicious or faulty code without unduly restricting the
code's functionality. Moreover, the MCC approach is applicable to the vast mgjority of code that exists today,
whichiswrittenin C or C++. This contrasts with previous approaches such as Java 2 security and proof-carrying
code, which are either language-specific or are limited to type-safe languages. Finally, MCC can be combined
with existing techniques such as cryptographic signing and proof-carrying code to yield additional benefits.

1 Introduction

Mobile code has become an integral part of the Internet. It appears in many forms, such as “active pages’
(e.g. pages with Java, Javascript, VBScript, or ActiveX content), content that invokes plug-ins or helper ap-
plications (e.g. Word, Excel, Postscript and Powerpoint documents or email attachments), or software that is
explicitly downloaded from afreeware or commercia site. Since mobile code gets executed with the privileges
of the user who downloaded the code (henceforth referred to as a consumer of the mobile code), the risk of
damage due to malicious or faulty mobile code isvery high.

State-of-the-Art in M obile Code Security. Many of the techniques currently deployed in computer security
are not effective when it comes to mobile code. Approaches such as sand-boxing can provide security, but only
at the cost of unduly restricting the functionality of mobile code (e.g., the code is not permitted to access any
files). Cryptographic code-signing can certify the origin (i.e., the producer) of mobile code and its integrity,
but does not address the fundamental risk inherent to mobile code, which relates to mobile code behavior. This
leaves the consumer vulnerableto damage due to faulty code (if the producer can be trusted), or malicious code
(if the producer cannot be trusted).

To address these inadequaci es, severa new approaches have recently been devel oped to tackle mobile-code
security. The Proof-carrying code (PCC) approach [16] enables safe execution of code from untrusted sources
by requiring a producer to furnish a proof regarding the safety of mobile code. A consumer can mechanically
check the correctness of this proof, and execute the code only if the proof is correct. The main practical
impediment in using this approach is the difficulty of developing proofs, especially when they have to be
machine-checkable, and moreover, operate on a binary representation of code. Therefore, they propose that
such proofs be automatically generated by a compiler from the source code representation of the code [17].
While automatic generation of proofsis possiblefor simple properties such as memory safety, automatic proof

generation for more complex properties is a daunting problem. Apart from this practica difficulty, there is
a more fundamental difficulty with PCC: since the producer needs to send the safety proof together with the
mobile code, the PCC approach assumes that the code producer knows all the security policies that are of
interest to consumers. We believe that thisis an unrealistic assumption, since security needs vary considerably
across different consumers and their operating environments.

Whereas PCC places the burden on the producer to identify and prove safety properties of interest to con-
sumers, the Java security model [7] shiftsthe burden entirely to the consumer side. Specifically, Java2 provides
an access control mechanism that can limit resource access based on the identity of the code producer. Since
the code producer is not involved in determining the access permissions, thismodel assumes that the consumer
can deter mine the access requirements of a mobile application based onitsorigin, even without any knowl edge
about the application. Thisassumption either leads to an undue restriction in functionality of the mobile code,
or leads to a situation where some applications are given more access than what they need. For example, a
consumer would clearly be willing to allow a data-visualization program to read the (possibly sensitive) files
containing the data to be visualized. On the other hand, the consumer would be unwilling to let a different
program, such as one that collects customer feedback using aform and sends it back to the code producer, to
read such files.

Need for New Approach. The main difficulty with existing approaches is that neither the producer nor the
consumer can unilaterally determine the security needs of amobile program. A producer of mobile code cannot
anticipate the security requirements of the consumer, since each consumer may have his’/her own security
requirements and policies. Similarly, the consumer cannot anticipate the access needs of a piece of mobile code
as these will depend on the functionality of the code and on how it isimplemented.

An ideal mobile-code security framework would enable a consumer to formally reason about the security-
relevant actions of a piece of mobile code; check if these actions are compatible with his/her security policies;
and, if so, execute the code. The compatibility-checking process would be automated, but if there are conflicts,
consumers would have the opportunity to refine their policies, taking into account the functionality provided by
the mobile code. Finally, when the code is executed, the framework would assure that the code does not violate
the consumer’s (refined) policies. We propose anovel approach, caled model-carrying code (MCC), that seeks
thisidedl .

MCC is not proposed as an aternative to techniques such as PCC or Java security. Rather, MCC fills a
void that is not addressed by previous approaches. It enables both the consumer and producer to coordinate
in determining the security needs of mobile code. Techniques such as PCC are currently limited to low-level
security properties such as memory safety, and the MCC framework can continue exploit PCC for establishing
such properties.

2 Overview of Approach

The key idea in our approach is the introduction of program behaviora models to bridge the semantic gap
between (very low-level) binary code and high-level security policies. These models are then sent by the code
producer to the code consumer, together with the program (mobile code). Since these models are much less
complex than programs, it is feasible for a consumer to mechanically determine whether a model conforms to
security policies of interest. Based on the outcome of this check and the intended functionality of the code, the
consumer can then refine his/her security policiesand retry. Moreover, the producers no longer have to know or
guessthe security policiesof interest toz consumers. Instead, they provide models of security-relevant program
behaviors that can be used to reason about most security properties of interest to any consumer. The models
themsel ves may be developed either manually, or by using automated techniques that operate on programs.
The use of models enables us to decompose the security-assurance argument into two parts:

¢ policy conformance: check whether the model conforms to the policy

e modd soundness: check if the model represents a safe approximation of program behavior. Our notion
of soundness will be based on the particular execution of the program that takes place at a consumer site,

2

Feedback

Consistency

{ Resolver

Model Model
[Generator]

Enforcement
i Model
Code T Monitor).

\/\

Producer-side | Consumer-side
Figure 1: The Model-Carrying Code Framework

rather than being based on all possible executions.

This decomposition broadens the choice of techniques that can be used to assure security. For instance, a
consumer may rely on formal verification to assure policy conformance. Models being much simpler than
programs, such automated verification is feasible. For establishing model soundness, a consumer may rely on
one of the following techniques:

e runtime-checking: the consumer can monitor execution of the mobile code, and affirm that its behavior is
consistent with the model. Efficient runtime checking isis feasible when policies are specified in terms of
externally observable events, such as system calls made by a program to access OS resources [24].

e model-signing: the code and the model may be cryptographically signed by the producer to ensure their
authenticity and integrity. The consumer may then trust the producer’s representation that the model is
sound. Although such model-signing bears some similarity to code-signing, thereis an important difference.
The notion of trust is much more clearly defined and narrower in the case of signed models: that the
consumer trusts the producer to provide amodel that faithfully captures the security-relevant actions of the
code.

e proof-carrying code: a producer may provide a formal, machine-checkable proof that the model is sound.
This proof can be checked by a consumer before the model is accepted as being accurate.

Of these techniques, the first and third allow a consumer to accept and execute code from untrusted producers,
while the second technique works only with producersthat are trusted by the consumer. A combination of these
techniques may also be used.

Figure 1 illustrates our approach. In the figure, the model generator is responsible for generating a model
of security-relevant behavior of the program. Both the code and the model are then sent to the consumer side,
where a consistency resolver checks whether the model conforms to security policies sel ected by the consumer.
When a model does not conform to a policy, the consistency resolver generates a “difference” between the
model and security policy, which will then be presented to the consumer for further resolution, as shown in
the “conflict feedback” loop in the figure. Alternatively, this difference may be combined with the model to
produce an enforcement model that is given to the runtime monitor. The runtime monitor is responsible for
confining the execution of mobile code so that it conforms to the enforcement model. At thefirst instance when
the program deviatesfrom the model, it may beterminated. Alternatively, the consumer may be prompted about

3

?Iocal_read(config files)
exists(icon filmxists(icon file)

local_read(icon file)

remote_read(icon file)

@Q local_read(log file)

Figure 2: Model of webst at

the deviation, and queried whether the deviation isto be permitted. The runtime monitor may provide recovery
capabilitiesto undo the effects of partial execution of the mobile code.

We expect the runtime enforcement to be a deterrent mechanism against attacks where a producer supplies
aninvalid model. Knowing that such attacks would be thwarted during the execution of mobile code, attackers
would look towards other ways to attack a consumer. This means that in practice, models would be sound, and
hence the primary decision point for acceptability of maobile code is the consistency resolver.

3 An Example Scenario

Consider the mobile application webst at , a freeware program that is obtained from an untrusted source.
webst at gathers and presents usage statistics from Web-server log files. For displaying the results, it down-
loads platform-dependent icons and/or pluginsover the network. In the rest of thisexample, we assume that the
security policies of the consumer are defined on a site-wide basis, and hence refer to “site policies’ as opposed
to “consumer’s policies”

The consumer site considers the contents of Web-server log files to be private and wants to protect them
from being exported. In our example, this security requirement isinitially stated as policiesthat classify mobile
applications as file-only or communication-only. File-only applications can read al files but have no network
access, and are very limited in terms of write operations on files. Communication-only applications have
network access but cannot access any files.

In the MCC approach, the code for webst at comes equipped with a behavior model. In our example,
the model is the automaton shown in Figure 2. The model is expressed as an extended finite-state automaton
(EFSA), i.e. afinite-state automaton whose states are annotated with data variables and values, and whose
transitions are annotated with events and conditions on event arguments. The model in the figure is an abstract
version of the producer-supplied model. The full model is given in terms of lower-level events such as system
cals, and also has transitions on other events such as writes to temporary files. We have chosen to present an
abstract, high-level version of the model to simplify our presentation.

Clearly, webst at is neither a file-only nor a communication-only application, and hence violates the
security policies. The consistency resolver detects this violation and informs the consumer that a violation of
the policy arises due to the fact that webst at makes a network access. The consumer, at this point, has the
option of getting further information from the consistency resolver regarding the conflict, such as a complete
scenario that illustrates the conflict. This information can be used to revise the policy. A less sophisticated
consumer may choose to rely on a hierarchy of security policies that have been pre-defined by alocal security
administrator to aid in policy refinement. Suppose that this hierarchy provides several refinements to the “file-
only” policy, one of which isno access to security-critical files, and no external network access after read from
sensitive files. Note that the revised policy reduces access to certain operations (e.g. reads on security-critical
files), whileincreasing access to certain other operations (e.g. send operations over the network).

4

Policy
| odel = P | Model F Policy

Model Enforcement | Enforcement Model run(Code) => Policy
Generator Model Model A Policy

Mobi | e (Runtime | "un(@0de) ?forcement
Code Monitor
Model

Figure 3: Logical view of the Model-Carrying Code Framework

Also, in the revised policy, the notions of which files are considered sensitive (or security-critical), and
which hosts are considered external, is site-specific. In this case, the Web-server log files are considered sen-
sitive, while a file that contains access permissions for remote access (e.g. / et ¢/ host s. deny) may be
considered security-critical. In addition, the revised policy illustrates the ability of our approach to capture
tempora behavior. Our language for representing security policies will aso be based on EFSA, but this au-
tomaton will typically operate over higher level events (e.g., “read from sensitivefiles”) than those used in the
model EFSA. Each high-level event will itself be defined in terms of an EFSA on low-level events such as
system calls, and hence it is possible to trand ate the policy EFSA into one that operates on low-level events
used in the model EFSA.

The model of webst at satisfies the refined policy and hence webst at can be run. In general, however,
the consistency resolver may be able to prove the property only with additional constraints on the producer-
supplied model. For instance, the producer supplied model may suggest that the program may read arbitrary
filesfromthe/ var /| og/ directory, whilethe security policy may allow only readsfromthe/ var /| og/ ht t pd
directory. In this case, the consistency resolver would indicate that the model satisfies the policy, provided the
fileaccessesarerestrictedto/ var / | og/ ht t pd directory. Intheworst case, the consistency resolver may not
be able to verify the policy at al. In either case, the consumer may wish to run the code. In order to make sure
that the code cannot violate the security policy, the consistency resolver generates an enforcement model, which
captures behaviors that are permitted by the producer-supplied model as well as by the consumer-sel ected se-
curity policy. By monitoring runtime behavior using the enforcement model, we can ensure that a run of the
code cannot violate the consumer’s security policy.

3.1 Featuresof the Model-Carrying Code Framework

Asillustrated in Figure 3, the model-based approach enforces security in three steps: (1) by verifying that the
model of the mobile code satisfies the security policies, (2) by generating an enforcement model as a result
of the verification run, and (3) by ensuring that a run of the code conforms to the enforcement model. The
satisfaction relation, represented in the figure as “ =", means that every run of the model is consistent with the
policy. The conformance relation which talks only about particular runs of the code is represented in the figure
as“=". A more direct approach is to ensure, by runtime monitoring, that a run of the mobile code conforms
to security policies. Several key advantages of MCC over existing technology as well as a direct-monitoring
approach, are apparent from the above scenario.

e A mobile application such as webst at cannot be securely run using current technology. For instance,
proof-carrying code is not applicable since the property to be proved is site specific (e.g. what are sensitive
files?); hence the proof cannot be provided by a producer obliviousto the consumer’s requirements. The
Java security architecture, aswell as anumber of other proposal s on mobile-code and mobile-agent security,
are based on a refinement of traditional access-control mechanisms. They cannot express the temporal

5

aspects of permissions (e.g. no network access after read from. . .). Moreover, the access-control decisions
are made based on the wishes of the code producer and consumer, with no regard for the functionaity
provided by the mobile code.

o If runtime monitoring is used as the sole means of ensuring security, an application must be run “in isola-
tion” so that its effects are observable to the outside only when its execution satisfies the security policies.
Isolation, rollback, and commitment are difficult to achieve when applications communicate with the exter-
na world.

e The feedback offered by the model-based approach is crucia for refining security policies. It should be
noted that security policies may be refined in different ways, depending on the application at hand. For
instance, the same sitein the above scenario may want to run a SATAN-like application to look for system
vulnerabilities. For such applications, it is conceivable that the policy to be enforced would allow read
access to the entire file system, but disallow writes of any kind except to the screen and/or to a specific
output log file.

4 RealizingMCC

In this section, we outline our technical approach for realizing each of the components of the MCC framework.
A comprehensive treatment of each of these areas is outside the scope of this paper. What we attempt hereisto
try to convince the reader that each of the components can be realized, based on our previous research.

The starting point for model-carrying code is our work on specification-based intrusion detection [1, 24].
This approach is based on specifying security-relevant behavior of programs in a high-level language called
Behavior Monitoring Specification Language (BMSL). We model behaviors of programs in terms of systems
calls made during execution. At runtime, the execution of these programs is monitored, and any deviations
from specified behavior are flagged as intrusion efforts. Since system calls can be observed externaly from a
program, the approach can be used for COTS software without modification. Our research to date has shown
that (@) BMSL enables convenient and concise specification of security-relevant program behaviors, and (b)
runtime monitoring can be performed with very low overheads (5% or less) [1, 24]. Many of the techniques
described for realizing the different components of MCC are based on thisresearch.

4.1 Modeing Language

As described in the example, we use extended finite-state automata (EFSA) to represent program models [24].
EFSA are simply standard finite state automaton (FSA) that are augmented with the ability to store valuesin
afixed number of state variables, each capable of storing values over afinite or infinite domain. The state of
the EFSA is thus characterized by its control state (which has the same meaning as the notion of “state” in the
case of FSA), plus the values of these state variables. (Henceforth, the term state will be used to refer to the
control state of an EFSA.) Transitionsin the EFSA are each associated with an event, an enabling condition
involving the event arguments and state variables, and a set of assignmentsto state variables. For atransition to
be taken, the associated event must occur and the enabling condition must hold. When the transition is taken,
the assignments associated with the transition are performed.

The event aphabet of the EFSA will consist of system-call names. Since all accessto resources is mediated
by the operating system, and all applications obtain resource access through the operating system’s system-
call interface, expressing security-relevant behaviors in terms of system call sequences is a good choice. This
hypothesis has been validated by many research efforts in intrusion detection, including our own.

While system calls are a natural choice for the event aphabet, this choice does not preclude other possi-
bilities. For instance, in the context of Java, we may choose to model security-relevant behaviorsin terms of
higher-level operations, such as those that operate on /0O streams. Even within the context of programs written
in C, one may choose to represent security propertiesin terms of operationson a higher-level API, such asthe
functionsdefined inl i bc.

Note that regular expressions, FSA, or w-automata based approaches [22] can also express behaviors in

6

terms of system-call sequences. However, they lack the power to refer to system call arguments, eg., they
cannot capture the difference between the opening of afileinthe/ t np directory or the opening of the password
file. In contrast, EFSA can represent such distinctions. They can also represent properties that require system-
call arguments used in the past, e.g., a program opens a file whose name was provided as a command-line
argument (i.e., as an argument to an exec system call executed in the past).

4.2 Security Policies

Security policieswill aso be represented using EFSA. The primary difference between security policies and
models is the alphabet over which they operate. Security policies will refer to much higher-level events than
models, which would enable consumers to describe their policies at a higher level of abstraction than system
cals. Moreover, the policies will be parameterized, so as to accommodate site-specific customization via
instantiation of these parameters. For instance, we intend to capture a concept such as “read from a sensitive
file” asahigh-level event. This event is parameterized with respect to the set SF of sensitivefiles.

4.3 Runtime Monitoring

Runtime monitoring consists of intercepting security-relevant events, and matching them against models of
expected behavior of mobilecode. We have previously devel oped a system for runtime monitoring that operates
on EFSA models and takes system callsasinput [24, 1]. Our experiments show that runtime monitoring can be
performed very efficiently, adding less than a 5% overhead to the execution time of most programs. We expect
to be able to use this system for runtime monitoring for MCC.

Notethat even if aprogram does not deviate from itsmodel, it may still not have performed the computation
expected by the user. For instance, amalicious program purporting to do file compression may remove itsinput
file without producing a useful compressed file output. To deal with this problem, we can isolate the operations
of mobile code in an environment where no other program can view the results of its computation. (If the
mobile code executes as multiple processes, the unit of isolation includes all such processes.) After the mobile
code compl etes execution, the user may check that the program performed as expected, and then commit the
changes made by the code so that they are visible to the rest of the system. Clearly, such isolation may not
always possible, e.g., the mobile code may communicate with remote sites. But for the more common case of
removing or updating files, such isolation is achievable by intercepting system calls that open afile for writing
and transparently redirecting that operation to a different file.

Although our existing runtime monitoring system operates on system calls, our approach is by no means
restricted by this. Itisrelatively easy, for instance, to devel op runtime monitoring techniquesfor Java programs
by adding hooks into the JVM to intercept arbitrary function calls made by Java programs and feeding them
into a monitor. Alternatively, the monitor could be used to replace the security-management related classes
within the VM.

44 Modd Generation

As described earlier, we propose to express models of program behavior using (nondeterministic) EFS A. One
way to generate such modelsisto abstract the source code of a program so as to retain only those portionsthat
relate to system calls made by the program. A simple procedure for generating modelswould be one that starts
with the program, and del etes all statementsand/or expressionsthat do not involve statevariables. Functioncalls
would be preserved, but constructs such as if-then-else would be transformed into nondeterministic choices.
(We are trying to paint a high-level picture of such acompile-time anaysis, but not provide al of the details.)
The drawback of the above approach is that compile-time analysis is |anguage-specific, thus necessitating
redevelopment for each programming language. Moreover, for conventional languages such as C and C++, this
approach suffers from the fact that we may not have source code access to libraries, especialy those that are
loaded dynamically. Therefore, we consider an approach based on machine-learning to be a more promising
aternative. This approach has the additional benefit that it is obtained by observing the execution of a program

7

under typical conditions, and as such, can be more accurate than compile-time techniques.t

We have dready developed an approach for learning program behaviors as finite-state machines in the
context of our previous work on anomaly intrusion detection [23]. Our approach generates compact models
(containing a few thousand states, even for complex programs such as FTP and Apache web server). A lim-
itation of our current approach is that it does not capture system-call argument values. An extension of our
technique to address this limitation is currently underway.

45 Consistency Resolution

As described in the exampl e, the consistency resolver is concerned with (a) verifying whether amodel satisfies
apolicy, and (b) presenting the “difference” between them to the user, and help him/her refine the policy as
appropriate. In this section, we concern ourself only with (a). A possible techniqueto simplify user choicesin
(b) using a policy hierarchy was outlined in the example, but we do not discussthisany further in this section.

Werely on formal verification to determine whether amodel satisfiesa policy. Our techniqueswill be based
on model-checking [2], apopular technique, originally proposed for verifying temporal properties of finite-state
systems. Since the policies as well as the models are captured in the form of state machines, our techniques
will draw on the automata-theoretic formul ation of model-checking [13].

If M denotes the model of a mobile program, and P denotes a security policy, then verification amounts to
checking if M = P. Notingthat M and P are represented as state machines, we can think of the languages
L(M) and L(P) accepted by these machines. Now, implication checking amounts to determining whether
L(M)NL(P)" isempty. (Here, L(P)" denotes the complement of the language L (F).) Note, however, that we
are interested in the “difference” between P and M, as we wish to present thisinformation to a user as part of
conflict resolution. Thisdifferenceisgivenby L(M) N L(P)’, so we will simply present thisto the user. We
discuss the computation of this difference bel ow.

If M and P are represented using FSA (rather than EFSA), then operations such as intersection and com-
plementation are straightforward. In the case of EFSA, we face the problem that such complementation and
intersection problems may be undecidable in general. We tackle this problem in two steps. For complemen-
tation, we note that the security properties of interest are usually safety properties, which are of the form that
“certain bad things do not happen.” (In the example, we considered the property “a network write operation
does not occur after aread of asensitivefile”) It isthus easier for usersto specify an EFSA corresponding to
the occurrence of the “bad thing” and state that this should not happen. Such an EFSA directly captures the
negation of the property we require, and hence complementation isno longer an issue.

To tackle the problem posed by intersection of EFSA, we make use of the following approach. We simply
use the standard FSA intersection algorithm on EFSA. Let M and P’ be the two EFSA corresponding to the
model and the complement of the security policy respectively. The EFSA D corresponding to their intersection
is constructed as follows. The state variables of D consist of the union of state variablesfor A and P’. The
initial stateof D isthe state (m;, p}), where m; and p! are theinitial statesof M and P’ respectively. Now, we
add new states and transitionsto D asfollows. For each state (1, s2) in D such that there exists atransition on
an event ¢ from astate s; to s; of M and s, to s, of P/, we add the state (s3, s4) to D (if thisstateisnot already
there). We also creste atransition from (sq, s2) to (s3, s4) 0n e whose enabling condition is the conjunction of
the corresponding enabling conditionsin A and P’. The assignment operations associated with thistransition
are simply the union of the assignment operations on the corresponding transitionsin M and P’.

The catch with this simple algorithm is that it may generate an EFSA that contains unrealizable paths.
Thus, we may not be ableto tell whether 1) accepts a nonempty language or not. At this point, we do not know
whether thisis a problem that islikely to be encountered frequently. For instance, this problem does not occur
in several examples we have studied to date, including the one presented in this paper. When it does occur, the

LIt must be noted, however, that the models|earnt by runtime monitoring are not conservative. Thus, even if the model of aprogram
satisfiesasecurity policy, the program may in fact violate the policy. However, thisfactor doesnot negatethe safety guarantees provided
by the MCC approach. Through runtime monitoring, we would discover that the program is exhibiting behaviorsinconsistent with the
model, and abort it.

downside will be that the user is given theimpression that the mobile code may violate a security policy when
it does not. Clearly, thisis much less serious than the case when a user is told that a model does not violate
his/her policy when it does. Even so, we are currently investigating techniques to minimize such instances,
by pruning avay pathsin D that are unrealizable. This research is based on our current work in infinite-state
model checking.

5 Implementation Status

Of the components mentioned in the previous section, we already have prototypeimplementationsof (a) thelan-
guages for expressing security policiesand program models, (b) runtime monitoring, and (c) model generation.
These implementati ons were taken from our previous research in intrusion detection [24, 11, 1, 23].

We have only recently begun the implementation of the consistency resolver. So far, we have succeeded in
verifying security properties for simple examples, such as the one described in this paper. We do not envision
any problems scaling these results to larger examples, as the runtimes are adequate (in the range of tens to
hundreds of milliseconds in our initial prototype), and because the algorithms in use have polynomia time
complexity. We expect that by the time a final version of this paper is due, we would have verified useful
security properties of several real applications.

Therest of consistency resolver, including the part for presenting information to a user, collecting feedback,
etc. are yet to be devel oped.

6 Summary

In this paper, we presented a new approach that promises to lead to a comprehensive sol ution to the problem of
mobile-code security, providing the following features:

e Support for mobile code from untrusted sources. The ability to enforce behaviors at runtime enables safe
execution of code from untrusted sources. The runtime monitor can provide isolation capability so that
changes made by a mobile application can be undonein the event of a policy violation, provided the appli-
cation does not communicate with other applications or sites.

e Secure mobile code “ here and now.” PCC technology appears to be still far away from universal deploy-
ment, mainly due to source-language restrictions and the classes of propertiesthat can be verified automat-
ically. Java security is not applicable to the vast mgjority of mobile code that is written in other languages.
In contrast, our approach isdirectly applicableto existing mobile code. Even in the absence of models from
the producer, we can ensure security by enforcing the policies on the code directly at runtime.

¢ Expressive language for specifying consumer security policies. Our approach provides a high-level lan-
guage in which security policies can be expressed concisely and conveniently. The language is expressive
enough to specify not only invariant properties, but aso temporal properties such as “mobile code can over-
write or delete only those files it created previously,” and “no operations to send data over a network are
permitted after read operations on certain sensitivefiles.” Such policies, which rely on sequencing relation-
ships between different operations, cannot be expressed in existing frameworks for mobile code security
such as Java

e Synergy with existing approaches. As mentioned before, our approach can be combined with existing
approaches such as cryptographic signing (for authenticity and integrity), and proof carrying code. With
such combination, therole of runtime monitoring may be superceded by these mechanisms. The elimination
of runtime checks can improve performance, but perhaps more importantly, will allow our approach to
deal with properties that cannot be efficiently checked by monitoring security-relevant operations, e.g.,
properties relating to information flow. (Such propertieswould require us to reason about every assignment
in the program.)

All these capabilities are achieved using our approach without placing an undue burden either on the code
producer or consume.

References

[1] R Bowen, D Chee, M Segal, R Sekar, P Uppuluri, and T Shanbag. Building survivable systems: An integrated
approach based on intrusion detection and confinement. In DARPA Information Security Symposium, 2000.

[2] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM TOPLAS, 8(2), 1986.

[3] B. Cui, Y. Dong, X. Du, K. Narayan Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan, A. Roychoudhury, S. A.
Smolka, and D. S. Warren. Logic programming and model checking. In Satic Analysis Symposium. Springer
Verlag, 1998.

[4] S Forrest, SHofmeyr, and A Somayaji. Intrusion detection using sequences of system calls. Journal of Computer
Security, 1998.

[5] A.K Ghosh, A Schwartzbard, and M Schatz. Using program behavior profilesfor intrusion detection. In Proceedings
of the SANS Third Conference and Workshop on Intrusion Detection and Response, 1999.

[6] | Goldberg, D Wagner, R Thomas, and E Brewer. A secure environment for untrusted hel per applications. In USENIX
Security Symposium, 1996.

[7] L Gong. Inside Java 2 Platform Security: Architecture, APl Design, and Implementation. Addison-Wesley Pub Co,
1998.

[8] I Graf, R Lippmann, R Cunningham, D Fried, K Kendall, Webster.S, and M Zissman. Results of darpa 1998 offline
intrusion detection evaluation, 1998.

[9] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science, 138:353—-389, 1995.

[10] G.J. Holzmann. The model checker SPIN. | EEE Transactionson Software Engineering, 23(5):279-295, May 1997.

[11] K Jainand R Sekar. User-level infrastructure for system call int erposition: A platform for intrusion detection and
confinement. In |SOC Network and Distributed System Security, 2000.

[12] CKo, GFink,and K Levitt. Automated detection of vulnerabilitiesin privileged programs by execution monitoring.
In Computer Security Application Conference, 1994,

[13] R Kurshan. Computer Aided \erification of Coordinating Processes: The Automata-Theoretic Approach. Princeton
University Press, 1994,

[14] W Lee, Park.C, and Stolfo.S. Automated intrusion detection using nfr: Methods and experiences. In USENIX
Intrusion Detection Workshop, 1999.

[15] R.Milner. Communication and Concurrency. International Seriesin Computer Science. Prentice Hall, 1989.

[16] G Necula. Proof carrying code. In ACM Principles of Programming Languages, 1997.

[17] G Neculaand P Lee. The design and implementation of a certifying compiler. In Programming Languages Design
and Implementation, 1998.

[18] P Porras and R Kemmerer. Penetration state transition analysis:arule based intrusion detection approach. In Eighth
Annual Computer Security Applications Conference, 1996.

[19] PPorrasand P Neumann. Emerald: Event monitoring enabled responses to anomal ous live disturbances. In National
Information Systems Security Conference, 1997.

[20] Y. S. Ramakrishna, C. R. Ramakrishnan, |. V. Ramakrishnan, S. A. Smolka, T. L. Swift, and D. S. Warren. Efficient
model checking using tabled resolution. In Proceedings of the 9th International Conference on Computer-Aided
\erification (CAV '97), Haifa, Isradl, July 1997. Springer-Verlag.

[21] C.R. Ramakrishnan. A model checker for vauepassing mu-calculus using logic programming.
Technical report, Dept. of Computer Science, SUNY a Stony Brook, 2000. Available from
http://ww. cs. sunysb. edu/ “cram

[22] F. Schneider, Enforceable Security Policies, TR 98-1664, Dept. of Computer Science, Cornell University, Ithaca,
NY, 1998.

[23] R. Sekar, M. Bendre, P. Bollineni and D. Dhurjati, ‘A Fast Automaton-Based Approach for Learning Program
Behaviors, To appear in IEEE Symposium on Security and Privacy, 2001.

[24] R. Sekar and P. Uppuluri. Synthesizing fast intrusion prevention/detection systems from high-level specifications.
In USENIX Security Symposium, 1999.

[25] XSB. The XSB tabled logic programming system. Availablefromht t p: / / xsb. sour cef or ge. net .

10

