Modelling Techniques for Evolving Distributed Applications
Y.-J. Lin®, C.R. Ramakrishnan® and R. Sekar®
2Bellcore, 445 South Street, Morristown, NJ 07960

PDepartment of Computer Science, SUNY @ Stony Brook, NY 11794

Several languages and techniques have been proposed for formal specification and vali-
dation of concurrent systems. However, these techniques provide no support for modelling
incremental changes that take place during software development, such as successive re-
finements that take place during the design phase or changes that take place later on as
a result of software evolution. Consequently any changes to the system model need to
be incorporated by manual editing of the system specification, which is cumbersome and
error-prone. Moreover, editing being an uncontrolled process, there is no way to automat-
ically carry over (most of the) correctness properties after minor changes to the system.
These factors can make formal approaches very expensive for large and evolving systems.
To alleviate this problem, we present a language RL! in this paper that provides syntactic
as well as semantic support for modelling incremental changes. Based on the language
mechanisms, we then present a method for automatically carrying over properties after
refinement. We also present algorithms for compiling RL specifications into finite state
automata (FSA) that can be analyzed using traditional algorithms for establishing new
properties that hold only after refinement.

Keywords: D.2.1, D.2.4/F.3.1, D.3.3, D.1.3, D.2.2

1. Introduction

Distributed systems are increasingly being used to accomplish complex and critical
tasks. However, as compared to centralized systems, distributed systems are inherently
harder to program, debug or maintain. Formal modelling and reasoning techinques are
therefore being employed to simplify these problems. CSP [9], Estelle [4], Lotos [3], SDL
[2] and Petri nets [13] are among many such formal languages. A variety of tools for
programming and/or reasoning about specifications in these languages (or variants of
these languages) are currently available (e.g., SMV[5], SPIN[10] and COSPAN][11]) and
have been used with a good degree of success.

We have been using formal techniques for modelling and reasoning about telecommuni-
cation software systems, which are among the largest distributed systems that exist today.
Such large systems go through many incremental changes over their life cycle, such as suc-
cessive refinements that take place during the design phase or changes that take place later
on as a result of software evolution. Unfortunately, the techniques mentioned above do
not provide support for modelling such changes. Consequently any changes to the system

'RL stands for Refinement Language.

type HookStatus = {idle,of fhook};
type Usr2Phone = {liftHandSet,replace HandSet};

module phonel(hookState, usr2phone) {
var hookState: HookStatus;
chan usr2phone: Usr2Phone;

initial hookState := idle;

trans
usr2phone?li ft HandSet, hookState = idle — hookState := of fhook;
usr2phone?replace HandSet, hookState = of fhook — hookState := idle;

Figure 1. A Simple Module Specification in RL

model needs to be incorporated by manual editing of the system specification. This editing
process is cumbersome and error-prone: in the absence of appropriate language support,
even conceptually small changes can require editing of the entire system specification and
making changes in a number of places. Moreover, since editing is an uncontrolled process,
all correctness properties need to be reestablished from scratch, after even minor changes
to the specification. These factors can make model-based formal approaches very expen-
sive for large and evolving distributed systems such as telecommunication systems. In
order to alleviate these problems, we have developed a new modelling language RL that
provides syntactic as well as semantic support for expressing incremental changes. Below,
we provide an overview of the language, followed by a summary of results.

1.1. Overview of RL

Our overall approach to modelling is similar to CSP [9], in that a system consists
of a set of sequential processes that communicate through synchronous channels. The
behavior of a process is described by a parameterized module that can be instantiated.
A module, in turn, is characterized by a set of state variables and (non-deterministic)
transition rules. An example of a simple module specification appears in Figure 1. It
gives a simple (incomplete) specification of a telephone that is characterized by a state
variable that describes the on-hook or off-hook status of the phone, and two transition
rules that correspond to lifting and replacing the handset.

In order to support evolution, we need to model changes that alter the behavior of
a module. These changes can take place through modifications to the state component
and/or transition rules. In the former case, the change can be addition of new state vari-
ables, or expansion of the domain of values assumed by existing state variables. In the
latter case, the change can be addition or deletion of new transition rules, or selective mod-
ifications to existing rules by strengthening or relaxation of the pre and post conditions.
These changes can be conveniently described in RL using the following mechanisms.

Module Derivation: All changes are expressed through module derivation, a concept
similar to class derivation in object-oriented (OO) languages. By specifying priority
relationships among rules in the derived and base modules, the rules in a derived
module can override or selectively modify the rules in the base modules. New state

variables can also be specified as part of a derived module. More importantly, we
can alter the domain of an existing state variable in a structured manner using the
following type derivation mechanism.

Type Derivation: New types can be derived from existing types either by refining a
single value into multiple values, or by augmenting the type with entirely new values.
Even when an existing state variable is redefined to possess a derived type in a
derived module, most of the original rules that operate on the base data type can
be reused in the derived module. Moreover, the type derivation mechanism serves
as the basis of a mapping between the derived and original module specifications
that is used in incremental validation.

In comparison with OO-languages, modules are analogous to classes, with message trans-
mission taking the role of member function invocation, and (sets of) transition rules
taking the role of member function bodies. Addition of new state variables corresponds
to having additional data members in the derived class, and addition of new transition
rules is similar to adding new member functions. However, for the purposes of supporting
refinement and evolution, RL improves upon traditional OO-languages. First, the notion

%2, Second, priorities provide a

of type derivation has no direct analog in OO-languages
more flexible mechanism for refinement than the override mechanism in OO-languages,
where a new member function always overrides a function in the base class with the same
name.

With regards to our type derivation mechanism, the notion of refinement was first
developed in the context of statecharts [8]. Statecharts is a visual formalism, where
“boxes” are used to denote states of a machine. In this context, refinement was viewed as
a way to decompose a single (super) state into multiple substates. In the context of text-
based, typed language such as RL, we needed to develop a different view of refinement.
Specifically, we view refinement as operating upon a data type, rather than a state. This
view requires us to ascribe much more structure and semantics to refinement, as compared
to statecharts. For instance, we need to extend refinement to structured data types, as
well as define the semantics of comparisons and assignments over these types. Our notion
of type augmentation was not considered in the context of statecharts.

1.2. Summary of Results
Several issues arise in the design of a language for modelling refinement and evolution.
In this section, we summarize these issues and outline how we resolve them.

o Design of mechanisms for expressing incremental changes: the design must minimize
the potential conflict between expressive power of the mechanism and simplicity
of semantics. The former aspect determines the ease with which we can model
evolution. The latter aspect defines the ease of understanding or reasoning about
incremental modifications. The module and type derivation mechanisms, described

2Type derivation may appear to be similar to inheritance, since functions operating on the base class
continue to operate on the derived class in OO-languages. However the important distinction here is that
the semantics of rules that were written for a type continue to remain applicable even at the new values
added by the derivation process, whereas in OO-languages the functions on the base class can operate
only on components of the base type.

in Section 2, have been designed to balance these considerations. We illustrate the
use of these mechanisms through examples in Section 3.

e Development of a methodology for incremental validation: In Section 4, we present
our approach for automatically carrying over properties after incremental modifica-
tions.

e Enable reuse of existing techniques and tools: When we cannot use incremental
validation, e.g., for properties that do not hold before the refinement, we need to
“validate from scratch.” Several efficient techniques have been developed for such
validation of FSAs. In order to reuse these techniques, we have develop algorithms
in Section 5 for compiling RL specifications into FSAs. The compilation “translates
away” type and module derivation mechanisms without undue increase in either the
state-space or the complexity of transition rules in the resultant automaton.

o Collapsing sequences of incremental modifications: While the language mechanisms
to express incremental changes can make it easier to model and validate evolv-
ing software systems, they have the disadvantage that after several modification
steps, it becomes difficult to understand the specification. Our semantics of module
derivation, as well as the compilation algorithms, enable us to collapse a module
description that involves a sequence of module derivation steps into a single module
description that is much more understandable.

2. Overview of RL

A specification in RL consists of global declarations and module declarations, as shown
in the example in Figure 1. A module is characterized by a set of module parameters,
declarations, priority specifications and transition rules. Module parameters are analogous
to (formal) parameters to a procedure. They are substituted by actual parameters at the
time of module instantiation, as described later on in the section. Of the three kinds
of declarations, type declarations associate names with type expressions; variable and
channel declarations are used to declare variables and channels respectively.

Transition rules are of the form Guard — Ef fect, where Guard specifies the conditions
under which the rule can be executed, and can include tests for presence of messages on
channels or comparisons involving state variables. K f fect includes output operations on
channels or assignments to variables. A rule is executable if all the conditions in its guard
are satisfied. Rule execution is atomic, i.e., either all the assignments in its body are
executed or no assignment is executed.

Channels in RL are not buffered, and thus provide a rendezvous mechanism for com-
munication. This enables us, in the manner described below, to view channel inputs and
outputs as merely syntactic sugar for a particular way of using the state variables. We
view each channel as a state variable that can take a value belonging to the channel’s type,
or be € that denotes an empty channel. Qutput on a channel is treated as a combination
of a test to ensure that the channel is empty, followed by an assignment of the value to
be output on the channel. Similarly, an input operation chan?expr is equivalent to the
comparison chan = expr, followed by the assignment chan := e. We remark that an input

operation is viewed in our language as a comparison, as opposed to the more traditional
view of an assignment. This is because the effect of an assignment can be achieved using
the pattern-matching mechanism described below.

A pattern-matching mechanism is supported for equality comparisons through the use
of temporary variables. The scope of such variables is limited to a single transition rule.
When used in an equality comparison, they get bound to a value that satisfies the com-
parison. Subsequent uses of the variable refer to this value. Pattern-matching provides a
convenient way to deal with structured data types. For instance,

in?f(X,Y) — z1:=X,22:=Y

tests for the presence of a message with root symbol f on the channel in, and if present,
assigns the children of f to z1 and z2 respectively. As in the above example, we use
the convention that temporary variable names start with a capital letter, whereas state
variable names begin in lower case. In conjunction with module instantiation, pattern-
matching provides a mechanism for supporting polymorphism.

2.1. Type Derivation

Type derivation permits us to derive new data types from existing ones. It provides a
structured way to extend existing specifications so that existing rules (operating on base
types) can be reused whenever they are meaningful in the context of the derived type.
The type derivation mechanism is also designed so that properties established for existing
specifications can be carried over to refined version of the specification (see Section 4).

New types can be derived from existing types, which can in turn be derived from other
types, or be base types. The base types in the language include integer subranges (e.g.,
type tl below), enumerated lists of flat (type PhoneNum) or structured (type t2) values,
as well as arrays (type t3) over these types:

type tl = 1..20

type PhoneNum = {pl, p2, p3}

type t2 = { ¢, d(t1), f(HookStatus, PhoneNum) }
type t3 = array [1..10] of PhoneNum

Declaration of t2 refers to the HookStatus type in Figure 1. In type t2, d is a constructor
of arity 1, and f has arity 2. Examples of terms in t2 include ¢, d(3) and f(:dle, p2). We
note that construction of recursive types is not permitted in the language.

Type derivation in RL is provided by refinement and augmentation. Refinement allows
decomposition (or specialization) of a value into multiple values, whereas augmentation
allows us to add a new value to a type. For instance, we can define a new type HookStatusl
by specializing the value of fhook in HookStatus of Figure 1 as follows:

type HookStatusl = refine HookStatus at of fhook into {connected, dialtone};

Whenever any of these refined values appears in a context where the HookStatus type
is expected, it is treated as if the value of fhook appeared there. This provides the
mechanism for reuse of rules that were designed to operate on HookStatus. For structured
values, the refinement declaration specifies a refinement for the root as well as the children:

type t4 = refine t2 at f(X,Y) into {g(X,Y,t1),n(Y, X)};
type tb = refine t2 at f(X : HookStatus,Y') into {f(X : HookStatusl,Y)};

The first declaration specifies that any value of the form ¢(X,Y,n) or A(Y, X), (where
X,Y and n are any values in types HookStatus, PhoneNum and tl respectively) is a
refinement of f(X,Y). In the second declaration, the refinement mapping on the type of
a child introduces a natural mapping on the type of the parent. A refined type includes
all the terms in the base type excluding those terms that were refined, plus the new terms
added by the refinement. Thus HookStatusl contains idle, connected and dialtone.

While type refinement permits us to specialize values, type augmentation provides a
mechanism for defining supertypes of existing types by adding entirely new values. The
nature of augmentation permits full reuse of rules defined on the base types.

type HookStatus2 = augment HookStatusl by {ring};

Type augmentation can be used in conjunction with refinement to add new values in a
structured manner. In particular, if a type T’ is derived from another type T, then new
values can be added to T’ as a refinement of an existing value in T:

type HookStatus3 = augment HookStatus2 at of fhook by {wait(PhoneNum)};

2.1.1. Semantics of Type Derivation

The elements in the types HookStatus through HookStatus3 are shown in Figure 2,
where additional elements (of the form L) have been added to simplify the semantics of
type augmentation. The values added in this manner are called L-values, whereas the
other values are said to be proper. Type augmentation can now be viewed as refinement
at one of the L-values. Augmentations at the outermost level (as in HookStatus2) can be
understood as refinement of the undefined element L that is added to every enumerated
type. Similarly, augmentation at some value v with new values v, ..., v, has the meaning
that vy, ..., v, are to be treated as refinements of v. To get this effect, whenever v is refined,
we add a new element L, as one of its specializations (see L,ffroor in Figure 2), and later
on, refine L, into vy, ..., v, to get the effect of augmentation. Thus the |-elements act as
“place-holders” where additional elements can be added in derived types.

With the above view of augmentation as an instance of refinement, we can understand
type derivation in terms of the structure of resultant types. Figure 2 shows the associations
among the types derived from HookStatus. In particular, a type derivation operation on
a type T to get another type T’ defines a (many-to-one) mapping from values in type T’
to values in type T. We use the notation M+/_ 1 to denote this mapping. For instance,

M HookStatus3—>HookStatus(dialtone) = OfthOk

When a value v in T is refined into vy, ..., v, in type T1, Mti_1 maps vy,...,v, to v and
other values to themselves. We use the notation Mt(val) to denote the value mapped
onto by val in the type T. In order for this mapping to be well-defined, we require that
the value val belong to exactly one type derived from T. If val does not belong to T or
any of its derived types, we set My (val) = L.

Based on the semantics of type derivation, we now specify the semantics of assignments
and comparisons. An assignment of the form v := Expr is valid iff the type T’ of Expr is
the same as the type T of the variable v, or is derived from it. Moreover, Mt 1(Expr)
must be a proper element of T. The meaning of the assignment is to first evaluate Expr to
yield a value V and then assign M1/_1(V) to the variable v. Since a value in a derived

HookStatus: idle of fhook L

 § § f §
HookStatusl: idle connected dialtone Loffhook L

4 T 4 T Iy \
HookStatus2: idle connected dialtone Loffhook ring L

4 T 4 T\ 4 T
HookStatus3: idle connected dialtone watt Loffrook Ting L

Figure 2. Associations among refinements/augmentations of type HookStatus

type has a unique image in the base type, we can permit the expression to have a type
that is refined from that of the variable, but not vice-versa.

All comparisons are of the form wvariable op expr, where op can be one of {=, !=,
<, <=, >, >=} for integer variables, and one of {=, !=} for others. The semantics of
equality is defined as follows. A comparison v = Expr is permissible whenever the types
T" and T” of the operands have a least common ancestor type T such that

Mr_1(v) = Myr_1(Expr) = some proper value in type T
For inequality, we require that both operands map to different proper values in T.

2.2. Module Derivation

Module instantiation, expressed as a declaration of a module type variable, provides
the mechanism for module composition and derivation. Module composition is used to
synthesize new modules by composing existing modules, whereas module derivation is used
to incrementally modify the behavior of a module. The distinction between composition
and derivation is in the specification writer’s view, but not in the language.

The behavior of an existing module can be modified in a derived module either by modi-
fying the state, or the transition rules of the base module. In the former case, it can either
be addition of new state variables or enlargement of the domain of an existing variable
through type derivation. In either case, new transition rules are typically specified as part
of the derived module that deal with the change in the domain. Priority relationships
can be specified between the rules in the base module and those in the derived module.
Priorities have the obvious semantics that a lower priority rule (or initialization) is never
executed when a higher priority rule is executable. Use of module derivation is illustrated
through examples in the Section 3. Incremental validation is discussed in Section 4.

The declaration of a variable

var ml: module m(al,...,aN);

within a module m2 creates an instance of the module m. Any variable v inside the
module instance m1 can be accessed within m2 using the notation ml.v. In simple terms,
this instantiation is equivalent to importing the declarations and the transition rules of
m into m2, after substituting the formal parameters that appear in the definition of m
with the actual parameters al,...,aN. For the substitution to succeed, the types of actual
and formal parameters must be compatible. In particular, if the actual parameter is a

variable then the type of the formal parameter must be derived from that of the actual
parameter or vice-versa. The type of the parameter in the instantiated module is taken to
be the more-refined of the formal and actual parameter types. The idea here is that the
values in a derived type form a superset of the values in the base type. Hence, a variable
of derived type can be thought of as simultaneously holding the values in the derived type
as well as the base type. This view permits us to reuse most of the transition rules in m
that may have been specified in the context of a less-refined type.

2.3. Semantics of RL Specifications

The state of a system specified in RL is given by a function S that maps variables in
the specification to values. The behavior of the specification is defined as follows, based
on the relation T that specifies when the system can transition from one state to another.

Definition 1 (History and Behavior) A history is a (potentially infinite) sequence of
states So, S1, ... such that Sy is the initial state given by the specification and for any two
successive states S; and Sity1, the condition T(S;, Siy1) holds. The behavior of an RL
specification is the set of all histories of the specification.

Validation of RL specifications is based on finite representations of behavior. On the other
hand, simulation of RL programs results in the enumeration of one of the histories.

Due to space limitations, we only provide a brief description of the transition relation T.
It is determined by (a) the semantics of rule execution, and (b) the method for identifying
a rule that can executed in a given state. To define rule execution semantics, we need to
specify the semantics of expressions, comparisons and assignments, which are all based
on the M function described in Section 2.1.1. For a rule C' — A, we say that the rule is
enabled in state S if all the comparisons in C' hold, with some bindings B for temporary
variables. If the rule is enabled, the semantics of its execution is given by the new state S’
obtained from S by performing all the assignments in A in sequence, with the temporary
variable bindings as in B.

To define when a rule is executable, we can define a select function that searches through
the rules in a specification and returns all those that are executable. The search starts
in the main module and proceeds recursively through the modules that are instantiated.
The search proceeds from highest priority rules to the lowest such that (i) once a higher
priority rule is enabled, lower priority rules are eliminated from consideration, and (ii)
when the search proceeds into an instantiated module, appropriate parameter passing (by
reference) is taken into account.

3. Illustration of RL

In this section, we present an example of a telephone service to demonstrate the con-
venience of the language mechanisms in RL for modelling refinement and evolution. Al-
though we expect these mechanisms to be used mainly on large systems to model incre-
mental changes, for the sake of simplicity of illustration, we use only a small example.
The environment for our example is shown in Figure 3. The USER module models actions
of a telephone user, whereas NETWORK models the rest of the telephone network. We
will not be specifying these two modules, but only the PHONE module. We start with
a simple specification that deals only with the interaction between the telephone service

phone2net

USER | vsr2phone PHONE NETWORK
net2phone

<
<

Figure 3. Environment for the telephone service model.

and the user of the service. In this simplified view, the phone is either idle (on hook) or off
the hook, with the lift-hand-set and replace-hand-set messages from the user controlling
the current state of the device. The simplified model is shown in Figure 1.

As the next step of the modelling process, we model the distinction between lifting a
hand set to accept an incoming call and lifting it to make an outgoing call. This is done
by refining the HookStatus type as shown below. We also need to introduce a new state
corresponding to the state when the phone is ringing.

type HookStatusl = refine HookStatus at of fhook into {connected, dialtone};
type HookStatus2 = augment HookStatusl by {ring};
Along with these type declarations, we introduce rules for transitions between the new
states. At this point, we do not wish to exactly specify the conditions under which hook-
State can change from dialtone to connected, or toggle between idle and ring. However,
since we are developing an abstract model of the system, we would like to capture all
possible behaviors of the system and so we specify the possibility of making transitions
between these states on receipt of some (unspecified) messages from the network. There
is also the possibility that some messages may be received in inappropriate states, so
that it is possible to simply discard them. (Otherwise, such messages can fill up the
message buffers and prevent further messages from being received.) The derived module
description is shown below:
type FromNetwork = {signal};
module phone2(hookState, usr2phone, net2phone) {
var hookState: hookStatus2;
var phone: module phonel(hookState, usr2phone);
chan net2phone: FromNetwork;
priority phone < phone2;
trans
usr2phone?li ft HandSet, hookState = idle — hookState := dialtone;
usr2phone?li ft HandSet, hookState = ring — hookState := connected;
net2phone?signal, hookState = dialtone — hookState := connected;
net2phone?signal, hookState = idle — hookState := ring;
net2phone?signal, hookState = ring — hookState := idle;
net2phone?signal — ;
}

The declaration of the variable phone causes instantiation of the module phonel. Be-
cause the module phone2 specifies that rules in phone2 have a higher priority, the first rule
in phonel will never be applicable. However, the second rule (as well as the initialization)
continues to be applicable in the two states that correspond to of fhook.

10

As a next step, we incorporate interactions corresponding to outgoing calls. To do this,
we add the dial message to usr2phone, and introduce two new states under of fhook:

type Usr2Phonel = augment Usr2Phone by {dial(PhoneNum)};
type HookStatus3 = augment HookStatus2 at offhook by {wait, busy};

We also refine the message from network to phone, and introduce a channel for com-
munication from the phone to the network. The revised specification is:

type ToNetwork = {call(PhoneNumber)};
type FromNetworkl = refine FromNetwork at signal into {accept, busy};
module phone3(hookState, usr2phone, net2phone, phone2net) {
chan usr2phone: Usr2Phonel;
chan phone2net: ToNetwork; net2phone: FromNetwork1;
var hookState: HookStatus3;
var phone: module phone2(hookState, usr2phone, net2phone);
priority phone < phone3
trans
usr2phone?dial(X), hookState = dialtone — hookState := wait, phone2net!call(X);
usr2phone?dial(X), hookState |= dialtone — ;
net2phone?accept, hookState = wait — hookState = connected,
net2phone?accept, hookState '= wait — ;
net2phone?busy, hookState = wait — hookState = busy;
net2phone?busy, hookState '= wait — ;

}

As the next step, we incorporate incoming calls into this specification.

type FromNetwork2 = augment FromNetworkl by {call, hangup};
type ToNetworkl = augment ToNetwork by {accept, busy, hangup};
type HookStatus4 = augment HookStatus3 at of fhook by {disconn};
module phone4(hookState, usr2phone, net2phone, phone2net) {
chan net2phone: FromNetwork2; phone2net: ToNetworkl;
var hookState: HookStatus4;
var phone: module phone3(hookState, usr2phone, net2phone, phone2net);
priority phone.phone < phone4; /* phone2 < phonel */
trans
net2phone?call, hookState = idle — phone2net!accept, hookState := ring;
net2phone?call, hookState != idle — phone2net!busy;
net2phone?hangup, hookState = connected — hookState := disconn;
net2phone?hangup, hookState = ring — hookState := idle;
net2phone?hangup, hookState != ring, hookState != connected — ;
user2phone?replace HandSet, hookState = wait — phone2net!'hangup, hookState := idle;
user2phone?replace HandSet, hookState = connected — phone2net!'hangup, hookState := idle;

Note that in this derivation step, the transition rules in this module are not given
priority over those in phone3. Thus, all the rules in phone3 are applicable in phone4. In
successive refinements, it is easy to add more functionality to this basic model, such as
call screening, caller-id, using the type derivation and module derivation operations.

11

4. Incremental Validation

As mentioned in the introduction, one of the costliest aspects of validation of evolving
systems is the need to reestablish all the properties after each modification. We can
significantly reduce this cost through incremental validation, wherein we spend our effort
mainly in establishing the new properties of the modified system, while being able to
carry over (most of) the properties established before the modification. In this section,
we outline how our language mechanisms can be used to automate incremental validation.

We view validation as a kind of language containment problem, as in the automata-
theoretic approach, first proposed in [15]. Specifically, we view the system as an automata
Apnr, with its behaviors (as defined on page 8) corresponding to the set of strings £(M)
(over the alphabet consisting of the set of states of M) accepted by the automaton. In
order to verify a property P we construct another automaton Ap that accepts the language
L(P) of all behaviors that violate the property. Validation thus amounts to establishing
the emptiness of L(M) N L(P). We remark that currently, RL permits us to express only
x-automata, whereas most automata-theoretic approaches to verification make use of w-
automata or Buchi automata. However, the discussions in this section on incremental
validation are orthogonal to this issue, and hence would be applicable for extensions of
RL to support w-automata as well.

Kurshan [11] proposed a verification method based on homomorphic reductions that
can be used to deal with step-wise refinement. After modifying an existing specification
M to get M', we can go through the following steps to carry over a property P from from
M to M'. We specify a mapping h from L£(M’') into L(M). We also identify a property
P’ for M" such that h(L(P")) C L(P). (P’ can often be mechanically derived P, based

on inverting h.) Now, we can see that
LOM) O £(P) = 6 = R(E(MY) 0 R(E(P) = = £(M') 1 £(P') = ¢

The first implication is because h(L(M')) C L(M) and h(L(P')) C L(P). The second
implication follows from the fact that if the images of £(M’) and L(P’) under h do not
have any common elements, then the two sets themselves cannot have common elements.
The notion of reduction mapping is similar to the ideas of protocol projection [12] and
abstraction mappings [7]. However, the difficult aspect of all these approaches is that
the mapping h needs to be constructed by the programmer, and is often the most time-
consuming and difficult component of the verification approach. In the rest of this section,
we discuss how the derivation constructs in RL can be used to automate this process.

4.1. Our Approach

The type and module derivation constructs in RL define a natural mapping h, from
the states of the refined specification M’ to the original specification M. Based on this
mapping, we can define a mapping h, from transition rules in M’ to those in M such
that whenever a transition R’ from a state 57 to S} can be taken in M’, the transition
h,(R') can be taken to go from hs(S7) to hs(S5) in M. It is easy to see the existence of
the mappings hs and h, imply the existence of the mapping h with the desired properties,
provided hs(Sy) = So, where S| and Sy denote the initial states of M" and M respectively.

The mapping h; is specified as follows. For each variable v in M’ that has a type T’

12

derived from its type T in M, we replace the value of v by My _1(v). More formally,
hs(Sp)(v) = Mp_1(Smi(v)), if Mp_1(Sm(v)) is a proper element

= any proper value derived from same value as M1_1(Snm:(v)), otherwise

Every rule R that is present in M as well as M’ maps onto itself under h,. For others,
we can proceed to check the existence of a h, satisfying the conditions specified earlier
for each state S’ of M’ — a task that is equivalent to a state-space search of M’ and
hence defeats the whole purpose of incremental validation. In order to avoid this, when
we consider a rule R', we group together all the states that agree on the variables in
R'. Typically, the number of such groups is much smaller than the entire state space.
Considering each rule R’ in M’ and each group S’ of states that agree on values of
variables in R’, we identify a rule R in M such that

1. if R' takes S to some S’ then R takes hs(S%/) to hs(S').

2. For any R} and R, in M’ if they are mapped onto R; and R; respectively (in M)
by the previous step, and R] does not have higher priority over R, then R; does
not have higher priority over R;.

The second step ensures that whenever a rule R}, is enabled, its image in M is enabled.

The above approach yields a procedure for automatically checking for the existence of
a mapping h from M’ to M. The procedure may have to search through the A, mappings
that correspond to different choices for mapping augmented values. The procedure may
also have to consider different mappings between the rules in M’ and M. However, we
can make the procedures far more efficient by using the mapping between rules to guide
the mapping for augmented values and using heuristics to cut down the search.

4.2. Improvements to the Basic Approach

Two classes of improvements can be made to the basic approach so that the property of
interest can be carried over even when the basic approach fails to identify the h, mapping.
In the first class, we exploit the property to be carried over so as to eliminate certain rules
in M’ that do not map onto rules in M. For instance, we can eliminate rules that can never
be taken in any history generated by the property automaton. We can also eliminate rules
whose presence or absence does not affect the property. As a concrete example, consider a
rule R in M’ that introduces transitions between two refined states. Thus k,(R’) will be
a rule that corresponds to a transition from a state onto itself, i.e., a self-loop. Typically,
such loops are absent in M, which leads to a failure of the basic approach. However, such
self-loops do not affect satisfaction in the context of most properties (liveness properties
in the context of certain fairness criteria and safety properties). This is especially true
in the context of interleaving semantics, where there is little distinction between making
a transition to the same state and not making any transition at all. Therefore, we can
often eliminate such rules and establish a mapping only for the others.

In the second case, we can relax the condition on the mappings so that we can look at
sets of transitions at a time rather than individual transitions. For instance, if every set
of transitions in M’ is covered by a corresponding set in M, our correctness properties
can still be carried through. When such techniques also fail, it appears that it may

13

still be possible to avoid complete state-space search for certain classes of properties, by
exploiting the fact we need only consider those paths corresponding to the rules that were
not covered by the mapping. Further research is required to formalize this idea.

4.3. Illustration of Incremental Validation

A class of modifications that often takes place in RL is as follows. We refine some state
variables, and strengthen existing rules so that the tests or assignments in them refer to
the refined values rather than the unrefined values. Moreover, new transition rules may
be added to make transitions between the refined states. For instance, the successive
specifications phonel through phone4 all make use of this kind of transformation. The
above technique allows us to carry over all the properties after each such transforma-
tion. We illustrate this by defining a mapping h, from phone3 to phone2. In order to
compactly describe the mapping, we first present the image of the new rules in phone3
under a mapping h; and then show the existence of a mapping hy satistying the above
characteristics from the image to the rules in phone2. (Thus, h.(R') = hy(he1(R')) for
every rule R’ in phone3.) The mapping hy is once again derived from the mapping on
states. The mapping of values added through refinement is straight-forward, but there
are some choices for the mapping of augmented values. We map a state assigning dial(X)
to usr2phone in phone3 to a state that assigns € to the same variable in phone2. Similarly,
for the variable hookState, we map wazit to dialtone and busy to connected. Based on this
mapping, we can now map the expressions in the rules. We can also delete the variable
phone2net newly introduced in phone3 to get

usr2phone = ¢, hookState = dialtone — usr2phone := ¢, hookState := dialtone;
usr2phone = ¢, hookState != dialtone — usr2phone := ¢;

net2phone?signal, hookState = dialtone — hookState := connected;
net2phone?signal — ;

The first four rules in phone3 map to the above four rules, whereas the fifth and sixth
rules map onto the third and fourth rules above. Note that when we map the fourth rule,
the condition hookState! = wait disappears. This is because such a condition would be
enabled in states that assign one of the values {idle, ring, dialtone, connected, busy} to
hookState. Mapping this back to phone2, the condition is enabled in states that assign
one of {idle,ring, dialtone, connected} to hookState, i.e., for every value of hookState.

From the above image under h;, we now specify the mapping to rules in phone2. The
first and second rules take a state to itself, and hence can be ignored, as discussed before.
The third and fourth rules above map onto the third and sixth rules respectively in
phone2.

5. Compilation of RL

In this section we describe algorithms for compiling RL specifications into FSMs and
present an overview of implementation of our prototype compiler and simulator for RL.
The compilation enables us to reuse traditional validation algorithms (based on FSMs) for
establishing properties. Our compilation algorithms can also be used to do a source code
transformation that collapses a module that is described through a sequence of module
derivations into a single module description. As mentioned earlier, this transformation is
useful to understand specifications that have gone through several refinements.

14

Input programs are first parsed and other routine aspects such as elimination of channel
variables are taken care of. Following this, module instantiation takes place. To instantiate
a module M, we first instantiate its component modules and bring their rules together
with those of M. Priority relationships between rules are held in a separate table. Without
the module instantiation step, we would have to search through all the module instances
to identify the transition(s) that can be made. By bringing together all the rules, we can
build efficient automata [14] for quickly testing which rules are executable.

Following module instantiation, we translate the resulting rules into our target language.
Our target language, designed to describe FSMs, supports only integer data types and
has no notion of priority. It supports several kinds of branching constructs: if-then-else,
the switch construct similar to that of the C language, the indeterminate construct
that denotes an n-way non-deterministic branch, and the ordered construct, that denotes
the fact that the children branches are to be tried in order. Given this target language,
the important aspects of code generation are (a) mapping of source language data types
into target language (integer) data types, and (b) construction of the transition rule
automaton. We describe each of these aspects below.

5.1. Mapping Source Language Data Types into Target Language Data Types
In this phase, we first map structured types onto a set of integer variables, and then

encode enumerated values by integers. For the mapping, we associate an array of locations
to store a structured variable. For each node of the structured data, the mapping specifies
the index where the value of the node is stored. Observe that it is acceptable to have
the location corresponding to a node depend upon the values of its ancestor nodes, since
we will always examine the ancestor nodes before arriving at this node. However, the
location cannot be dependent on values of non-ancestor nodes, since the pattern-matching
construct implies that we may not always have inspected such nodes. Consider:

type T1 = {a,b, ¢}

type T2 = {d(T1,T1),e(T1)}

type T3 = {f(T2,T1),¢(T1,T2)}

Since T1 is not structured, no mapping is generated. For T2, we map the root and the
children values at offsets 0, 1 and 2 respectively. For type T3, the root is stored at offset
0, and the locations of the child nodes will depend on the value of the root node. For
instance, in the term f(e(a),b), f is stored at 0, e at 1, a at 2, and b at 4. Note that b is
not stored at the location immediately after a, since this location would be occupied by
the second child of of d, had d been in the place of e. Similarly, in the term g(a, d(b,c)),
the values ¢, a,d, b and ¢ are stored at locations 0, 1,2, 3 and 4 respectively.

The encoding of enumerated values becomes complex when we need to support type
derivation efficiently. Consider the comparison v = of fhook where v has the type Hook-
Status3 shown on page 5. The test must succeed iff the value of v is one of connected, dialtone
or watt. The refinement step thus requires us to make several comparisons in place of
one. However, by assigning contiguous codes to all refinements of a value,we can reduce
the number of comparisons to two. The table below shows the two comparisons in the
above example, where C,, denotes the integer code assigned to val. In order to assign
contiguous codes, after encoding a value V' in a type T, we recursively check through the
refinements of T, and assign contiguous codes to them. The next value in T gets encoded
by an integer that is greater than the code assigned to any refinement of V.

15

()
DO

OO
& (D@

€)

Figure 4. Translation of priorities. o and 1 denote ordered and indeterminate nodes

The table below shows the translation of assignments and comparisons based on the
above mappings. In the table, u has the type HookStatus, and the notation Mya, denotes
the memory location for storing a variable var, and * denotes dereferencing.

Source Construct || Target Language Translation
v = of fhook *My > Ceonnected N *My < Cait
v = wait(X) if (*xMy) = Cyuir then Mx 1= *(My + 1)
ui=v switch (xM,)
Ceonnected, Cdiattones Cwait: My 1= Cof fhook
default: M, := *xM,

5.2. Construction of Transition Rule Automaton

In this phase, the priority information is integrated into the rules by using the ordered
and indeterminate constructs. To do this, we start from the roots of the (minimal)
directed acyclic graph representing the partial order relationship given by the priorities.
At any time during this procedure, we would have converted some “top portion” of the dag
into ordered and indeterminate constructs (see Figure 4). We then select a rule R with
maximal priority from among the rules below this top portion. The rules immediately
below R are combined using an indeterminate node, which is then combined with R
using an ordered node. Figure 4 shows two such steps.

Note that the automata construction does not lose the structure of the rules. There-
fore, if we avoid translating comparisons and assignments, it is possible to generate (from
the automaton) a set of rules that closely correspond to the rules in the original speci-
fication. However, since the module boundaries have been lost, we have a transformed
program wherein the net effect of several module derivation steps is captured in a single
specification.

5.3. Discussion of Prototype Implementation

The compiler is written in Standard ML of New Jersey. The whole compiler consists of
about 6000 lines of SML code, with about 4000 in the preprocessing phase and 2000 in the
code generation phase. All of the components described above have been incorporated
into the compiler, with the exception of test reordering. The current performance of the
prototype compiler is quite good. It is fast and generates compact code. A simulator
(about 300 lines of C and SML code) for the resultant FSMs has also been implemented.
The simulator first converts the finite state machine into C-code, which is then compiled
and run. The compilation of C-code is somewhat slow, but execution speed is already
quite fast: about 10* transitions per second for some sample specifications on a Sun Sparc

16

LX machine. We are investigating further speed improvements using test-reordering.

6. Concluding Remarks

In this paper, we presented a specification language RL for modelling evolving systems.
RL provides two principal mechanisms, namely, type and module derivation, that operate
in conjunction to enable modelling of incremental changes to a specification. The design
of these mechanisms must minimize the potential conflict between the expressive power
of the mechanism and the simplicity of semantics. We illustrated the power and conve-
nience of RLthrough a set of examples and then developed a methodology for incremental
validation. The important aspect of our methodology is that it uses RL mechanisms for
refinement and evolution to automatically carry over properties, without requiring human
intervention. Finally, we presented algorithms and results of a preliminary implementa-
tion for compiling RL programs into FSAs. Since such FSAs can be efficiently analyzed
for purposes of “validating from scratch,” our language support for refinement and evo-
lution is achieved without compromising efficiency or requiring rediscovery of previously
known algorithms for validation. We are currently investigating means to further enhance
the power and convenience of our mechanisms for supporting evolution.

REFERENCES

1. J.R. Burch, E.M. Clarke, K.L.. McMillan, D.L. Dill and L.J. Hwang, Symbolic Model Check-
ing: 102Y States and Beyond, Information and Computation, 98(2), 1992.

2. F. Belina and D. Hogrefe, The CCITT Specification and Description Language SDL, Computer
Networks and ISDN Systems 16(4), 1988.

3. T. Bolognesi and E. Brinksma, Introduction to the ISO Specification Language Lotos, Com-
puter Neltworks and ISDN Systems 14, 1987.

4. S. Budkowski and P. Dembinski, An Introduction to Estelle: A Specification Language for
Distributed Systems, Computer Networks and ISDN Systems 14, 1987.

5. E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic Verification of Finite State Concurrent
Systems Using Temporal Logic Specifications, ACM TOPLAS, 8(2), 1986.

6. D. Comer and R. Sethi, Complexity of Trie Index Construction, FOCS, 1976.

7. E.M. Clarke, O. Grumberg and D.E. Long, Model Checking and Abstraction, POPL 92.

8. D. Harel, Statecharts: A Visual Formalism for Complex Systems, Sci. of Comp. Prog., 1987.
9. C.A.R. Hoare, Communicating Sequential Processes, CACM 21(8), 1978.

10. G.J. Holzman, Design and Validation of Computer Protocols, Prentice Hall, 1991.

11. R.P. Kurshan, Automata Theoretic Verification of Coordinating Processing, Berkeley Lec-

ture Notes (unpublished), 1991. Also, Verification of Concurrent Processes: The Automata-
Theoretic Approach, Princeton University Press (to appear), 1994.

12. S.S. Lam and A.U. Shankar, Protocol Verification via Projections, [EFFE Transactions on
Software Engineering, 10(4), July 1984.

13. J.L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice Hall, 1981.

14. R. Sekar, R. Ramesh and [.V. Ramakrishnan, Adaptive Pattern Matching, I[CALP °92.

15. M.Y. Vardi and P. Wolper, An Automata-theoretic Approach to Automatic Program Verifica-
tion, Proc. on Logics in Computer Science, 1986.

