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Verification by Query Evaluation

Model Checking: Given a system description with start state sg
and a property ¢

?
30|=90

Query Evaluation: Encode the “=" relation as predicate nodel s in
a logic program.

l?

so = ¢ is determined by solution to the query nodel s( so, ¢)

o /
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LMC Project: [SUNY, Stony Brook]

Logic Programming-Based Model Checking

Explore the application of Tabled Logic Programming for Model
Checking.

e Semantic equations of process calculi and temporal logics can be
directly encoded as Horn Clauses and evaluated by tabled resolution.

e Constraint processing and Tabling can be combined to compute fixed
points over infinite domains: for verifying properties of infinite-state
systems.

e Certain deduction (theorem proving) strategies can be encoded as
logic rules: can be used to verify systems by a combination of model
checking and theorem proving.

o /
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The XMC System

e Semantics of temporal logics are encoded as a logic program.

e Transition systems are described by rules expressed in Horn
logic (derived from specifications in a process algebra).

e Model-checking queries are evaluated using tabled resolution.

e Proofs/counter-examples are derived from lemmas stored by
the resolution strategy.

Sources can be obtained from
http://ww. cs. sunysb. edu/ ~I nt

o /
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Model Checking using LP: Other Work

e Genova: G. Delzanno (originally with A. Podelski)
e MPI: A. Podelski & S. Mukhopadhyay

e Linkoping: U. Nilsson & J. Libke

e UT Dallas/ NMSU: G. Gupta & E. Pontelli

e Southampton: M. Leuschel

N
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A Simple Example
Verifying Reachability Properties

e Encode Kripke Structure using “EDB facts”
e Encode reachability relation using Horn Clauses

e |Ssue appropriate query

o /
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A Simple Example — I

Encoding Kripke Structures using EDB facts

Structure Encoding
edge(s0O, sl).
edge(s0, s2).
edge(sl, sl).
edge(s2, sO).
edge(s2, sl).

prop(s0, p).
prop(s0O, Q).
prop(sl, Q).
prop(sl, r).
prop(s2, r).
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A Simple Example — Il

Reachability relation:
reach(X,Y) :- edge(XY).
reach(X,Y) :- reach(X 2), edge(ZY).

Query: e.g., “Is a state where ‘r’ is true reachable from state s,?

?- reach(s0, S), prop(S, r).

Answers: S=s1, S=s2

N
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Query Evaluation Techniques

SLD Resolution: Goal directed, complete.

“Oracle” for selecting literal to be resolved.

OLD resolution: Goal directed, fixed literal selection order, incomplete.

Implemented by Prolog engines.

Bottom-up evaluation: Complete for Datalog; Set-at-a-time.

Global evaluation.
Magic-Sets: Add goal direction to “bottom-up” evaluation.

OLDT: OLD resolution with tabling.

Complete for Datalog; Goal-directed.

o /
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=a

N

edge (a, Y)

Prolog Evaluation: An Example

reach (X,Y) :- edge(X,Y).

reach(X,Y) :- reach(X,Z), edge(Z,Y).
edge (a, a) .

edge(a,b) .

edge (b, c) .

reach(a,Y)

/\.

reach(a,Z) , edge(Z,Y)

,/\_

Y=b edge(a,Z) , edge(Z,Y) reach(a,21l) , edge(Z21,Z) , edge(Z,6Y)

ST

edge (a,Y) edge(b,Y) edge(a,2l) , edge(Zl,Z) , edge(Z,Y)

NN

Y=a Y=b Y=c L] L] [ ] L J [ ] L]

/
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What is Tabled Resolution?
Memoize results to avoid repeated subcomputations.

e Termination: Avoid performing subcomputations that repeat
Infinitely often.

— Complete for datalog programs

e Efficiency: dynamically share common subexpressions.

Power: Effectively computes fixed points of Horn clauses viewed as
set equations.

N

/
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/ Tabled Resolution

Record goals in call table
and their provable instances in answer table.

On encountering a goal G,

e If G is present in call table:
— Resolve G with the associated answers.
e If G is not present in call table:

— Enter G in call table
— Resolve G with program clauses to generate answers

— Enter each answer in the associated answer table.

N
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reach (X, Y)
reach (X, Y)
edge (a, a) .
edge (a,b) .
edge (b, c) .

Calls

reach (a, V)

N

Evaluation using Tabled Resolution

:— edge(X,Y).
:— reach(X,2), edge(Z,Y).

~

CONCUR 2000
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Evaluation using Tabled Resolution

reach(X,Y) :—- edge(X,Y).
reach(X,Y) :- reach(X,Z), edge(Z,Y).
edge (a, a) . p
edge (a,b) . reach(a, Y)
edge (b, c) . /\
edge (a,Y) reach(a,Z), edge(Z,Y)
Calls .

reach(a,V) Answers

N
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reach(a,V) Answers

V=a

N

Evaluation using Tabled Resolution

reach(X,Y) :—- edge(X,Y).
reach(X,Y) :- reach(X,Z), edge(Z,Y).
edge (a, a) . p
edge (a,b) . reach(a, Y)
edge (b, c) . /\
edge (a,Y) reach(a,Z), edge(Z,Y)
Y=a
Calls .

CONCUR 2000
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Evaluation using Tabled Resolution

reach(a,V) Answers

V=a
V=Db

N

reach(X,Y) :—- edge(X,Y).
reach(X,Y) :- reach(X,Z), edge(Z,Y).
edge (a, a) . p
edge (a,b) . reach(a, Y)
edge (b, c) . /\
edge (a,Y) reach(a,Z), edge(Z,Y)
Y=a Y=
Calls .

CONCUR 2000
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reach(a,V) Answers

V=a
V=Db

N

Evaluation using Tabled Resolution

reach(X,Y) :—- edge(X,Y).
reach(X,Y) :- reach(X,Z), edge(Z,Y).
edge (a, a) . p
edge (a,b) . reach(a, Y)
edge (b, c) . /\
edge (a,Y) reach(a,Z), edge(Z,6Y)
/\ Z/
Y=a Y= edge (a, Y)
Y=a
(Duplicate)
Calls .

CONCUR 2000
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reach(a,V) Answers

V=a
V=Db

N

Evaluation using Tabled Resolution

reach(X,Y) :—- edge(X,Y).

reach(X,Y) :- reach(X,Z), edge(Z,Y).

edge (a, a) . p

edge (a,b) . reach(a, Y)

edge (b, c) . /\
edge (a,Y) reach(a,Z), edge(Z,6Y)
/\ Z/

Y=a Y= edge (a, Y)
Y=a Y=b
(Duplicates)
Calls .

CONCUR 2000
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Evaluation using Tabled Resolution

reach(X,Y) :—- edge(X,Y).
reach(X,Y) :- reach(X,Z), edge(Z,Y).
edge (a, a) . p
edge (a,b) . reach(a, Y)
edge (b, c) . /\
edge (a,Y) reach(a,Z), edge(Z,Y)
Y=a Y= edge (a, Y) edge (b, Y)
Y=a Y=b Y=c
(Duplicates)
Calls .

reach(a,V) Answers
V=a
V=b
V=c

N
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reach (X, Y)
reach (X, Y)
edge (a, a) .
edge (a,b) .
edge (b, c) .

Calls

reach(a, V)

N

Evaluation using Tabled Resolution

:— edge(X,Y).
:— reach(X,2), edge(Z,Y).

~

reach (a, Y)

/\

Y=a Y=b edge (a, Y) edge (b, Y)
Y=a Y=b Y=c
(Duplicates)

edge (a, Y) reach(a,z), edge(Z,Y)

Z=c

edge (c, Y)

|

fail

Answers
V=a
V=Db
V=c

CONCUR 2000

Vferification Using Tabled Logic Programming

22



4 N

Tabling for Normal Logic Programs

SLG resolution [Chen & Warren '96]

e For positive programs = OLDT resolution [Tamaki & Sato '86]

Complete for datalog programs: computes minimal models.

e For programs with negation, computes the (three-valued)
well-founded semantics [van Gelder et al '91]

of dependencies that lead to this conclusion.

N

— For predicates with unknown truth value, generates the set

/
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nw = 0O O T

Well-founded models: An Example

Model:
g, not r. True: r
not s. False: p
p, I.
Unknown: (Q,sS
not q, r. Residual Program:
g :- not s.
S :- not q.

CONCUR 2000

Vferification Using Tabled Logic Programming
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/ XSB: An Implementation of Tabled Resolution \

e Conservative extension of the WAM

e Can combine tabled and nontabled (Prolog-style) evaluation in
one program.

— Tabled predicates specially annotated with“ : - table ...”
directive.

— “t not ” signifies tabled (well-founded) negation, distinct from
Prolog’s not .

e Tables represented using Tries

Efficient support for terms in tables.

e Scheduling of tabling operations:

Equivalent to semi-naive evaluation

&other Implementations (e.g., YAP) are just beginning to appear... /

CONCUR 2000 Vferification Using Tabled Logic Programming
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Operational Behavior of Tabled Programs

Program resolution for any goal is done at most once.
Each table has one producer, possibly many consumers.
Only distinct answers are supplied to consumers.

When is a consumer C supplied answers from a table for
goal G?

Variance-based: C and G are identical modulo variable
renaming.

Subsumption-based: C'is an instance of G.

Well-founded models are computed in polynomial time.

~

/
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Estimating Complexity of Tabled Programs

Right-recursive r each:
.- table reach/2
reach(X,Y) :- edge(XY).
reach(X,Y) :- edge(X 2), reach(ZY).
Time to evaluate reach(+,?): O(|V |- | E |).

Left-recursive r each:
- tabl e reach/ 2.

reach(X,Y) :- edge(XY).
reach(X,Y) :- reach(X 2), edge(ZY).
Time to evaluate reach(+, ?): O(| E |).

N
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Representing transition systems

e Single-step transitions:

— Direct representation of automata (one ground fact per transition)

— Interpreters for process languages [CAV’97]
* On-the-fly generation of reachable state space

— Rules representing the transition relation [PSTV’99]

e Rules representing the reachability relation [Delzanno &
Podelski '99].

E.Q.,
p(s,z) « o' = f(z),p(s',2')

o /
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/

Interpreting Process Languages: CCS
t r ans: Single-step Transition Relation: State x Action x State
Prefix trans(A o P, A P).

Choice trans(Pl1 # P2, A Q .-trans(P1, A Q.
trans(Pl # P2, A Q .-trans(P2, A Q.

Restriction trans(P \ L, A, Q\ L) :-trans(P, A Q,
not nenber (A, L)

Relabelling trans(P @ F, A Q@ F):-trans(P, B, Q,

CONCUR 2000 Vferification Using Tabled Logic Programming
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Semantics of CCS (contd.)

Parallel trans(P | Q A Pl | Q:-trans(P, A

composition trans(P| Q A P | Ql):-trans(Q A,
trans(P | Q tau, P1 | QL) :-

trans(P, A,

trans(Q B,

conpl enent (i n(A), out(A)).
conpl enent (out (A), 1 n(A)).

t rans( Pexp,

N

P1) .
Q) .

P1),
Ql),

Definition trans(Pnanme, A Q . - Pnanme ::= Pexp,

conpl ement (A, B).

A Q.

/
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XL: XMC'’s Process Specification Language

Supports:

e Concurrency and synchronization a la CCS.
e Parameterized processes and channels as parameters.

e Algebraic (possibly recursive) datatypes with polymorphic type
iInference.

e Embedding computations written in Prolog.

o /
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medi um( Get, Put) ::= Get ? Data;
{ Put ! Data
# action(drop) }; nmediunmGet, Put).

XL: An example

sender (Ackln, DataQut, Seq) :.:=
%% Seq i s the sequence nunber of the next franme to be sent
Dat aCut ! Seq;
{ Ackl n ? AckSeq;
I f (AckSeq == Seq) then {
%6 successful ack, next nessage
NSeq is 1-Seq;
sendnew( Ackl n, DataQut, NSeq)
el se %o resend nessage
sender (Ancl n, DataQut, Seq)
# 90 No ack, tineout and resend nessage
sender (Ancl n, DataCQut, Seq)

CONCUR 2000 Verification Using Tabled Logic Programming
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XMC’s Compiler

e Representation: Process terms in XL are translated into rules
representing global and local transition relations.

e Optimizations:

— Merges communication-free and choice-free paths into
atomic steps

— Computes potential synchronizations at compile time
(where possible)

— Eliminates dead variables from state expressions.

[PSTV'99]

o /
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XMC’s Compiler: Sample output

trans(nmedium O(A B, C,in(A D,nmediuml1(B, A D Q).
trans(nmedium 1(A B, C, D), out (A O, nediumO0(B,A D).
trans(nmedium 1(A, B, C, D), action(drop), nediumO(B, A D)).
trans(sender O(A B, C D),out(B,C,sender 1(A B,C D).

trans(abp_7 O(sendnew O(A B, C, D,E F, G H), acti on(sendnew),
abp_7 _O(sender O(A B, C D) ,E F, GH)).
trans(abp_7 O(A nedium 1(B,C D, E), F, G H), acti on(drop),
abp_7 O(A mediumO(C B,E),F,GH)).
trans(abp_7 O(sender 1(A, B, C/ D), E medium1(A F, GH,I,J),tau,
abp_7 O(sendnew O(A, B K, D, E, nediumO(F, A H,I,J)) :-
G==C
K is 1- C

N
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df

N

Modal Mu-calculus: Syntax \

Fexp --> Fname

| tt

| Fexp /\ Fexp

| Fexp \/ Fexp

| diam(A, Fexp)

| diamMinus(A, Fexp)
| box(A, Fexp)

| boxMinus(A, Fexp)

Definition -->

Fname -= Fexp
| Fname += Fexp

An Example: deadlock freedom

-= boxM nus(nil, df) /\ diamMnus(nil, tt)

/

CONCUR 2000

Vferification Using Tabled Logic Programming

37



-

models(S, tt).

Modal Mu-Calculus: Semantics

models(S, F1 \/ F2)) :- models(S, F1) ; models(S, F2).
models(S, F1 /\ F2)) :- models(S, F1), models(S, F2).
models(S, diam(A, F)) :- trans(S, A, T), models(T, F).

models(S, diamMinus(A, F)) :-
trans(S, B, T), A \= B, models(T, F).

models(S, box(A, F)) :-
forall (T, trans(S, A, T), models(T, F)).

models(S, boxMinus(A, F)) :-

forall((B,T), (trans(S, B, T), A \= B), models(T, F)).

CONCUR 2000 Vferification Using Tabled Logic Programming
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Implementing f or al |

Actual encoding of box formulas makes free variables explicit:

models(S, box(A, F)) :-
foral I (T,
(S,A,F)"trans(S, A, 1),
models(T, F)).

forall(Bv, FVv Ant, Cons) :-
findall ((Fv,Cons), Ant, L),
all_true(Fv, L).

all_true(., [D-

all_true(Fv, [(Fv, Cons)|Rest]) :-
Cons,
all_true(Fv, Rest).

CONCUR 2000

Vferification Using Tabled Logic Programming
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/ Fixed Points \

Minimal model of the logic program = least fixed point.

nodel s(S, Fnanme) -
Fname += Fexp,
nodel s(S, Fexp).

Greatest fixed points can be computed using the identity

VXf(X) = —ly,X.—lf(—lX)

nodel s(S, Fnanme) -
Fname -= Fexp,
negat e( Fexp, NFexp),
not nodel s(S, NFexp).

where negat e( F, NF) is such that NF = —F and NF itself doesn't

Qontain ‘=, /

CONCUR 2000 Vferification Using Tabled Logic Programming
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Nested Fixed Points

e The well-founded model coincides with (the) 2-valued stable
model for (dynamically) stratified programs

—> implementation is complete for alternation-free fragment
of modal mu-calculus

e Alternation in formula leads to non-stratified programs.

— Results in signed programs with stable models. The
structure of alternation dictates a preference order among
the stable models.

N

— Stable models can be computed from the residual program.

CONCUR 2000 Vferification Using Tabled Logic Programming
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Value-Passing Modal Mu-calculus

order -=[a(X)] follow(X) /\ [-] order.
followm( X) += <b(X)>tt \/ [-b(X)]follow X).

e Variables are quantified by modalities

variables in <> are existential; variables in [ ] are universal.

e For finite-state systems, the encoding of the model checker (as
It stands) verifies value-passing formulae.

e For handling infinite-state systems we need constraint
processing...

o /
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/ Model Checkers for other logics

Proofs may not be trees

e Look for “good paths” (i.e, paths leading to true leafs or “good
cycles”) in a proof graph

Phase 2: Do cycle checking if the search in Phase 1 fails.

e Known “delcarative” encodings of cycle detection are
nonlinear (e.g., quadratic if r each( X, X) is used).

primitives in XSB.

N

Example: LTL and Action LTL [TAPD’00]

Phase 1: Represent proof graph explicitly and search for true leafs

e Linear-time SCC detection can be programmed using table

~

/
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Real-time Systems

Timed Automaton

Encoding
trans(10(T), a, 10(T)).
trans(10(T), b, 11(0)) :-
trans(10(T), c, 12(T)).
trans(l1(T), b, 12(T)).
trans(12(T), a, 10(T)).
trans(10(T0), eps(D, 10(T1)) :-
Tl = TO+D, TI1<5.

trans(l1(T0), eps(D, 11(T1)) :
T1 = TO+D, T1<6.

trans(l 2(T0), eps(D), 12(T1)) :-
Tl = TO+D, T1>4.

inv(l10(T)) :- T < 5.

Inv(l1(T)) :- T < 6.

Inv(l2(T)) :- T > 4.

CONCUR 2000

Vferification Using Tabled Logic Programming
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Verifying Reachability Properties

reach(X,Y) :- trans(X,_.,Y), inv(Y).
reach(X,Y) :- reach(X,2), trans(Z,_,Y), inv(Y).

e X and Y correspond to location/zone pairs.

e Terminates when evaluated using a Constraint LP system with
tabling.

— Needs entailment check when searching through tables.

e Encoding is suited for forward reachability (note the use of
location invariants).

Formulation of backward reachability is similar &
straightforward.

o /
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Conservative extension to mu-calculus model checker

1. Universal modality for untimed calculus was encoded operationally,
using foral | .

2. Universal time modality [e] cannot be encoded in the same way due to
guantification over an infinite domain.

3. Elimination of universally quantified interval varible (D in above
formulation) can be programmed as a basic operation.

4. Needs a ternary nodel s relation nodel s(S, F, SubS), where
SubS is a collection location/zone pairs such that

o [SubS] C [9]

e Ve [SubS] wkEF

e SubSis the largest such collection

o /
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tabulation

XSB.

Prolog

N

Implementing Real-Time Model Checkers

No mature LP system that combines constraint processing with

e Preliminary implementation of hooks for constraint libraries in

~

[Cui & Warren '00]

e Tabulation implemeted by meta-programming in SICStus
[Delzanno & Podelski '99; Mukhopadhyay & P. '00]

e Interface for polyhedra packages with XSB

[RTSS'00]

/
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Parameterized Systems

Infinite family of finite-state systems.

0
<:> trans(c(s(M)), c(M)).

1 0
<;>’<:> base(c(0), p)-

En 4 0 ef(S, P) :- base(S, P).
<;>’<:>* ........ *<:> ef(S. P) -

N

trans(S, T), ef(T, P).

CONCUR 2000 Vferification Using Tabled Logic Programming
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Consider:

Model Checking Parameterized Systems

trans(c(s(M)), c(M)).
base(c(0), p).-

ef(S, P) :- base(S, P).
ef(S, P) :- trans(S, T), ef(T, P).

o Query “?- ef(c(k), p)”terminates for any finite k.

e Query “?- ef(c(N), p)”enumerates all solutions:

N = O;
N = s(0);
N = s(s(0));

N

CONCUR 2000 Vferification Using Tabled Logic Programming
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Define:

A Human Proof

nat (0) .

nat (s(N)) :- nat(N).
Theorem: VNnat (N) = ef (c(N), p)

Proof: By induction on nat .

Induction hypothesis: VK< Mnat (K) = ef (c(K), p)

Inductionstep(N = s(M): ef(c(s(M), p) istrue because
ef (c(M, p) istrue (by induction hypothesis) and there exists a
transition from state c(s( M ) to state c( M

Can we extend guery evaluation to automate this proof ?

Base case (N = 0): ef (c(0), p) istrue since base(c(0), p) istrue.

/
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Proof by Program Transformations

Define in program Pt hm(N) - nat(N), ef(c(N), p).
Convert the proof obligation to a predicate equivalence t hm = nat in Py.

Transform definition of t hmin P, to the following definition in a program P:

t hm( 0).
thm(s(N)) :- thm(N).

The definition of t hmin program P is syntactically equivalent to that of
nat ; hencet hm = nat

o /
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Program Transformation : Unfolding

q: -G, | Bdy, | G'.
qQ:—G,|p|G. q: -G, | Bds, | G
—Bd
P : Unfold
p: —Bds. — q: -G, | Bd,, | G'.
P —Bd1
p:—Bd,
p: —DBd,.

e Each step in query evaluation is an application of unfolding.

e Corresponds to the base case as well as finitely evaluated portions of
the induction step in an induction proof.

o /
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/ Program Transformation : Folding

N

e Corresponds to recognition of induction hypothesis.

: —Bdl.
Pj (j <)
: —Bd,.
q —G, Bdi, G'.
q: —G, | Bds, | G'. ,
12X ’ F&'g q: =G, p|G.
q: -G, | Bd,, | G'.

~

e Replaces occurrence of clause body (from a previous program in the
transformation sequence) by its head.

/
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Verification by Transformations: An Example

thm(N) - nat(N), ef(c(N),p)-
nat(0).
nat(s(N)) :- nat(N).
P ef(S,P) :- base(S,P).
ef(S,P) :- trans(S,T), ef(T,P).
base(c(0),p).-
trans(c(s(N)), c(N)).-
lUﬂfOld (Discovering induction schema)

p, - thm(0) :- ef(c(0),p).-
b thm(s(N)) :- nat(N), ef(c(s(N)), p)-

o /
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Transformation Example (contd.)

P thm(0) :- ef(c(0), p)-

thm(s(N)) :- nat(N), ef(c(s(N)), p)-

J{Uﬂfd ds (Base case completed)

p, - thm(0).
+ thm(s(N)) :- nat(N), ef(c(s(N)), p)-
J{Uﬂfd dS (Finite part of induction step)
thm(0).
P7 .
thm(s(N)) :- nat(N), ef(c(N), p)-
1F0|d (Applying induction hypothesis)
Py - thm(0).

thm(s(N)) :- thm(N).

CONCUR 2000
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~

Verification by Program Transformation

e Can do nested inductions, using goal replacement transformations.

e Strategies to control the order of transformations:

— Apply model checking (unfolding) steps as much as possible.

— Allow interleaving of model checking and deductive (folding,
replacement) steps.

e [TACAS'00] Implemented our control strategies to produce proofs for:

— Liveness in chains (previous example)
— Mutual exclusion in token rings,

— Liveness in a family of binary trees, etc.

/

CONCUR 2000

Vferification Using Tabled Logic Programming

58



N

Organization

Verification by query evaluation

An overview of Tabled Logic Programming
Representing transition systems

Model checking modal mu-calculus

Infinite-state systems and Constraint LP

Induction proofs via program transformation
Symbolic bisimulation for value-passing systems

Justification of verification proofs
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Bisimulation for basic LTS

Given a labeled transition system L = (5, T'), R is a bisimulation
relation if R is the largest relation such that

Vs1,82 €S s1Rs2 = V(s1,a,t1) €T H(s2,a,t2) €T t1 Rt
A V(s2,a,t3) €T 3F(s1,a,t1) €T t1 R,

Consider R, the complement of the bisimulation relation:

VSl,Sz eES s ﬁ D — 3(81,0',, tl) eT V(Sz,a,tz) el t ﬁtz
V. A(s2,a,ty) €T V(s1,a,t1) €T t1 Rt,

R is the smallest such relation (i.e., least model for the logical
formula above).

o /

CONCUR 2000 Vferification Using Tabled Logic Programming




-

Implementing Bisimulation Checking

- table nbisim/2.
nbisim(S1, S2) :-

trans(S1, A, T1),

no_matching_trans(S2, A, T1).
nbisim(S1, S2) :- nbisim(S2, S1).
no_matching_trans(S2, A, T1) :-

forall (T2, trans(S2,A,T2), nbisim(Tl, T2)).
bisim(S1, S2) :- tnot(nbisim(S1,S2)).

Performs LOCAL bisimulation checking

Time Complexity: O(|S| x |T'|) assuming unit-time table lookups.
(Tables as binary trees introduces O(log|S]) factor.)

N

~

/
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In practice, encoding of f or al | makes free variables explicit.

Implementing f or al |

E.g.,

no_matching_trans(S2, A, T1) :-
forall (T2,
(S2,A,T1)"trans(S2, A, T2),
nbisim(T1l, T2)).

forall(Bv, Fv Ant, Cons) :-
findall ((Fv,Cons), Ant, L),
all_true(Fv, L).

all_true(., [D-

all_true(Fv, [(Fv, Cons)|Rest]) :-
Cons,
all_true(Fv, Rest).

N

~
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/ Bisimulation for Symbolic LTS

Given an extended LTS L = (S5,T), R, is a early bisimulation
relation if R; Is the largest relation such that

Vs1,82 €S s1Ris2 = V(s1,a,t1) €T
Vo | d(se2,a’,t2) € T such that

ac > aoc AN tiocR tao

A... the symmetric case...

R. is a late bisimulation relation if R is the largest relation
such that
Vs1,82 €S 81 Res2 = V(si,a,t1)€T
A(s2,a’,t2) € T | Vo |such that

ac > a0 A tio Re tao

A... the symmetric case...

N

~
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Implementing Symbolic Bisimulation Checking — |

-— table nbisim/2.

nbisim(S1, S2) :-

strans(S1, Al, C1, T1),

C1,

no_matching_trans(S2, S1, Al, T1).
nbisim(S1, S2) :- nbisim(S2, S1).

no_matching_trans(S2, S1, Al, T1) :-
forall ((A2,C2,T2),
(S1,A1,T1,S2) strans(S2, A2, C2, T2),
nsimulate(Al1,T1, A2,C2,T2) ).

bisim(S1, S2) :- tnot(nbisim(S1,S2)).

o /
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Implementing Symbolic Bisimulation Checking — Il

nsimulate(Al1,T1, A2,C2,T2) :-
(C2,

copy_term((A1,T1,A2,T2), (B1,U1,B2,U2)), % Late

(A1,T1,A2,T2) = (B1,U1,B2,U2), % Early

( B2 =>= B1, nbisim(Ul, U2)
; B2 />= B1)

)
; hot(C2)

[TAPD'00]

~
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Organization

Verification by query evaluation

An overview of Tabled Logic Programming
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Infinite-state systems and Constraint LP
Induction proofs via program transformation
Symbolic bisimulation for value-passing systems

Justification of verification proofs
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e Constructs sufficient evidence of proof/disproof after
verification run by inspecting lemmas in memo tables.

e Adds no overhead (time or space) to prover.

e Presents abstractions of proof/disproof tree to user; user may
“walk” the tree interactively.

e Can be used to construct tree of MSCs.

Justifier

[PPDP’00]

/
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Justifying Logic Programs: The Basic Idea

of derivation).

p is true: geta clause H : —B such that mgu(H, p) = 4, and
every literal g; in B is true, and

g; 1S not an ancestor in the justification.

p is false: Find all clauses H; : —B; such that mgu(H;, p) = 6;.

p is unknown: Find all clauses H; : —B; such that mgu(H;, p) = 6.

Pick g;; from each B;6; such that g;; is unknown, and V k£ # j qix IS
true/unknown.

N

Pick g;; from each B;8; such that g;; is false, and V £ < j q; is true.

~

Given a goal p, show one step in its derivation (or evidence of lack

/
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Justifying Meta Programs

e Allow arbitrary combination of tabled and non-tabled goals.

V' is justified in terms of ‘—d—’

e Convert logic program proof graphs to higher-level structures
using graph (tree) transformations

Uniform “core” method for showing proofs, counter examples and
bisimulation games.

N

e Permit user-specifiable justifications for library predicates (e.g.,

/
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Summary

LP-based formulation and implementation of verification
techniques offer

Elegance: Succinct
Efficiency: As fast as existing systems

Expressiveness: Value-passing languages, symbolic
(constraint-based) evaluation

Extensibility: Mix-and-match logics and tool interfaces

Unaddressed issues: Space consumption, control of search,
special-purpose data structures, ...

N
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