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Abstract. Formal verification of reactive concurrent systems is impor-
tant since many hardware and software components of our computing
environment can be modeled as reactive concurrent systems. Algorith-
mic techniques for verifying concurrent systems such as model checking
can be applied to only finite state systems. This chapter investigates
the verification of a common class of infinite state systems, namely pa-
rameterized systems. Such systems are parameterized by the number of
component processes, for example an n process token ring for any n.
Verifying the entire infinite family represented by a parameterized sys-
tem lies beyond the reach of traditional model checking. On the other
hand, deductive techniques to verify infinite state systems often require
substantial user guidance.

The goal of this work is to integrate algorithmic and deductive tech-
niques for automating proofs of temporal properties of parameterized
concurrent systems. Here, the parameterized system to be verified and
the temporal property are encoded together as a logic program. The
problem of verifying the temporal property is then reduced to the prob-
lem of determining equivalence of predicates in this logic program. These
predicate equivalences are established by transforming the program such
that the semantic equivalence of the predicates can be inferred from the
structure of their clauses in the transformed program.

For transforming the predicates, we use the well-established unfold/fold
transformations of logic programs. Unfolding represents a step of resolu-
tion and can be used to evaluate the base case and the finite part of the
induction step in an induction proof. Folding and other transformations
represent deductive reasoning and can be used to recognize the induc-
tion hypothesis. Together these transformations are used to construct
induction proofs of temporal properties. An algorithmic framework is
developed to help guide the application of the transformation rules. The
transformation rules and strategies have been implemented to yield an
automatic and programmable first order theorem prover for parameter-
ized systems. Case studies include multi-processor cache coherence pro-
tocols and the Java Meta-Locking protocol from Sun Microsystems. The
program transformation based prover has been used to automatically
prove various safety properties of these protocols.



1 Introduction

Many hardware and software components of our everyday computing environ-
ment can be modeled as a reactive concurrent program. These include hardware
controllers, operating systems, network protocols, and distributed applications
e.g. air traffic control system. Intuitively, a reactive concurrent program is a col-
lection of nonterminating processes which run concurrently, and communicate
with each other as well as an external environment to perform a common task.
Proving correctness of such a program involves showing that it displays some
desired behavior. Formally proving correctness of such systems has been a topic
of intense research for the past two decades, leading to the birth of successful
techniques like model checking [8].

Formal verification of reactive programs involves: (i) constructing the “spec-
ification” i.e. the description of the desired behavior(s) of the program, (ii)
constructing the “implementation” i.e. the formal description of the reactive
system being verified, and (%) formally proving that the implementation satis-
fies the specification. Given appropriate formalisms for expressing the specifi-
cation and implementation, we then need a proof system for establishing that
a given implementation satisfies a given specification. A proof system is essen-
tially a collection of proof rules corresponding to the operators of the languages
chosen for expressing the specification and the implementation. Given a proof
system and a proof obligation (i.e. a given implementation and specification),
one needs to construct a proof tree by repeated application of the rules to the
proof obligation. In general, this proof tree construction is undecidable [26].

However, for finite state concurrent programs, this can be achieved algorith-
mically by searching the finite model of the implementation, i.e. by searching
the states of the finite state transition system represented by the concurrent
program. This is the basic idea behind model checking. Model checking [8] is
an automated formal verification technique for proving properties of finite state
concurrent programs. Here the specification is typically provided as a temporal
logic formula. The implementation is often expressed using a process calculus,
which is translated to a finite state transition system. Verifying the truth of the
temporal formula is accomplished by traversing the states of this transition sys-
tem based on the structure of the temporal formula. If the formula is true, then
the search succeeds; otherwise the search fails and yields a counterexample.

The Problem Addressed The applicability of model checking is inherently re-
stricted to finite state concurrent systems. Many of the verification tasks one
would like to conduct however deal with infinite state systems. In particular, we
often need to verify “parameterized” systems such as an n-bit adder or an n
process token ring for any n. Intuitively, a parameterized system is an infinite
family of finite state systems parameterized by a recursively defined type e.g.
N. Thus an n bit adder is a parameterized system, the parameter in question
being n € N, the width of the adder circuit. Verification of distributed algo-
rithms can be naturally cast as verifying parameterized systems, the parameter
being the number of processes. For example, consider a distributed algorithm



where n users share a resource and follow some protocol to ensure mutually
exclusive access. Using model checking, we can verify mutual exclusion for only
finite instances of the algorithm, i.e. for n = 3, n = 4,..., but never the entire
algorithm for any n. The verification of parameterized systems lies beyond the
reach of traditional model checkers: the representations and the model-checking
algorithms that manipulate these representations are designed to work on finite
state systems and it is not at all trivial (or even possible) to adapt them to verify
parameterized systems.

In general, automated verification of parameterized systems has been shown
to be undecidable [3]. Thus, verification of parameterized systems is often ac-
complished via theorem proving, i.e. mechanically checking the steps of a human
proof using a deductive system. Even with substantial help from the deductive
system in dispensing routine parts of the proof, such theorem proving efforts
require considerable user guidance. Alternatively, one can identify subclasses of
parameterized systems for which verification is decidable [18,27]. Using this ap-
proach meaningful subclasses have been identified, such as token rings of similar
processes [12] and classes of parameterized synchronous systems [15].

The Approach Taken A parameterized system represents an infinite family pa-
rameterized by a recursively defined type. Therefore, it is natural to attempt
proving properties of parameterized systems by inducting over this type. In this
work, we aim to automate the construction of such induction proofs by restrict-
ing the deductive machinery for constructing proofs. We construct an automatic
and programmable first order logic prover with limited deductive capability.

The research reported in this chapter is part of recent efforts to exploit logic
programming technology for developing new tools and techniques to specify and
verify concurrent systems. For example, constraint logic programming has been
used for the analysis and verification of hybrid systems [44] and more recently for
model checking of finite-state [28] / infinite-state systems [11]. In [35], a memo-
ized logic programming engine is used to develop XMC, an efficient and flexible
model checker whose performance is comparable to that of highly optimized
model checkers such as Spin [19]. Recently, [10] used constraint logic program-
ming to construct uniform proofs of safety properties of parameterized cache
coherence protocols. Essentially, these techniques aim to use (constraint) logic
program evaluation to efficiently construct verification proofs involving state
space search (accomplished via resolution) and (possibly) constraint solving.
These techniques are in general not suitable for constructing induction proofs
arising in the verification of parameterized systems. Essentially, we construct
an automatic and programmable first order logic prover with limited deductive
capability. Strategies can the be programmed to guide the application of the
proof rules. We discuss related work on other proof techniques based on pro-
gram transformations in Section 9.

Our work provides a methodology for constructing such proofs by suitably
extending the resolution based evaluation mechanism of logic programs [36, 38].
In this approach, the parameterized system and the property to be verified is
expressed as a logic program. The verification problem is reduced to the prob-



lem of determining the equivalence of predicates in this program . The predicate
equivalences are then established by transforming them s.t. their semantic equiv-
alence can be inferred from the syntax of their transformed definitions. The proof
of semantic equivalence of two transformed predicates p,p’ then proceeds auto-
matically by a routine induction on the size of the proofs of ground instances of
p(X) and p'(X).

For transforming the predicates, we use the well-established unfold/fold trans-
formations of logic programs which have been previously used for program op-
timization [24, 32] and automated deduction [20, 21, 30]. The major transforma-
tions in such a transformation framework are unfolding, folding and goal re-
placement. One of these transformations (unfolding) represents an application
of resolution. In particular, an application of the unfold transformation rep-
resents a single resolution step. Therefore, one can achieve on-the-fly explicit
state algorithmic model checking by repeated unfolding of the verification proof
obligation. In constructing induction proofs, unfold transformations are used to
evaluate away the base case and the finite portions of the proof in the induc-
tion step of the induction argument. Folding and goal replacement, on the other
hand, represent a form of deductive reasoning. They are used to simplify the
given program so that applications of the induction hypothesis in the induction
proof can be recognized.

Organization The rest of this chapter is organized as follows. In Section 2 we
discuss how we encode the problem of verifying temporal properties of parame-
terized systems as a logic program. Section 3 presents an overview of our proof
technique, while Section 4 presents the proof rules on which our technique is
based. Section 5 discusses the automation of each application of a proof rule
while Section 6 discusses strategies to guide application of proof rules when
several of them are applicable. Section 7 presents an example proof using our
technique. Section 8 summarizes some applications of our proof technique along
with experimental results. Finally, section 9 provides concluding remarks and
comparisons to related work.

2 Encoding the Verification Problem

In this section, we discuss how to encode the problem of verifying parameterized
concurrent systems as a logic program. Intuitively, a parameterized concurrent
system can be viewed as a network of an unbounded number of finite state
processes which communicate in a specific pattern. These finite state processes
constituting the network have a finite number of process types, and their com-
munication pattern is called the network topology. For example, an n bit shift
register (for any n) is a parameterized system. It represents an unbounded num-
ber of finite state processes communicating along a chain. These finite state
processes are “similar”, each of them representing a single bit. To model a pa-
rameterized system as a logic program, the local states of the constituent finite
state processes are represented by terms of finite size. The global state of the



parameterized system is then represented by a term of unbounded size consisting
of these finite terms as sub-terms. The initial states and the transition relation
of the parameterized system are then encoded as logic program predicates with
such unbounded terms as arguments.

gen([1]).

gen([0[X]) :- gen(X).
trans([0,1]T], [1,0]T]).
trans([H|T], [HIT1]) :- trans(T,T1).

thm(X) :- gen(X), live(X).
live(X) :- X = [1].].
live(X) :- trans(X,Y), live(Y).

o P ipti
System description roperty description

Fig. 1. Example: Liveness in an unbounded length shift register

For example, in an n bit shift register (for any n), the local states of the bit
process are represented by the terms 0 and 1 (corresponding to the situations
where the value stored in the bit is 0 and 1 respectively). A global state of the
register is then represented by an unbounded list where each element of the list
is 0 or 1. Now, let us consider an 7 bit shift register where initially the rightmost
bit of the chain contains 1 and all other bits contain 0. The system evolves by
passing the 1 leftward. A logic program describing the system is given in Figure 1.
The predicate gen generates the initial states of an n-process chain for all n. As
mentioned above, a global state of the register is represented as an ordered list
( a list in Prolog-like notation is of the form [Head|Tail] ) of zeros and ones.
The set of bindings of variable S upon evaluation of the query gen(8) is { [1],
[0,11, [0,0,1], ... }. The predicate trans in the program encodes a single
transition of the global automaton. The first clause in the definition of trans
captures the transfer of the 1 from right to left; the second clause recursively
searches the state representation until the first clause can be applied. (i.e., when
the 1 is not already in the left-most bit).

Temporal Property So far, we have illustrated how the parameterized system to
be verified can be encoded using logic program predicates. The temporal prop-
erty to be verified can also be encoded as a logic program predicate over global
states of the system. In this chapter, we only consider those properties ¢ such
that ¢ (or its negation) can be encoded as a definite logic program. This includes
liveness properties such as FFp and invariant properties such as AGp where
p is an atomic proposition about system states and A, E, F, G are operators of
the branching time temporal logic CTL [14]. For our shift register example, we
consider the following liveness property: eventually the 1 reaches the left most
bit. This is encoded by the predicate live in Figure 1. The first clause of live
succeeds for global states where the 1 is already in the left-most bit (a good
state). The second (recursive) clause of live checks if a good state is reachable
after a (finite) sequence of transitions.



Proof Obligation Every member of the parameterized family satisfies the liveness
property if and only if V X gen(X) = live(X). Moreover, this is the case if V
X thm(X) & gen(X), i.e. if thm and gen are semantically equivalent. Thus, we
have encoded the verification problem as a logic program and reduced the proof
obligation to establishing equivalence of program predicates.

3 Overview of our proof technique

We now illustrate how we can construct induction based proofs arising in pa-
rameterized system verification via logic program transformations. Essentially,
this is accomplished using the following steps:

1. Encode the temporal property to be verified as well as the parameterized
system as a logic program F;.

2. Convert the verification proof obligation to predicate equivalence proof obli-
gations of the form Py - p = q (p, q are predicates)

3. Construct a transformation sequence Fy, Py, ..., Py s.t.
(a) Semantics of Py = Semantics of Py
(b) from the syntax of Py we infer P, - p =q

In the shift register example, we have encoded the problem of verifying live-
ness in an n bit shift register as the logic program P, in Figure 1. We have
reduced the verification proof obligation to establishing the equivalence of thm
and gen predicates in program P,. We then apply program transformations to
program Py to obtain a program P, where thm and gen are defined as follows:

gen([1]). thm([1]).
gen([0[X]) :- gen(X). thm([0]X]) :- thm(X).

Fig. 2. Fragment of Transformed Program for Shift Register Example

Thus, since the transformed definitions of thm and gen are “isomorphic”,
their semantic equivalence can be inferred from syntax. In general, we have
a sufficient condition called syntactic equivalence s.t. if two predicates p and
q are syntactically equivalent in program Pj then p and q are semantically
equivalent in Pj. Furthermore, we ensure that checking syntactic equivalence of
two predicates in a given program is decidable. In the shift register example,
the transformed definitions of gen and thm given in Figure 2 are syntactically
equivalent. The formal definition of syntactic equivalence is presented in Section
5. The definitions of gen and thm given above both represent the infinite set
{[0™,1] | n € N}. For each element X in this set, we can therefore construct a
ground proof of thm(X) and gen(X). Formally, we define a ground proof as:



Definition 1 (Ground Proof) Let T be a tree, each of whose nodes is labeled
with a ground atom. Then T is a ground proof in a definite program P, if every
node A in T satisfies the condition : A :— Ay,..., A, is a ground instance of a
clause in P, where Ay, ..., An (n > 0) are the children of A in T.

For example, a ground proof tree! of gen([0,0,1]) and thm([0,0,1]) (using
the above clauses of thm and gen) are shown below.

gen([0,0,1]) thn([0,0,1])
gen([0, 1]) thm([0,1])
gen([1]) thn([1])

= =

Inferring the equivalence of thm and gen from the transformed definitions in
Figure 2 involves an induction on the size of the proof trees of gen(X) and thm(X)
for any ground term X. In general, to prove the equivalence of two predicates
p,p’ of same arity we first transform their definitions to syntactically equivalent
forms. Then, the proof of semantic equivalence of two syntactically equivalent
predicates p,p’ proceeds (by definition of syntactic equivalence) as follows:

— show that for every ground proof of p(X )@ (where X are variables and 6 is
any ground substitution of X) there exists a ground proof of p’(X ). This
follows by induction on the size of ground proofs of p(X)6.

— show that for every ground proof of p'(X)f (where X are variables and @ is
any ground substitution of X) there exists a ground proof of p(X)#. This
follows by induction on the size of ground proofs of p’(X)é.

Thus, transforming gen and thm to obtain the definitions of Figure 2 and then
inferring the equivalence from these transformed definitions amounts to an in-
duction proof of the liveness property. Note that even though we are actually
inducting on the size of ground proofs, here this is same as inducting on the
process structure of the parameterized system: the length of the shift register.

We now formally describe our proof technique. Since we always prove equiv-
alence of logic program predicates, we start by constructing a proof system for
predicate equivalence proof obligations.

4 A Proof System for Predicate Equivalences

Formally, the predicate equivalence problem is: given a definite logic program
P and a pair of predicates p and p’ of the same arity, determine if P | p =
p' i.e. whether p and p’ are semantically equivalent in P. In other words, we

! In this particular example, these are the only ground proofs of gen([0,0,1]) and
thm([0,0,1]1).



need to determine whether for all ground substitutions 8, p(X)8 € M(P) <
p'(X)6 € M(P). Here M(P) denotes the least Herbrand model [25] of program
P. Henceforth, whenever we refer to the “semantics” of a definite logic program
P, we mean its least Herbrand model M (P).

We develop a tableau-based proof system for establishing predicate equiv-
alence. The proof system presented here can be straightforwardly extended to
prove goal equivalences? instead of predicate equivalences. Our process is analo-
gous to SLD resolution. Recall that given a goal G and a definite logic program
P, SLD resolution is used to prove whether instances of G are in M(P). This
proof is constructed recursively by deriving new goals via resolution. The truth
of G is then shown by establishing the truth of these new goals. In contrast,
each node in our proof tree denotes a pair of predicates (p,p’). To establish their
equivalence we must establish that the predicates in the pair represented by each
child node are equivalent. Note that the predicates in the child node are to be
obtained from the syntax of the current definitions of p,p’. We now define:

Definition 2 (e-atom) Let I' = Py, P1,...,P; be a sequence of programs. An
e-atom is of the form I' b p = p’ where p and p’ are predicates of same arity
appearing in each of the programs in I'. It represents the proof obligation Y0 <
J<iPj=p=p ie pp are semantically equivalent in each of the programs
i I

We generalize the problem of establishing a single e-atom to that of estab-
lishing a sequence of e-atoms. We define an e-goal as a (possibly empty) se-
quence of e-atoms. We will often denote an e-goal by &, possibly with primes
and subscripts. Recall that SLD resolution proves a goal by unfolding an atom
in the goal. Similarly, we proceed to prove an e-goal by transforming the relevant
clauses of an e-atom (i.e. the clauses of the predicates appearing in the e-atom)
in the e-goal.

The three rules used to construct an equivalence tableau are shown in Table 1.
In the description of the proof rules I" denotes a sequence of programs P, ..., P;.
Given a definite logic program Py, and a pair of predicates of same arity p, p’, we
construct a tableau for the proof obligation Py F p = p’ by repeatedly applying
the inference rules in Table 1.

The aziom elimination rule (Ax) is applicable whenever the equivalence
of the predicates p and p’ can be established by some automatic mechanism,
denoted in the rule by p ; p'. Thus, g is a decision procedure which infers
the equivalence of p,p’ in program P;. Axiom elimination will typically be an
application of what we call syntactic equivalence, a decidable equivalence of
predicates based on the syntactic form of the clauses defining them.

The program transformation rule (Tx) attempts to simplify the program
in order to expose the equivalence of predicates (which can then be inferred
via an application of Ax). The program P;.; is constructed from I" using a
semantics preserving program transformation. We use this rule whenever we

% Recall that in a definite logic program, a goal is a conjunction of atoms.



| Name]| Top-down Inference (one step) Side Condition

E, Tkp=yp, €& P;
(Ax) z p glp ey
E, IkFp=yp, €& L ‘
(Tx) 5, 1—1, Pz’+1 e p= p/, g M(Pz+1) = M(Pz)
E, T'kp=yp, & Iy
(Gen)& IPoikFp=yp, Plqg=q, €& PolEqg=q
= M(Piy1) = M(P)

Table 1. Proof System for showing Predicate equivalences

apply an unfolding, folding, or any other (semantics-preserving) transformation
that does not add any equivalence proof obligations. We give a brief presentation
of these transformation rules in the next section.

The equivalence generation rule (Gen) proves an e-atom I' - p = p’ by per-
forming replacements in the clauses of p,p’. In particular, occurrence of some
predicate ¢ in the clauses of p,p’ is replaced by occurrence of another predicate
q'. The guarantee is that if the predicates q,q are semantically equivalent then
the program thus obtained is semantics preserving. This appears as the side
condition of the Gen rule. The notation Py |= ¢ = ¢’ is a shorthand for the
following: for all ground substitution 8, ¢(X)0) € M(P,) < ¢'(X)8) € M(P)
where M(P,) is the least Herbrand model of Py. Note the proof of semantic
equivalence of p and p’ is being constructed by using the semantic equivalence
of ¢ and ¢'. This allows us to simulate nested induction proofs. Typically, an
application of the Gen rule corresponds to applying the goal replacement trans-
formation.?

The notion of a tableau for a predicate equivalence proof obligation in a
definite logic program P, is then defined in the usual way.

Definition 3 (Equivalence Tableau) An equivalence tableau of an e-goal Eyis
a finite sequence of e-goals &, &1, ...,E, where E,11 is obtained from &; by ap-
plying one of the rules described in Table 1 and &, is empty.

Now, let Py be a definite logic programs and p, p’ be predicates of same
arity appearing in Py. Then we use our proof system to construct an equivalence
tableau of & = (PoFp=p') .

Theorem 1 (Soundness of Proof System) Let &,&,...,E, be a successful
tableau with & = (Pp b p = p') for some (definite) logic program Py. Then
Py = p = p' i.e. predicates p and p’' are semantically equivalent in the least
Herbrand model of P.

3 The Gen rule does not require {p,p'} N {q,q'} = ¢. When we synthesize an algorith-
mic framework for applying the proof rules we will keep track of the past history of
equivalence proof obligations.



Proof: We prove a stronger result. For any successful tableau of an e-goal & if
I'p=p is an e-atom in & where I' = Py,...,P; then P, Ep=1p'.

The proof for this result is established by induction on the length of the
tableau. For the base case, we have a tableau of length 1, which is formed by
an application of the Ax rule. For such a tableau the result holds trivially since
Ax is applied only when the semantic equivalence of p,p’ can be automatically
inferred in P;. For the induction step, we consider a tableau &, &1,...,Ek4+1 of
length k£ + 1. For all e-atoms of & which are not modified in the step & — &1,
the result follows by induction hypothesis. Let Py,..., P; - p = p’ be the e-atom
in & that is modified.

— Ax: If the rule applied to &, is Ax, then from the side condition of Ax we
have P, =Ep=yp'.

— Tx : If the rule applied to & is Tx, then Py,...,P;,P,i;; F p=p' is an
e-atom in &;. Since &1,...,E+1 is a successful tableau of &;, therefore by
induction hypothesis P, ;1 = p = p’. By the side condition of Tx, we have
M(P;) = M(P;y1) and therefore P; =p=1p'.

— Gen : If the rule applied to & is Gen, then Py,...,P;,Piy1 F p = p’ and
Py F g = ¢ are e-atoms in &;. Again &,...,E+1 is a successful tableau
of &;. By induction hypothesis, we have P,1; Ep =p' and Py E q = ¢'.
From the side condition of Gen we have M(P;) = M(P;;1) and therefore
P Ep=yp.

If &, ..., En is a successful tableau of & =Py - p=p' then Py Ep=p’. O

The tableau can be readily extended to use some transformations that may
not preserve least models, but only ensure that the least models, with respect
to the predicates in the original program, are same. A transformation that adds
new predicates to a program has this property, and is often useful in predicate
equivalence proofs. From the soundness of the proof system, we can also infer
the following property for any equivalence tableau. It shows that for any e-atom
I' ... appearing in an equivalence tableau, all programs in I" are semantically
equivalent. The proof appears in [39].

Lemma 2 Let &,&1,...,E, be an equivalence tableau of &g = P + p = p'.
For every e-atom (I + ...) in the tableau, if I' = Py,...,P; then we have
M(Py) =...= M(F).

Note that the proof system given in Table 1 is not complete. There can be
no such complete proof system as attested to by the following theorem.

Theorem 3 (Incompleteness) Determining equivalence of predicates described
by logic programs is not recursively enumerable.

The theorem is easily proved using a reduction described in [3]. For a Turing
machine M, we construct a program having two predicates, one that describes
the natural numbers and the other that identifies an n such that M does not
halt within n moves. These predicates are equivalent if and only if M does not
halt. The non-halting problem is not recursively enumerable and so the predicate
equivalence problem cannot be recursively enumerable.



5 Automated Instances of Proof Rules

In this section, we discuss the automation of each application of an Ax, Tx or
Gen rule. In the next section we present an algorithmic framework for guid-
ing the application of these rules. The application of the Tx and Gen rules is
achieved by unfolding, folding and goal replacement transformations (which we
also discuss).

5.1 Automating the Ax Rule

The aziom elimination rule (Ax) infers the equivalence of two predicates p, p’
in a semantics preserving program transformation sequence I' = P,...,P;. In
the light of Theorem 3, any such rule will be incomplete. Therefore, we will con-
struct an effectively checkable sufficient condition for predicate equivalence. We
call this sufficient condition as syntactic equivalence. Given a program transfor-
mation sequence I' = Py,..., P; and two predicates p,p’, we apply Ax if p,p’
are syntactically equivalent in program P;.

As an illustration, consider the program P (with clauses annotated with
integer clause measures) in Figure 3. We can infer that P = r = s since r and
s have identical definitions. Using the equivalence of r and s we can infer that
P = p = q, since the definitions of p and q are, in a sense, isomorphic.

pX) - r(X). q(X) :- s(X).
p(X) :- e(X,Y), p(Y). q(X) :- e(X,Y), q(V).
r(X) :- bX). s(X) :- b(X).

Fig. 3. Program with syntactically equivalent predicates.

We formalize this notion of equivalence in the following definition. The fol-
lowing definition partitions the predicate symbols of a program into equivalence
classes. Each predicate is assumed to be assigned a label, the partition number of
the equivalence class to which it belongs. The labels of all predicates belonging
to the same equivalence class is thus the same, and each equivalence class has a
unique label.

Definition 4 (Syntactic Equivalence) A syntactic equivalence relation 5, 18
an equivalence relation on the set of predicates of a program P such that for all

predicates p,q in P, if p £ q then the following conditions hold:

1. p and q have same arity, and

2. Let the clauses defining p and q be {C1,...,Cnp} and {D1,...,Dy,} respec-
tively. Let {C1,...,CL.} and {D},...,D,} be such that C| (D) is obtained
by replacing every predicate symbol v in C; (D;) by s, where s is the la-

bel of the equivalence class of v (w.r.t. £ ). Then there exist two functions



f:{1...,m}—>{1,...,n} and g: {1,...,n} = {1,...,m} such that
(i) V1 < i <m C; is an instance of D},
(it) V1 < j < n Dj is an instance of Cy ;.

Note that there is a largest syntactic equivalence relation. It can be computed
by starting with all predicates in the same class, and repeatedly splitting the
classes that violate properties (1) and (2) until a fixed point is reached. The
existence of the mapping f ensures that for any ground substitution § we have
p(X)§ € M(P) = q(X)§ € M(P) whereas the mapping g ensures q(X)f €
M(P) = p(X)8 € M(P). The proof of the lemma proceeds by induction on size
of ground proofs (see [39] for details).

Lemma 4 (Syntactic Equivalence = Semantic Equivalence) Let X be the
syntactic equivalence relation of the predicates of a program P. For all predicates

. P
p,q, if p~q, then P |=p=q.

5.2 Automating Tx: Transformations as Proof Rules

The transformation rule Tx corresponds to applying a program transformation
which does not add any new equivalence proof obligations. Typically an applica-
tion of this step is either unfolding or folding, or other standard transformations
like generalization and equality introduction, deletion of subsumed clauses and
deletion of failed clauses [29]. A single application of all these transformations
can be automated.

We transform a logic program to another logic program by applying trans-
formations that include unfolding and folding. A simple illustration of these
transformations appears in Figure 4. Program P is obtained from P} by un-
folding the occurrence of q(X) in the definition of p. Pj is obtained by folding
q(X) in the second clause of p in P| using the definition of p in P} (an earlier
program). Intuitively, unfolding is a step of clause resolution whereas folding re-
places instance of clause bodies (in some earlier program in the transformation
sequence) with its head.

p(0). p(0).
P - [a® . vng PG - [a® ] rag pGOO) - p().

q(0).
. q(0). q(0).
q(s (X)) :- q(X). q(s(X)) :- q(X). q(s(X)) :- q(X).
Program P Program Pj Program P,

Fig. 4. Illustration of unfold/fold transformations

In the following, we present a (simplified) version of the unfolding and folding
transformation rules. Note that each application of these rules is automated. We
say that Py, Py,..., P, is an unfold/fold transformation sequence if the program
P, is obtained from P; (i > 0) by an application of unfolding or a folding.



Transformation 5 Unfolding Let C be a clause in P; and A an atom in the
body of C. Let C1,...,Cy, be the clauses in P; whose heads are unifiable with

A with most general unifier o1,...,0,,. Let C’;- be the clause that is obtained by
replacing Ao; by the body of Cjo; in Co; (1 < j < m). Assign (P; — {C}) U
{C4,...,ClL} to Piyy. O

Transformation 6 Folding Let {C4,...,Cpn} C P; where C; denotes the clause
A — Al,l;-- .,Al’m,All,...,A;l

and {D1,...,Dn} C P; (j <1i) where Dy is By :— By 1,..., By, Further, let:

1.V1<I<m3doy V1<k<n; Ay =Biroi

2. B10'1 :B20'2 e :Bmam =B

3. D,..., Dy, are the only clauses in P; whose heads are unifiable with B.
4.

V1 <1 < m, oy substitutes the internal variables* of D; to distinct variables
which do not appear in {A, B, Al,...Al}.

Then P;yq := (P, — {C1,...,Cn}) U{C'} where C' = A :— B, A},...,Al,. O

Dy, ..., D, are the folder clauses, C,...,C,, are the folded clauses, and B
is the folder atom.

Semantics preservation While unfolding is semantics preserving, folding may
introduce circularity and change the program semantics. Recall that we are deal-
ing with definite logic programs and we consider the least Herbrand model se-
mantics. For example consider the program P] in Figure 4; P] is obtained from
P} by unfolding the occurrence of q(X) in the body of p’s second clause. We
perform folding where the second clause of p in P; serves as the folded clause
and the second clause of q in Pj serves as the folder clause. We get the program
P} of Figure 5. Now, let us fold again. We use the second clause of q in Py’
as the folded clause and the second clause of p in P| as the folder clause. This
produces the program Pj of Figure 5. The program transformation sequence
P} — P — Py — Pj is not semantics preserving since the least Herbrand
model of P§ differs from that of Pj.

o p(a). p(a). p(a).
Pg;. q(X). pEM@):—-qX). pEX)):—q(f(X)). p(£(X)):—q(£(X)).
g(fd)) qy. 3 a(a). q(a).
: ToqE@)):i—aX). q(E(X)):-q(X). a(£(X)) :-p(£(X)).
Program Fy Program Py Program Pj' Program P4

Fig. 5. An example of incorrect unfold/fold transformation sequence

4 Variables appearing in the body of a clause, but not its head



Due to this problem of semantics preservation, existing unfold/fold trans-
formation systems have restricted the folding rule. Thus, in a program trans-
formation sequence Py, Py, ..., P;, folding of clause(s) in P; is restricted [41,17,
22]. The restrictions are of two kinds: (a) based on the unfold/fold steps used
to derive the transformation history Py,...,P;, and (b) based on the syntax of
the folder clauses used. In [37] we have shown that restrictions on the syntax of
folder clauses is unnecessary for semantics preservation in unfold/fold transfor-
mation sequences of definite logic programs. As a consequence of this result, in
a folding step we can use multiple clauses as folder; furthermore some of these
clauses may be recursive.

The additional power of our transformation rules is useful in our transforma-
tion based proofs of temporal properties. Note that temporal properties contain
fixed point operators. These properties are typically encoded as a logic pro-
gram predicate with multiple recursive clauses e.g. a least fixed point property
containing disjunctions is encoded using multiple recursive clauses. A simple
reachability property EFp (which specifies that a state in which proposition p
holds is reachable) [9] will be encoded as a logic program as follows:

ef(X) :- p(X).
ef(X) :- trans(X,Y), ef(Y).

where the predicate trans captures the transition relation of the system being
verified, and p(X) is true if the proposition p holds in state X. This encoding
contains two clauses, one of which is recursive. Therefore, one cannot assume
restrictions that are imposed by existing transformation systems [17, 22,41, 42]
on the syntax of clauses encoding a temporal property.

5.3 Automating the Gen Rule

The Gen rule attempts to prove the e-atom I' - p = p’ by proving the e-
atoms I'P,y; F p=p and Pp + ¢ = ¢ where I' = Py,...,P; is a program
transformation sequence. It generates a new lemma Py - g = ¢’ whose proof is
used to ensure that M(P;) = M(P;+1). An application of Gen corresponds to
an application of the Goal Replacement transformation (given in the following).
Here, we replace an occurrence of ¢ with ¢’ in a clause of p or p’ as shown below.

C:p@® G, q(),G. C:p@ -G q), g

Program P; Program P;1

This requires us to show Py |= ¢ = ¢’ and therefore we obtain a new proof
obligation Py - q¢ = ¢q'. We prove Py - ¢ = ¢ by constructing a different

transformation sequence Py, Pj,...,P] s.t. ¢ R q i.e q,q are syntactically
equivalent in Pj. Note that since we are replacing ¢ with ¢’ in program P;, the
goal replacement rule requires P; |= ¢ = ¢'. However for any e-atom I" I ...
appearing in a successful tableau, M (Py) = ... = M(P;) where I' = P, ..., P;
(refer Lemma 2). Thus, Py = ¢ = ¢’ implies P, Eq=¢'.



A (simplified) definition of the Goal Replacement Transformation is given
below. Again, to ensure semantics preservation, the transformation needs to
impose additional restrictions on the transformation history. We ommit these
restrictions here (refer [37] for details). For a conjunction of atoms Ay, ..., Ay,
we use the notation vars(Ayi, ..., A,) to denote the set of variables in Ay, ..., A,.

Transformation 7 (Goal Replacement) Let C beaclause A:— A, ..., A, G
in P;, and G’ be an atom such that vars(G) = vars(G’) C vars(4, As, ..., Ag).
Suppose for all ground instantiation 6 of G,G’' we have G € M(P;) & G'6 €
M(P;). Then Py := (P, —{C})U{C'} where C' = A :— A,..., A, G. O

6 An Algorithmic Framework for Proof Strategies

We describe an algorithmic framework for creating strategies to automate the
construction of the equivalence tableau of an e-atom. The objective is to: (a) find
equivalence proofs that arise in verification with little or no user intervention,
and (b) apply deduction rules lazily, i.e. for finite state systems a proof using
the strategy is equivalent to algorithmic verification.

Our framework specifies the order in which the different program transfor-
mations (corresponding to each tableau rule) will be applied. If multiple trans-
formations of the same kind (e.g., two folding steps) are possible at any point in
the proof, the framework itself does not specify which transformations to apply.
That is done by a separate selection function (analogous to literal selection in
SLD resolution).

pi(a). pi(a).
P1(£(X)):- p1(X),s1(X). p1(£(X)):- p1(X),|s1(X).

PL(£(X)):= pL(X),£1(X),[qt(X) |, PLEM) - pLD, 11D, @2 |-

ri(X):- s1(X). ri(X):- s1(X).
r1i(X):- t1(X),q2(X). ri(X):- t1(X),q2(X).
P Py

pi(a).
pl1(£(X)):- p1(X),r1(X).
ri(X):- s1(X).

ri(X):- t1(X),q2(X).
P;

Fig. 6. Goal replacements to facilitate other transformations.

The tableau rules and associated transformations are applied in the following
order. As would be expected, the axiom elimination rule (Ax) is used when-
ever it is applicable. When the choice is between the Tx and Gen rules, we
choose the former since the default transformation employed by Tx is unfold-
ing, i.e. resolution. This will ensure that our strategies will perform on-the-fly



model checking, a’ la XMC [35] for finite-state systems. For infinite-state sys-
tems, however, uncontrolled unfolding may diverge. To create finite unfolding
sequences we impose a finiteness condition FIN on transformation sequences.
We do not give an exact implementation of FIN but only a sufficient condition
s.t. the resultant unfolding sequences terminate.

Definition 8 (Finiteness condition) Given an a-priori fized constant k € N,
an unfolding program transformation sequence I' = Py, ..., P;,... satisfies the
finiteness condition FIN (I',k) if for the clause C and atom A selected for un-
folding at every P;: (1) A is distinct modulo variable renaming from any atom B
which was selected in unfolding some clause D € Pj(j < i) where C is obtained
by repeated unfolding of D (2) the term depth of each argument of A is < k.

Typically, we will assume a suitable choice of k and write the finiteness con-
dition simply as FIN(I"). Condition 1 prohibits infinite unfolding sequences of
the form: unfolding p (X) using the clause p(X) :- p(X) i.e. unfolding sequences
where the same atom is infinitely unfolded. Condition 2 prohibits infinite un-
folding sequences of the form: unfolding p(X) using the clause p(X) :- p(s(X))
i.e. where a different atom is unfolded every time, but there are infinitely many
atoms to unfold.

If FIN prohibits any further unfolding we either apply the folding transfor-
mation associated with Tx or use the Gen rule. Care must be taken, however,
when Gen is chosen. Recall from the definition of Gen (refer Table 1) that
I''P,y; F p =p implies I' - p = p’ only if we can prove a new equivalence
Py F g = ¢. In other words, P11 = p = p' implies P, E p = p’ only if
Py = q = ¢'. Since Gen itself does not specify the goals ¢ and ¢’ in the new
equivalence, its application is highly nondeterministic. We limit the nondeter-
minism by using Gen only to enable Ax or Tx rules. For instance, consider
the transformation sequence in Figure 6. Applying goal replacement in Py under
the assumption that that Py = q1 = g2 enables the subsequent folding which
transforms P; into Ps.

Thus, when no further unfoldings are possible, we apply any possible folding.
If no foldings are enabled, we check if there are new goal equivalences that will
enable a folding step. We call this a conditional folding step. For instance, in
program Py of Figure 6, equivalence of q1(X) and q2(X) enables folding. Note
that the test for syntactic equivalence is only done on predicates, whereas a goal
is a conjunction of atoms. However, we can reduce a goal equivalence check to
a predicate equivalence check by introducing new predicate names for the goals.
A keen point needs to be noted here. When we introduce new predicate names
to a program, clearly the least Herbrand model can never be preserved. As is
common in program transformation literature [41,17], we rectify this apparent
anomaly by assuming that all new predicate names introduced are present in
the initial program P, of a program transformation sequence.

Finally, we look for new goal equivalences, which, if valid, can lead to syn-
tactic equivalence. This is called a conditional equivalence step. For instance,
suppose in program P, (in Figure 6), there are two additional predicates p2 and
r2 and further assume that p2 is defined using clauses



p2(a).
p2(£(Y)):— p2(Y), r2(Y).

Now if r2 and r1 are semantically equivalent, we can perform this goal replace-
ment to obtain the program P3; where p1 and p2 are defined as follows. Thus, in

P3 we can conclude that p1 S p2.

pi(a. p2(a).
PLE@)):- p1 (X)), r1(X). p2E () - p2(Y), r1i(Y).

The above intuitions are formalized in Algorithm Prove (see Figure 7). Given
a program transformation sequence I', and a pair of predicates p, p’, algorithm
Prove attempts to prove that I' - p = p’. Algorithm Prove searches nonde-
terministically for a proof: if multiple cases of the nondeterministic choice are
enabled, then they will be tried in the order specified in Prove. If none of the
cases apply, then evaluation fails, and backtracks to the most recent unexplored
case. There may also be nondeterminism within a case; for instance, many fold
transformations may be applicable at the same time. We again select nonde-
terministically from this set of applicable transformations. By providing selec-
tion functions to pick from these applicable transformations, one can implement
a variety of concrete strategies. Note that Algorithm Prove uses two different
markings in the process of constructing a proof for I' + p = p’. The marking
proved remembers predicate equivalences which have been already proved. This
marking allows us to cache subproofs in a proof. The marking proof_attempt
keeps track of predicate pairs whose equivalence has not yet been established,
but is being attempted by Algorithm Prove via transformations. This marking is
essential for ensuring termination of the algorithm. The proof of Py - p = p’ may
(via a conditional equivalence step) generate the (sub)-equivalence Py - p = p'.
Algorithm Prove deems this proof path as failed and explores the other proof
paths.

Algorithm Prove uses the following functions. Functions unfold(P) and fold(P)
apply unfolding and folding transformations respectively to program P and
return a new program. Whenever conditional folding is possible, the function
new_goal_equiv_for_fold(P) finds a pair of goals whose replacement is necessary
to do a fold transformation. Similarly, when conditional equivalence is possible,
new_goal_equiv_for_equiv(p,p’, P) finds a pair of goals G, G’ s.t. syntactic equiv-
alence of p and p’ can be established after replacing G with G’ in P.

Finally, replace_and_prove constructs nested proofs for sub-equivalences cre-
ated by applying the Gen rule. Thus, replace_and_prove(p,p’,G,G',I") performs
the following sequence of steps (where I' = Py,..., P;):

1. first introduces new predicate definitions g and ¢’ for goals G and G’ respec-

tively (if such definitions do not already exist),

proves the equivalence Py - ¢ = ¢’ by invoking Prove,

3. replaces goal G by goal G’ in clauses of p or p’ in program P; to obtain
program P; 4, and

4. finally invokes Prove to dispense the obligation I', P;1; - p = p’. This com-
pletes the proof of I' - p = p’.

»o



algorithm Prove(p,p': predicates, I':prog. seq.)
begin
let F:P(],...,Pz‘
mark proof_attempt(p,p’)
(* Ax rule *)
if (p R p' V proved(p,p')) then
return true
else if proof_attempt(p,p’) is not marked
nondeterministic choice
(* Tx rule *)
case FIN ((I', unfold(P;))): (* Unfolding *)
return Prove(p,p’, (I, unfold(P;)))
case Folding is possible in P;:
return Prove(p,p’, (T}, fold(P;)))
(* Gen rule *)
case Conditional folding is possible in P;:
let (G,G") = new_goal_equiv_for_fold(P;)
return replace_and_prove(p,p’,G,G', I')
case Conditional equivalence is possible in F;:
let (G,G") = new_goal_equiv_for_equiv(p,p’, P;)
return replace_and_prove(p,p’,G,G', I")
end choices
mark proved(p,p')
unmark proof_attempt(p,p’)
end

Fig. 7. Algorithmic framework for equivalence tableau construction.
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Termination of Prove It can be verified that only finite unfolding sequences
satisfy FIN. This is because in any unfolding sequence of clauses Ci,...,C,
where C;1 is obtained from C; via unfolding, condition 1 of Definition 8 ensures
that the selected atom each C; is distinct, and condition 2 ensures that there
are only finitely many atoms which can ever be selected for unfolding.

Therefore, the length of each predicate equivalence proof itself is finite (as-
suming folding always reduces program size which can be ensured). However,
a proof for p = p’ may require ¢ = ¢’ as a lemma, whose proof in turn may
require r = 7’ as a lemma, and so on. Since the number of distinct equivalences
are quadratic in the number of predicate symbols in the program, the number
of subproofs is finite if the number of new predicates names introduced is finite.
Thus, we have :

Lemma 5 Algorithm Prove (refer Figure 7) terminates provided the number of
definitions introduced (i.e. new predicate symbols added) is finite.

Proving Predicate Implications Note that the proof system given in Table 1, the
algorithmic framework Prove and the strategies to guide the transformations
in Prove are aimed at proving equivalence of program predicates. Our proof
technique can be readily extended to prove predicate implications i.e. proof
obligations of the form

V ground substitutions 8 p(X)§ € M(Py) = p'(X)0 € M(F)

This extension involves (1) relaxing the definition of syntactic equivalence
(Definition 4) to test for implications only, and (2) generating conditions of the
form q = ¢’ by applying conditional folding and conditional equivalence.

7 An Example Proof

Recall the logic program of Figure 1 (page 5) which formulates a liveness property
about token-passing chains, namely, that the token eventually reaches the left-
most process in any arbitrary length chain. We obtain P, the starting point
of our transformation sequence, by annotating each clause of the program in
Figure 1 with counter values of (1,1). To establish the liveness property, we
prove that thm(X) = gen(X), by invoking Prove(thm, gen, (Py)). The proof is
illustrated in Figure 8.

Proof of thm = gen: Since thm 1795 gen, we must transform the predicates. By
repeatedly unfolding the definition of thm in P, we obtain program Ps; where
thm is defined as:

thm([1]).
thm([0]X]) :- gen(X), X = [1].].
thm([0|X]) :- gen(X), trans(X,Y), live([0]Y]).



Further unfolding in Ps is not possible since it involves unfolding an atom which
is already unfolded in the sequence Py, ..., Ps, thereby risking non-termination.
In addition no folding transformation is applicable at this stage. However, if
VY live([0]Y]) & live(Y) we can fold the last two clauses of thm. Thus,
conditional folding is true at Ps, and hence replace_and_prove is invoked with
G = 1live([01Y]) and G’ = live(Y). Since 1live([0|Y]) is not an open atom,
a new name:

live’ (Y) :- live([0]Y]).

is added to Ps to yield Pgs. This simply converts the goal equivalence problem
of showing VY live([0|Y]) < 1live(Y) to a predicate equivalence problem.
We fold third clause of thm above using the newly introduced clause as folder,
obtaining Py:

thm([1]).
thm([0]X]) :- gen(X), X = [1].].
thm([0|X]) :- gen(X), trans(X,Y), live’(Y).

We then proceed to prove live’ = live. This subproof is shown in the left
branch of the tree in Figure 8). Then we replace live’ (X) with live(X) in the
definition of thm in P; (right branch in Figure 8).

Proof of 1ive’ = live: Prove(live’,live, (P,)) performs a series of unfoldings,
yielding programs Pg, Py and Pjg. Any further unfolding involves unfolding an
atom already unfolded in the sequence Py, Pg, Py, P19 and risks non-termination.
In Py, 1live’ is defined by the following clauses:

live’ ([11Z]).
live’(X) :- trans(X,Z), live([0]Z]).

Folding is applicable is Pjg, in the second clause of live’, yielding P;; with

live’ ([11ZD).
live’(X) :- trans(X,Z), live’(Z).

Now, live’ ! live and hence Prove(live’,live, (Py)) terminates. We assume
that all occurrences of the equality predicate in the clause bodies are removed
(via unification) prior to any syntactic equivalence check.

Resuming Proof of thm = gen: Now replace_and_prove replaces live’ (X) with
live(X) in the definition of thm in P, yielding P;o with:

thm([1]).
thm([0|X]) :- gen(X), X = [1].].
thm([0|X]) :- gen(X), trans(X,Y), live(Y).

We can now fold the last two clauses of thm using the definition of live in Pj.
Note that the folding uses a recursive definition of a predicate with multiple
clauses. The program-transformation system developed by us in [37] was the
first to permit such folding. Thus we obtain P;3:



thm([1]).
thm([0|X]) :- gen(X), live(X).

This completes the conditional folding step (which had invoked replace_and_prove
and thereby constructed live’ = live as a subproof). We can fold again using
the definition of thm in Py, giving P4 where thm is defined as:

thm([11).
thm([0[X]) :- thm(X).

We now have thm % gen, thereby completing the equivalence proof.

It is interesting to observe in Figure 8 that the unfolding steps that trans-
form P, to Ps and P; to Py are interleaved with folding steps. In other words,
algorithmic and deductive verification steps are interleaved in the proof of the
equivalence thm = gen.

8 Experiments

So far, we have presented a tableau based proof system for proving equivalence of
predicates in a logic program. Furthermore, we presented an algorithmic frame-
work Prove for guiding the application of the rules in the proof system. However,
this algorithmic framework Prove is nondeterministic since at each step several
transformations may be applicable. Hence it is necessary to develop appropriate
selection functions to distill concrete strategies from the algorithmic framework.
Indeed we have implemented such strategies in a predicate equivalence prover
for verifying parameterized protocols of different network topologies (the com-
munication pattern between the different constituent processes of a parameter-
ized network is called its network topology). Given a parameterized system and
a liveness/invariant property to be proved, our prover extracts the predicate
equivalences that need to be established. It tries to use the network topology of
the parameterized system being verified to construct concrete proof strategies.
These strategies then guide the proof search which proceeds without any user
intervention. The proof search is terminating, sound but incomplete (i.e. the
prover may fail to establish a correct property). A full-fledged discussion of the
concrete proof strategies (obtained by instantiating the algorithmic framework
of the last section) is involved; details appear in [39].

In this section, we present the experimental results obtained using our pred-
icate equivalence prover. The prover is built on top of the XSB tabled logic pro-
gramming system [45] which supports top-down memoized evaluation of logic
programs. We report results on parameterized cache coherence protocols, in-
cluding (a) single bus broadcast protocols e.g. Mesi, (b) single bus protocols
with global conditions e.g. Illinois and (b) multiple bus hierarchical protocols.
We also report experimental numbers for the Java Meta-locking algorithm [1], a
distributed algorithm to ensure secure access of shared objects by various Java
threads. The benchmarks cover various network topologies including star, tree
and complete graph networks.



Results In Table 2, Meta-lock denotes the Java meta-locking algorithm from
Sun Microsystems. The Java Meta-Locking Algorithm is a distributed algorithm
recently proposed by Sun Microsystems to ensure mutually exclusive access of
shared Java objects by Java threads. A proof of correctness of the algorithm
involves proving mutual exclusion in the access of a Java object by arbitrary
number of Java threads. Previously, model checking has been used to verify
mutual exclusion for different instances of the protocol, obtained by fixing the
number of threads [5]. We have used our porgram transformation based prover to
automatically construct a proof of mutual exclusion for the entire infinite family.
The sources of infiniteness in the Meta-locking algorithm include (a) unbounded
number of Java threads, and (b) data variables of infinite domain in the shared
Java object.

Mesi and Berkeley RISC are single bus broadcast protocols [4, 13, 16]. Illinois
is a single bus cache coherence protocol with global conditions which cannot
be modeled as a broadcast protocol [10]. Tree-cache is a binary tree network
which simulates the interactions between the cache agents in a hierarchical cache
coherence protocol [39]. Finally German’s client server is a client-server protocol
proposed by Steve German. It involves unbounded number of client accessing a
central server (a star network topology) and we need to prove coherence of cached
copies across the clients. It was proposed as a benchmark for parameterized
system verification by Ruah, Pnueli and Zuck in [33].

Protocol Invariant Time(sec) Our  # Unf #Ded
in [10] time(secs)
Meta-Lock #owner +
#handout < 2 - 129.8 1981 311
Mesi #m + #e < 2 1 3.2 325 69
#m + #e =0V
#s=0 0.5 2.9 308 63
Illinois F#dirty < 2 5.3 35.7 2501 137
Berkeley F#dirty < 2 0.6 6.8 503 146
German’s
client-server #ex <2 - 8.8 404 204
#ex + #sh < 2 - Fails - -
Tree-cache #bus_with_data < 2 - 9.9 178 18

Table 2. Summary of protocol verification results

Table 2 presents experimental results obtained using our prover: a summary
of the invariants proved along with the time taken, the number of unfolding steps
and the number of deductive steps (i.e. folding, and comparison of predicate
definitions) performed in constructing the proof. The total time involves time
taken by (a) unfolding steps (b) deductive steps, and (c) the time to invoke
nested proof obligations. All experiments reported here were conducted on a



Sun Ultra-Enterprise workstation with two 336 MHz CPUs and 2 GB of RAM.
In the table, we have used the following notational shorthand: #s denotes the
number of processes in local state s. In column 3 of the table, we have shown the
timings for the same proofs using the constraint logic program evaluation based
checker of [10]. To the best of our knowledge, [10] is the only other work which
employs logic programming technology for parameterized system verification,
and reports detailed experimental results. Note that the timings of [10] on a
Pentium 133 with Linux 2.0.32.

Comparison with [10] The running times of our prover are slower than the times
for verifying single bus cache coherence protocols reported in [10]. In fact, there
is up to an order of magnitude difference between the time taken by our prover
and the time taken by the prover of [10]. The reason for this can be explained
as follows. The constraint logic program evaluation based model checker of [10]
proceeds essentially by unfolding which is performed by the underlying abstract
machine. On the other hand, the prototype implementation of our transforma-
tion based prover implements both the unfolding and folding steps via meta-
programming. Even though our folding steps should ideally be implemented by
meta-programming, the proof search conducted by the unfolding steps can be
implemented at the level of the underlying abstract machine (which should sub-
stantially reduce our running times). It would be more interesting to compare
the running times of such a prover with the Constraint logic program execution
in [10]. Such a comparison would determine whether the time overhead due to
folding steps exceeds the time overhead due to constraint solving in Constraint
logic program evaluation. Also, note that the abstraction based technique of [10]
is not suitable for parameterized tree networks such as Tree-cache, which can be
verified by our inductive proof technique.

Comparison across Benchmarks Note that the number of deductive steps in
a proof is consistently small compared to the number of unfolding steps. This
is owing to our proof search strategy which repeatedly applies unfolding steps
until none are applicable. Furthermore, note that the tree network example con-
sumes larger running time with fewer unfolding and deductive steps as compared
to other cache coherence protocols like the Mesi protocol. Due to its network
topology, the state representation in the tree network has a different term struc-
ture than the other protocols (where the global states are typically represented
as lists). This partially accounts for the increase in the running time. In addition,
certain deductive steps (such as conditional equivalence) employ more expensive
search heuristics for the tree topology. Finally, the Java meta-locking algorithm
represents global states as lists, but involves nested induction over both con-
trol and the data of the protocol thereby increasing the number of predicate
equivalence proof obligations. Extra proof obligations are incurred due to nested
induction on the infinite data domain thereby increasing the time to construct
the proof. Note that for one of the benchmarks (German’s client server proto-
col), our prover fails to construct a proof of the invariant that at most one one
client can be in shared or exclusive state. In this case our prover terminates



and reports its failure to find a proof (even though one exists). This needs to
remedied by manually strengthening the invariant to be proved. However, the
desired strengthening turns out to be non-obvious in this case.

9 Discussion

In this chapter, we have presented a technique for proving predicate equivalences
in a definite logic program. This is used for verifying infinite-state concurrent
systems, in particular the class of parameterized concurrent systems. We have
described how the parameterized system verification problem can be reduced to
proving equivalence of logic program predicates. First we review related work on
using logic program transformations to construct proofs.

9.1 Related Work

Relatively little work has been done on using unfold /fold transformations for con-
structing proofs. Unfold /fold transformations can be used to construct induction
proofs of program properties. In such proofs, unfolding accomplishes the base
case and the finite part of the induction step, and folding roughly corresponds
to application of induction hypothesis. This observation has been exploited in
[20, 21, 23, 30, 31] to construct inductive proofs of program properties.

Hsiang and Srivas in [20] extended Prolog’s evaluation with “limited forward
chaining” to perform inductive theorem proving. This limited forward chaining
step is in fact a very restricted form of folding: only the theorem statement
(which is restricted to be conjunctive) can be used as a folder clause. The works
of [21,23] is closer to ours. They proved certain first order theorems about the
Least Herbrand Model of a definite logic program via induction. In particular,
they observed that the least fixed point semantics of logic programs could be
exploited to employ fixed point induction. Qur usage of the transformations is
similar. Given a program P we intend to prove p = ¢ in the Least Herbrand
Model of P. To do this proof by induction, we transform p and g to obtain a
program P’. If the transformed definitions of p and ¢ in P’ are “syntactically
equivalent” (Definition 4) then our proof is finished. Note that the syntactic
equivalence check is in fact an application of fired point induction. It allows us
to show p = ¢q in M(P’) (the least Herbrand model of P’). Furthermore, since
M(P') = M(P) this amounts to showing p = ¢ in program P. Thus, in our work
predicates are transformed to facilitate the construction of induction schemes
(for proving predicate equivalence). [21] also exploits transformations for similar
purposes. However, their method performs conjunctive folding using only a single
non-recursive clause. Apart from the restriction in their folding rule, they also
do not employ goal replacement in their induction proofs.

The idea of using logic program transformations for proving goal equivalences
was explored by Pettorossi and Proietti in [30, 31]. These works employ more re-
stricted Tamaki-Sato style unfold/fold transformations, which are not suitable in
general for constructing induction proofs of temporal properties. This is because



temporal properties employ fixed point operators, and are typically encoded
using multiple recursive clauses. As shown in Section 5.2, a simple reachability
property EFp (which specifies that a state in which proposition p holds is reach-
able) [9] can be encoded via a predicate ef ; the definition of ef contains two
clauses, one of which is recursive. The current unfold/fold transformation sys-
tems for definite logic programs do not allow such clauses to be used as folder in
a folding step. Our work relaxes restrictions on the applicability of transforma-
tion rules (in particular the folding rule), enabling their use in proving temporal
properties.

The reader might notice similarities between a proof system based on un-
fold/fold transformations and a proof system based on tabled resolution [7,43].
Tabled resolution combines resolution proofs with memoing of calls and answers.
Since folding corresponds to remembering the original definition of predicates,
there is some correspondence between folding and memoing. However, folding
can remember conjunctions and/or disjunctions of atoms as the definition of a
predicate. This is not possible in tabled resolution. Furthermore, in tabled res-
olution when a tabled call C is encountered, the answers produced so far for C
are used to produce new answers for C. In folding, when the clause bodies in old
definition of a predicate is encountered, it is replaced by the clause head.

We note that there is a lot of research work on using logic program transfor-
mations for optimization and/or partial evaluation [29]. Furthermore, the area
of automated inductive theorem proving has substantial literature of its own [6].
These works are not discussed here. Instead, we have concentrated only on tech-
niques which extend logic program evaluation for proving program properties.

9.2 Summary

In a broader perspective, our proof technique is geared to automate nested in-
duction proofs, where each induction proceeds without hypothesis strengthening.
Furthermore, the induction schema as well as the requisite lemmas should be im-
plicitly encoded in the logic program itself. We have employed our lightweight
inductive proof technique for verifying a specific class of infinite state concurrent
systems: parameterized systems. Such systems occur widely in computing since
many distributed algorithms in telecommunication and information processing
applications constitute a parameterized concurrent system. We have used our
proof technique to verify parameterized networks of various interconnection pat-
terns: chain, ring, tree, star and complete graph networks. A prover based on
our technique has been used to verify design invariants of real-life distributed
algorithms such as the recently developed Java meta-locking algorithm from Sun
Microsystems [1].

Our program transformation based proof technique unifies algorithmic and
deductive verification steps (i.e. model checking and theorem proving steps)
in a framework. Essentially the proof technique amounts to integrating limited
deductive steps by enhancing the search based evaluation of a model checker.
This is different from the traditional way of integrating model checking and



theorem proving where a model checker is incorporated as a decision procedure
into a theorem prover [34].

In conclusion, we would like highlight some interesting aspects of our pro-
posed integration (of algorithmic and deductive verification). First, the proof
technique thus obtained allows arbitrary interleaving of algorithmic and deduc-
tive steps in a proof. In contrast, by incorporating model checking as a decision
procedure into a theorem prover, the model checker is always invoked as a sub-
routine. Secondly, the integration is not only tight but also extensible for verifi-
cation of different flavors of concurrent systems. Our transformation based proof
technique is a flexible extension of model checking via logic program evaluation
(since one of our transformations correspond to logic program evaluation). By
extending the underlying programming language to constraint logic programs we
can verify (families of) timed systems with the same proof technique. Finally,
note that the proof technique supports zero overhead theorem proving [40]. Con-
current systems which can be verified without deductive reasoning (such as finite
state and data independent systems) are verified via model checking since the
deductive transformations are applied lazily.
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