
XcelLog: A Deductive Spreadsheet System

C.R. Ramakrishnan, I.V. Ramakrishnan, and David S. Warren

Department of Computer Science, Stony Brook University
Stony Brook, NY 11794-4400

{cram,ram,warren}@cs.sunysb.edu

Abstract. The promise of rule-based computing was to allow end users to cre-
ate, modify, and maintain applications without the need to engage programmers.
But experience has shown that rule sets often interact in subtle ways, making
them difficult to understand and reason about. This has impeded the wide-spread
adoption of rule-based computing. This paper describes the design and imple-
mentation of XcelLog, a user-centered deductive spreadsheet system, to empower
non-programmers to specify and manipulate rule-based systems. The driving idea
underlying the system is to treat sets as the fundamental data type and rules as
specifying relationships among sets, and use the spreadsheet metaphor to cre-
ate and view the materialized sets. The fundamental feature that makes XcelLog
suitable for non-programmers is that the user mainly sees the effect of the rules;
when rules or basic facts change, the user sees the impact of the change immedi-
ately. This enables the user to gain confidence in the rules and their modification,
and also experiment with what-if scenarios without any programming. Prelimi-
nary experience with using XcelLog indicates that it is indeed feasible to put the
power of deductive spreadsheets for doing rule-based computing into the hands
of end users and do so without the requirement of programming or the constraints
of canned application packages.

1 Introduction

The defining problem: Rule-based specifications are used in a wide variety of applica-
tions. Examples include business rules (e.g. [20]), authorization rules for scalable access
control and distributed trust management (e.g. [17, 11]), and configuration management
of complex systems (e.g. system administration [2], security policy configuration [15],
and vulnerability analysis [19, 18]). Also automated support for decision making is by
and large based on rule-based systems. However, a major factor that hampers their
large-scale adoption is the difficulty of developing, understanding and modifying the
(rule-based) specifications. In general, it is not easy to infer the effect of a rule from the
way in which it is written. Rule systems need a “programmer” to specify the rules and
additional tools to analyze the rules in order to convince the users of their soundness
and completeness; a case in point is the SELinux security policies [14] and the variety
of tools that have been developed to analyze these policies [7, 6, 24]. This raises the
question: how do we empower end-users to develop rules-driven application without
having to know programming?

Deductive Spreadsheets: The electronic spreadsheet, as exemplified by Excel R©, is
a spectacularly popular application program that is widely used by the masses. Ev-
ery spreadsheet user effectively creates a program to process data without having to
be trained as a programmer. The large-scale adoption of spreadsheets as a program-
ming tool by the masses (albeit for particular classes of problems) is mainly because
computations are specified by examples. A user specifies an instance of a computation
(e.g. sum of two cells in a row); subsequently by copying and filling, the user specifies
that the other cells (the destination of the filling gesture) are computed in a “similar”
manner. This allows the user to not have to think about abstractions and general param-
eterized operations, but instead concentrate on multiple concrete operations. Moreover,
the spreadsheet user interface shows the results of computation directly and changes the
results whenever the underlying data changes. This direct interaction with data elimi-
nates the line between code development and testing.

Analogous to traditional numerical spreadsheets the idea of deductive spreadsheets
(DSS) is to bring the power of rules-driven computing within the familiar paradigm of
spreadsheets — specifically empower end users (who are not programmers) to write
and maintain rules, not in an ad hoc language, but in terms of the effect of the rules on
an underlying sample of data using the classic 2-D graphical spreadsheet metaphor.

An Example: We illustrate the idea of DSS using a simple example from Trust Man-
agement (following [12]).

1. A publisher, PUB, wants to give a discount to their member, which is anyone who
is both a student and a preferred customer.

2. PUB delegates the authority over the identification of preferred customers to its
parent organization ORG.

3. ORG has a policy of treating IEEE members as preferred customers.
4. PUB also delegates the authority over the identification of students to accredited

universities.
5. The identification of accredited universities, in turn, is based on credentials issued

by the University Accreditation Board, UAB.

These rules, which form a deductive system, have been traditionally written in a
special syntax specific to the trust management system; the meaning of the rules is
usually given in terms of the set of all logical inferences that can be drawn from these
rules. Using a DSS, the same rules can be specified and their impact can be more directly
visualized as in Figure 1.

Following traditional spreadsheets, a DSS is a two dimensional array of cells. How-
ever, columns and rows in a DSS are labeled by symbolic values. For instance, rows in
the DSS shown in Figure 1, labeled PUB, ORG, ..., represent entities referenced in the
example. Columns correspond to properties of these entities. The value in a cell at row
r and column c (denoted by r.c, or in a functional notation cr) represents the value of
property c of entity r. For instance, the cell “IEEE.member” represents the set of IEEE
members; and the cell “UAB.member” represents the set of universities accredited by
UAB. To manipulate multiple interrelated DSSs, we use the notation s!r.c to denote the
cell r.c in sheet s.

member preferred student univ
PUB.preferred ORG.preferred PUB.univ.student UAB.member

&&
PUB PUB.student

/* Rule 1 */ /* Rule 2 */ /* Rule 4 */ /* Rule 5 */
{Amy} {Amy, Joe} {Amy, Bob} {ESU, USB}

IEEE.member
ORG /* Rule 3 */

{Amy, Joe}
IEEE {Amy, Joe}
UAB {ESU, USB}
ESU {Amy}
USB {Bob}

Fig. 1. Deductive Spreadsheet for Discount Eligibility

Note that, unlike in a traditional spreadsheet (and indeed in other logical spread-
sheets, e.g. [5, 10]), each DSS cell contains a set of values. Cell references correspond
to expressions that evaluate to a set. In the figure, expressions (called intensions) are
shown in italics and their values (called extensions) are shown in teletype. In the fig-
ure the cell expressions and comments (enclosed between “/*” and “*/”) are shown for
illustration only. Following traditional spreadsheets, the user specifies only the inten-
sions; the DSS system computes the extensions, shows only the extensions in the cells,
and recomputes them whenever cell values change.

Now consider the encoding of Rule 3 of the example above, which states that every
IEEE member is a preferred customer of ORG. This is specified in DSS using a cell
reference: the cell ORG.preferred contains a reference to another cell IEEE.member,
indicating that whatever occurs in IEEE.member must also occur in ORG.preferred.
This is analogous to the idea in traditional spreadsheets of referring in one cell to the
numeric value in another cell. Rules 2 and 5 can be similarly encoded. Rule 4 states
that PUB delegates the identification of students to recognized universities. Note that
PUB.univ contains the set of all universities recognized by PUB and hence u.student ⊆

PUB.student whenever u ∈ PUB.univ. This (rather complex) rule can be specified
by “lifting” the dot notation to sets: for example, a.b.c represents

⋃
y.c for every y

in a.b. In the example, the cell PUB.student contains the expression PUB.univ.student.
Finally, Rule 1 states that Pub.member consists of entities that are in both PUB.preferred
and PUB.student.

These two ideas: (1) allowing cells to contain multiple values and (2) permitting
cell references that make the statement that a cell must contain all the elements of
another cell, bring the power of deduction into a simple spreadsheet framework. Thus
they provide the foundation for our vision of DSS.

As a natural consequence of set-valued cells, DSS permits a cell a.b to contain
multiple cell references: the meaning of such an expression is that the value of a.b is
a set that contains the union of all the values of the referred cells. Moreover, the cell
references may be recursive in general. The meaning of recursive references is given
in terms of least fixed points [13]. Set-valued cells and recursive definitions provide a

powerful platform for encoding complex problems involving deduction. Nevertheless,
from an end-user’s perspective, these are relatively simple extensions to the traditional
spreadsheet paradigm, thereby adding the power of deduction without compromising
the simplicity of defining and using spreadsheets. The interesting problem now is to
realize a functional DSS system based on the above ideas.

The rest of this paper describes our technical approach to the design and implemen-
tation of the DSS system envisioned above. The starting point is the design of the DSS
expression language and intuitive gestures for specifying contents of cells and relation-
ships between them (see Section 2). In general DSS expressions can involve circular
references as is typical when computing with logical relations. We give least-model se-
mantics [13] to DSS expressions by translating them into Datalog programs, a subclass
of logic programs, which is used in deductive databases [3]. In Section 3 we describe
the implementation of XcelLog, our prototype DSS system, with Excel as it’s front-end
and our XSB tabled logic programming system as the backend deduction machine [22].
We have encoded problems drawn from a number of application domains including lo-
gistics, combinatorial optimization, and network security in XcelLog. We illustrate the
encoding of one such problem in Section 4. There have been a large number of propos-
als to combine logic with the spreadsheet metaphor. Ours differs in a fundamental way
from all others that we know by supporting set-valued cells and meaningful recursive
definitions. In Section 5 we describe related work in more detail. Discussion appears in
Section 6.

2 The Deductive Spreadsheet Language
The primary design criterion for the DSS language was simplicity: the users should
be able to construct and manipulate deductive spreadsheets with gestures, operators
and expressions that are easy to learn and intuitive to use. Abstraction is one of the
fundamental aspects of programming, and also one of the most difficult aspects to learn
and master. User-level programming in spreadsheets cleverly circumvent this problem
by letting the user program by example (e.g. specifying an expression in a specific cell)
and then generalize the program (e.g. by filling cells with expression from another cell).
Thus users never deal directly with the notion of variables. We have followed the same
philosophy by designing an expression language without variables. The following is a
brief summary of the salient aspects of the language.

A deductive spreadsheet contains a grid of cells, each of which contains a set of el-
ements. A spreadsheet may also refer to an external database table. Thus tables, spread-
sheets, cells, and elements are the four classes of entities that will be defined and ma-
nipulated by our language. We classify the operators based on the entities they produce,
as follows:

1. Element operators: Elements can be atomic values (strings, integers, etc.) or formed
using tuple construction, tuple projection, arithmetic, aggregation (such as SUM,
MIN, MAX, etc.) and conditional operators. The tuple construction and projection
operations offer a way to create and access data structures.

2. Cell operators: Cell expressions evaluate to sets of elements. The contents of a
cell may be specified by explicitly listing a set of elements, and/or by expressions

constructed using cell reference, selection, difference and lifted operators that lift
tuple construction, tuple projection, aggregation and conditionals to sets.

3. Sheet operators to construct a sheet from other sheets or from database tables.
4. Abstraction operators: “Ctrl-Shift-C” and “Ctrl-Shift-V” are the copy and paste

gestures respectively in DSS that permit the user to first specify a computation on
concrete instances, then copy the specification and “fill” other cells, which causes
similar specifications to be generated for the destination cells. In particular a user
in DSS can bulk copy a subset of cells and paste it into a target cell.

These operators will be illustrated in the encoding exercises (in Section 4). As is the
case with traditional spreadsheets DSS users also type in simple expressions either in
the cells directly or in the function box fx. More complex expressions get created by
gestures such as copy, paste and fill.

Semantics: The semantics of a DSS expression is given by translation to Datalog pro-
grams, i.e., Prolog programs without function symbols [16]. A Prolog program consists
of rules of the form head :- body where head is a literal and body is a conjunct of lit-
erals. The head is true whenever the body is true. A head with an empty body is a fact
that is unconditionally true.

A set of spreadsheets defines a 4-ary relation:sheet(Name,Row,Column,Contents),
where sheet(Sht, Ro, Co, Ent) is true iff Ent is in the cell at the intersection of the row
Ro and column Co in sheet Sht. For example, the upper left cell in the DSS table named
say ’discount’ in Figure 1, is defined by the Prolog rule:

sheet(discount,’PUB’,discount,X) :-
sheet(discount,’PUB’,preferred,X),
sheet(discount,’PUB’,student,X).

The meaning of the spreadsheet is the least fixed point of the Datalog program
defined in this way.

3 The XcelLog DSS System

A deductive engine becomes a core computational infrastructure component for imple-
menting a DSS system that is predicated on translating DSS expressions into Datalog.
A key requirement for such an engine is that it completely and efficiently evaluate Dat-
alog programs. Our XSB Tabled Logic Programming system is well suited for this
purpose [22]. It is a high-performance deductive rule-based engine that uses tabling to
implement a more complete version of resolution-based query answering. In contrast a
standard Prolog system would loop infinitely when given cyclic definitions, which can
easily arise.

We implemented XcelLog – a prototype DSS system with an Excel front end and
XSB with its tabling machinery as the backend deductive engine to correctly and finitely
compute the DSS semantics. Below we provide an overview of the XcelLog system. It
was engineered as an Excel “add-in”, i.e. the implementation of deductive spreadsheets

was encapsulated within the Excel environment; Excel served as the frontend while
the DSS expressions were evaluated by XSB in the backend. This way XcelLog users
would continue getting the benefits of traditional Excel along with the added power of
deduction.

Cells in XcelLog are of two types – traditional Excel cells and DSS (deductive
spreadsheet) cells. Deduction expressions are specified only within DSS cells. All DSS
expressions are enclosed within []. E.g. the DSS expression, using functional nota-
tion for a cell reference, corresponding to the (intensional) Rule 2 is: [preferred ORG]
while the (extensional) set of values computed by this expression in cell at row PUB
and column preferred is the DSS expression: [Amy,Joe]. DSS cell contents of the
form [...] are automatically translated for Excel as =DSS(“...”). So a DSS expres-
sion in Excel’s function box fx is enclosed within “=DSS()”. These correspond to
the intensional view of rules associated with DSS cells. The cells themselves display
materialized views of the effect of the rules, just as in regular Excel.

Fig. 2. The XcelLog DSS System

The architectural schematic of our XcelLog prototype for evaluating DSS expres-
sions is shown in Figure 2. Notice that Excel and the XSB Tabled LP system are the two
main components making up the XcelLog Deductive Spreadsheet System. In this archi-
tecture users see only the Excel front end. They interact with the system via Excel’s
familiar interface. Excel cells are used in the traditional style. Cells with expressions
within “[]” are treated as DSS cells, and the expressions are evaluated by the XSB
system. Note the flexibility afforded by this system combining traditional Excel-style
computing (embodied within Excel cells) intermixed with deduction specified in DSS
cells.

Evaluation of a DSS program in XcelLog requires bi-directional communication
between Excel and XSB. This is facilitated via the XLL-Add-in component. The XLL-
Add-in component is set up to recognize certain events such as when a cell’s content

is changed, when DSS expressions are entered into a cell, etc. Whenever such an event
occurs, control is passed to XSB via this component, using sheet changed, paste, =DSS
operations in Figure 2 (among others.) XSB does the needed processing, perhaps using
call-back functions that Excel provides (e.g. getFormulaAt, setFormulaAt, getValueAt
operations in the figure), and then returns control back to Excel. In the basic operation
of materializing a DSS cell, XSB parses the cell expression, translates it to a Prolog
goal, and then simply uses call/1 to invoke the XSB query evaluator to evaluate the
goal and produce the extensional values. These are the materialized sets that get dis-
played in the cells. For example the materialized set corresponding to Rule 1 in Fig-
ure 1 that is computed by XcelLog is Amy as shown in row PUB and column member in
Figure 1. Note that in our XcelLog implementation we use the functional notation for
cell references so as to be consistent with Excel. So for example “PUB.preferred” in
functional notation is “preferred PUB”.

4 Encoding Exercises in XcelLog

We have encoded a number of problems, drawn from varied areas such as logistics,
combinatorial optimization and network security, in XcelLog. Here we illustrate two
such problems to demonstrate its deductive power and versatility. The first example
deals with directed graphs, and determines, for each node in the graph, the set of all
nodes reachable from it. This example shows the need for recursive definitions, and
the naturalness of the least fixed point semantics. It also illustrates the example-based
mechanism for defining new relations. The second example is a more complex one, of
finding optimal purchase strategy in a supply chain. This example illustrates features
of XcelLog that were described but not illustrated before: (a) the use of tuple values
in cells, (b) aggregation operations over cell values, and (c) abstraction. Moreover, this
example also shows the power of XcelLog to encode complex problems of this nature
with few relatively simple gestures.

(1) The reachability problem in graphs: The problem here is to compute the set of
reachable nodes from every node in the graph in Figure 3(a). This is the canonical
transitive closure example that is used for illustrating deduction through recursive rules.

Figure 3(b) depicts a fragment of the encoding in XcelLog. The rows represent the
4 nodes in the graph. The edge column for a row contains the set of nodes directly
reachable from that node through some edge. The fx box associated with a cell show
the DSS definitions of the cell contents and the cell itself shows its computed contents
of these definitions. In Figure 3(b), the DSS expression =DSS(“a,d”) in the fx box is
associated with the highlighted cell in row b and column edge. This expression indicates
that nodes a and d are targets of edges from node b. The fx box in Figure 3(c) is the
DSS expression associated with the reach cell in row b. The =DSS(“edge b, edge reach
b”) cell expression indicates that there are two ways to get an entry in this highlighted
cell: “edge b” indicates that every entry in the cell at column edge and row b must be in
this cell; “edge reach b” indicates that we take each entry in the cell at column reach and
row b (a node reachable from b), and using that value as the row indicator in column
edge, we add the entries in that cell to the current cell (i.e. those reachable by taking

 a

c d

b

(a) Directed graph

(b)

(c)

(d)

Fig. 3. Reachability problem

one more edge). This is an example of a cyclic specification: the reach column of row
b contains a cell expression that refers to itself.

The user sees the effect of the rules (which are the materialized sets) rather than
the rule itself. In addition when the rules or base facts change the user can immediately

see their effect. For example, if we remove the edge from b to a in Figure 3(a) and
add the edge from b to c instead then XcelLog immediately recomputes the new set of
reachable nodes (see Figure 3(d)). Thus it can provide immediate feedback to “what-if”
scenarios.

It is noteworthy pointing out how the user creates this DSS. First he types in all the
entries into the edge column. These are the direct edges between nodes (see the edge
column in Figure 3(b)). Next he creates the reach expression for a cell say in row b and
column reach (see the fx box in Figure 3(c)). Then he copies this expression (using DSS
copy) and fills (using the DSS paste operation) all the cells in the reach column with the
copied expression. The system automatically inserts the appropriate row number into
the expression for the corresponding reach cell in that row. This is similar in terms of
user experience with traditional spreadsheets. However the idea of allowing set valued
cell expressions and cyclic references as illustrated in this example, has enabled the user
to perform more complex computations.

The DSS expression in the reach column in Figure 3(c) gets translated to the fol-
lowing left-recursive Datalog rules:

graph(b,’reach’,X) :- graph(b,’edge’,X).
graph(b,’reach’,X) :- graph(b,’reach’,Y),

graph(Y,’edge’,X).

The XSB system evaluates the recursive rules and passes the computed result, which
in this case is the set a, b, d of reachable nodes, to Excel for display at that cell. Note
that traditional Prolog systems will go into an infinite loop on this example. XSB’s
tabling machinery ensures termination of evaluation in the presence of such recursive
definitions

(2) A complex logistics example: the supply chain problem. The supply chain of a
manufacturer is a complex network of suppliers, retailers, distributors, transporters and
storage facilities that participate in the sale, delivery and production of finished goods.
Analysis of the behavior of the supply chain provides important information to the
manufacturer for contingency planning, resource optimization, etc. Such an analysis
can be facilitated by specifying the rules governing the supply chain parameters and
relationships in DSS as illustrated below. A switch assembly consists of two major
components: a limit switch and an actuator subassembly; the actuator in turn is made
up of a sensor and a transmitter. Each part can either be bought off the shelf or, if
a composite part, can be acquired by assembling it from its components. Figure 4(a)
shows the DSSs that contain data about (a) the cost of buying a part off the shelf from
different vendors (the “supply costs” sheet); (b) the cost of assembling a part (given its
components) at different manufacturing sites (“assembly costs” sheet); (c) the cost of
shipping a part from one site to another (“ship” sheet); and the composition of a part
(“subpart of” sheet).

The purchase policy is to acquire a part from the cheapest source: either off-the-
shelf, or by custom assembly. In order to compute the least cost, we create a new sheet
(the “acquire” sheet shown in Figure 4(b)) with the different vendors and assemblers
as rows, and the parts as columns. The value of a cell dest.part in this sheet represents,
for a given part and the destination where it should be shipped to, the best price and a

(a) base costs

(b) computing acquisition costs

Fig. 4. Supply chain problem

supplier that provides the given part at that price. That is, it is a pair (v, p) where p is
the price that dest has to pay to acquire the part part from vendor v. We now describe
how the values in this sheet are calculated.

Consider the purchase of the switch assembly from acme: this part can either be
(i) bought from dunrite and shipped to acme; or (ii) its parts can be bought, shipped to
one of the assemblers (precision or allied), and the final assembly shipped to acme.
In order to encode this complex decision process, we create an intermediate sheet
“ acq acmeswitch” to represent the different ways of getting the switch assembly to
acme. The basic idea purpose behind an intermediate sheet is to specify, step by step, a
complex expression that defines a single selected cell’s value. In the above example, we
use the sheet “ acq acmeswitch” to define the cell acme.switch assm in the acquire
sheet.

The rows of “ acq acmeswitch” represent all the possible sources and the columns
correspond to different kinds of costs. The cells in row gyro in this sheet represent the
following. The cell at column buy represents the cost of purchasing the switch assembly
off the shelf from gyro. The value of this cell is the sum of the price at which gyro sells

switch assemblies (i.e. the value at gyro.switch assm cell in the “supply costs” sheet)
and the cost to ship from gyro to acme (i.e. the value at gyro.acme in the “ship” sheet).
Note in this case the cell is empty since gyro does not sell switch assemblies. For every
row R, the value of R.buy is given by the expression supply costs!R.switch assm +
ship!R.acme. This ”rule” is specified in XcelLog by first specifying an instance for
gyro, and then filling all the cells in the buy column with the expression in gyro.buy.

The cell at column get comp represents the cost of acquiring and sending the com-
ponents of the switch assembly to Gyro. This cell has a more complex definition. We
first need to find all the components of the switch assembly. That is given by the value in
the cell switch assm.part of in the “subpart of” sheet. For each such part P, the best way
to get that part to gyro is in the cell gyro.P in the “acquire” sheet. Hence the expression:
“acquire!gyro.(subpart of!switch assm.part of)” represents a set of values: each ele-
ment in the set represents the best way to get some subpart of switch assembly to gyro..
Summing over all elements of this set therefore gives the best way to get all the com-
ponents of the switch assembly. This is done by applying an aggregation operation to
reduce a set to a single element (in this case, sum).

The cell at build adds the cost of assembly at gyro to the cost of acquiring the
components (it is empty in this row since gyro does not assemble switch assemblies).
Finally, the cell at total cost represents the sum of all costs of costs for acme to get the
switch assembly from gyro.

Observe that the values in column total cost in “ acq acmeswitch” sheet repre-
sent the best ways of obtaining a switch assembly to Acme from different vendors. The
minimum over all these values is therefore the best way for Acme to acquire a switch
assembly. This is specified in XcelLog by selecting the column values and ”filling” the
cell acme.swiTch assm in the ”acquire” sheet (see the arrow denoting this operation in
Figure 4(b)). Note that in traditional spreadsheets, the destination of a ”fill” operation
must be at least as large as the source. In XcelLog, an entire column (more generally,
any rectangular area in a sheet) can be used to fill a single cell. The meaning of this op-
eration is to set the destination cell’s value to the union of all the contents of the source
cells. In this example, we modify this default meaning by selecting an aggregation op-
eration — minimum — to apply to this union.

Consider a cell r.c filled with values from a column, say cells r1.c
′, r2.c

′, . . . , r2.c
′.

Instead of generating [r1.c
′, r2.c

′, . . . , rn.c′] as the expression for r.c, we generate a
more abstract expression [exists(R,R.c′)] where R is a variable that ranges over rows,
i.e. the set r1, r2, . . . , rn. This abstraction is useful in two contexts. First of all, when
the rows of a sheet change (e.g. when a new row is added), the abstraction remains
unchanged but still retains the original intention of the user: that the cell contain all
values in column c′. Note that without the abstraction, the user will have to change the
expression of r.c to add the new row. Secondly, the abstraction permits us to have non-
materialized sheets. For instance, the sheet ‘‘ acq acmeswitch’’ is used to compute
the values of acme.switch assm in the “acquire” sheet, but there is no such sheet cor-
responding to the other cells of the “acquire” sheet. Using abstractions with inlining
(where a cell reference r.c is replaced by the cell expression at r.c) we can compute
the values at the other cells of the “acquire” sheet without explicitly creating the corre-
sponding intermediate sheets.

Observe from the above examples that the spreadsheet metaphor was used to create
the rules without the user having to specify any expression with variables. The tradi-
tional copy and fill gestures are used to abstract “rules” from one instance and to apply
them to other instances. In this example, the only cells whose intensions were entered
explicitly and not by filling (other than the four base tables) were the four cells in the
gyro row of the acq acmeswitch table. The abstractions may introduce variables into
DSS expressions but the user never needs to deal with them directly. Complex rule sys-
tems can be constructed with relatively simple interactions. We have thus introduced
deduction into spreadsheets without compromising on its basic simplicity and ease-of-
use from the end user perspective.

A noteworthy feature is that cell references can be recursive (unlike traditional
spreadsheets); this enables the user to specify dynamic programming solutions. In this
example, the cheapest cost of a part is defined in terms of the cheapest costs of its sub-
parts. Indeed shortest path in a cyclic graph (with nonnegative edge weights) can be
specified easily in a DSS. The specification is example based and yet at a high level:
specifying only how the different cell values are related. Moreover, numeric and sym-
bolic computations are seamlessly combined. Finally, the user sees the effect of the
specifications directly and immediately; a change in a component’s price, for example,
would immediately propagate to all the dependent cells (as in a traditional spreadsheet.)
This permits the user to experiment with what-if scenarios: e.g. the impact of a supplier
ceasing to sell a particular part.

5 Related Work

Spreadsheets based on Logic: There have been a great many proposals for combining
the spreadsheet metaphor with logic. A recent survey is available at
http://www.ainewsletter.com/newsletters/aix 0505.htm. We will describe
in more detail recent proposals that are most similar to ours.

Knowledge-sheet [5] and PrediCalc [10] extend traditional spreadsheets by allow-
ing the user to specify constraints on the values of cells. Cells are still required to
contain unique values, but those values may be partially (or totally) determined by con-
straints. In Knowledgesheet finite-domain constraints are associated with cells and spec-
ify combinatorial problems. On user request, the system converts these constraints into
a CLP(FD) program, executes it, and returns the solution as cell values. In PrediCalc
the constraint-solving engine is more integrated into spreadsheet interaction, and is-
sues addressed include how to handle over-specified (or inconsistent) values and under-
specified values. PrediCalc is similar to our proposal in that rows and columns of
spreadsheets are given names and individual cells are referenced by providing the sheet
name, the row name, and the column name. Our approach differs from these in a fun-
damental way in that these approaches maintain the functional aspect of traditional
spreadsheets, in that each cell contains a unique value. We allow cells to contain sets
of values, and cell references specify subset constraints. This means that recursively
defined cells don’t make sense in their functional framework but are perfectly mean-
ingful in our relational one. This is what really allows our spreadsheets to support full
deduction. These approaches add constraints to the functional framework, which as

they have shown can be very useful, and constraints can also be added to our relational
framework. Another interesting combination of rules and spreadsheets is ARulesXL
(http://www.arulesxl.com/). ARulesXL allows users to define WHEN rules that
specify cell contents using defined variables. The use of logic is interesting, but it retains
the functional aspects of traditional spreadsheets and does not support recursive defi-
nitions. Deductive spreadsheets can be understood as specifying subset relationships
among sets. There have been several proposals for programming languages that support
such set specifications [8, 25]. Our DSS might be viewed as a visual interface to a lan-
guage like that of [8], however the other language is much more powerful than ours; we
can define only Datalog programs, whereas the other language is Turing complete. Our
focus is less on the power of the underlying language and more on its presentation and
usability in the tabular spreadsheet form.

Visual Programming: There are a number of research as well as commercial systems
that call themselves “Visual Prolog” or “visual logic programming” systems. We can
distinguish these works into two broad categories. The first one describes technologies
and systems, mainly commercial ones, which provide an integrated programming envi-
ronment to develop and debug Prolog programs very much akin to Forte which provides
a development environment for Java programming. An example of such a system is in
http://www.visual-prolog.com. The second group of works focuses on graphi-
cal interfaces to create logic programs. Examples include [1], which provides graphical
symbols via which one can create Prolog terms, Prolog clauses and Prolog programs.
These kinds of work are more along the lines of visual programming languages. How-
ever unlike the vision espoused in DSS, users of such systems are required to be knowl-
edgeable of logic programming. Finally we point out a recent work that describes ex-
tensions to the Excel spreadsheet that integrate user-defined (non-recursive) functions
into the spreadsheet grid, rather than treating them as a “bolt-on” [9]. What they have
achieved is a way to specify user defined functions visually with a spreadsheet. But each
cell still possesses a unique value. We can lift these point-wise user-defined functions
to work over cells representing sets of values as in XcelLog.

6 Discussion
The synergy between spreadsheets and rule-based computing has the potential to put
into the hands of end users (ranging from novices to power users) technology to cre-
ate and manage their own automated decision support applications with the same ease
with which they are currently able to create financial applications of varying complexity
with traditional spreadsheets. Our XcelLog system demonstrates that technology to cre-
ate rules-driven applications with the spreadsheet metaphor is feasible. Nevertheless our
experience with using XcelLog suggests that there is considerable scope for further re-
search and development. The most immediate one concerns generating and visualizing
explanations of the computational behavior of DSS expressions. This is useful not only
for debugging the application but also for analyzing “what if scenarios”. Our work on
generating explanations for deduction [4, 21] and Excel’s color-coded outlines denoting
cell dependencies offers a suitable starting point for this problem. Another interesting
and useful problem that has emerged from our XcelLog encoding exercises is to develop

a DSS methodology that will aid end users to conceptualize, and systematically develop
DSS encodings for their problems. On the computing infrastructure side efficiency can
be improved by developing incremental algorithms for (re)evaluating DSS expressions
when cell content is changed. Our work on incremental algorithms for logic programs
[23] seems to be well suited for this purpose. Progress on these fronts will accelerate
the acceptance of DSS as a mainstream technology.

7 Acknowledgments

This work was done at XSB, INC (http://www.xsb.com) through a R&D contract
from Defense Advanced Research Projects Agency (DARPA). We thank Chris Rued for
implementing the Excel-XSB interface.

References
1. J. Augusti, J. Puigsegur, D. Robertson, and W. Schorleme. Visual logic programming through

set inclusion and chaining. In CADE 13 Workshop on Visual Reasoning, 1996.
2. A. L. Couch and M. Gilfi. It’s elementary, dear watson: Applying logic programming to

convergent system management processes. In Proceedings of the 13th USENIX Conference
on Systems Administration (LISA), pages 123–138, 1999.

3. S. K. Das. Deductive databases and logic programming. Addidon-Wesley.
4. Y. Dong, C. R. Ramakrishnan, and S. A. Smolka. Evidence explorer: A tool for exploring

model-checking proofs. In Fifteenth International Conference on Computer Aided Verifica-
tion (CAV), pages 215–228, 2003.

5. G. Gupta and S. F. Akhter. Knowledgesheet: A graphical spreadsheet interface for interac-
tively developing a class of constraint programs. In Practical Aspects of Declarative Lan-
guages (PADL), volume 1753 of Lecture Notes in Computer Science, pages 308–323, 2000.

6. J. D. Guttman, A. L. Herzog, and J. D. Ramsdell. Information flow in operating systems:
Eager formal methods. In Workshop on Issues in the Theory of Security (WITS), 2003.

7. T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity protection in the selinux example
policy. In USENIX Security Symposium, 2003.

8. B. Jayaraman and K. Moon. Subset logic programs and their implementation. J. Log. Pro-
gram, 42:71–110, 2000.

9. S. P. Jones, A. Blackwell, and M. Burnett. A user-centered approach to function in excel. In
ICFP, 2003.

10. M. Kassoff, L.-M. Zen, A. Garg, and M. Genesereth. Predicalc: A logical spreadsheet man-
agement system. In 31st International Conference on Very Large Databases (VLDB), 2005.

11. N. Li, B. Grosof, and J. Feigenbaum. A practically implementable and tractable delegation
logic. In IEEE Symposium on Security and Privacy, pages 27–42, 2000.

12. N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discovery in trust
management. Journal of Computer Security, 11:35–86, 2003.

13. J. Lloyd. Foundations of logic programming. 2nd Edition, Springer-Verlag.
14. P. Loscocco and S. Smalley. Integrating flexible support for security policies into the linux

operating system. In FREENIX track of the 2001 Usenix Annua; Technical Conference, 2001.
Available from http://www.nsa.gov/selinx/.

15. P. Loscocco and S. Smalley. Meeting critical security objectives with security-
enhanced linux. In Proc. of 2001 Ottawa Linux Symposium, 2001. Available from
http://www.nsa.gov/selinx.

16. D. Maier and D. S. Warren. Computing with Logic: Logic Programming and Prolog. Ben-
jamin/Cummings Publishers, Menlo Park, CA, 1988. 535 pp.

17. N.Li, J. Mitchell, and W. Winsborough. Design of a role-based trust-management frame-
work. In Proceedings of 2002 IEEE Symposium on Security and Privacy, pages 114–130,
May 2002.

18. X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A logic-based network security ana-
lyzer. In 14th Usenix Security Symposium, 2005.

19. C. R. Ramakrishnan and R. Sekar. Model-based analysis of configuration vulnerabilities.
Journal of Computer Security (JCS), 10:189–209, 2002.

20. D. M. Reeves, M. P. Wellman, and B. N. Grosof. Automated negotiation from declarative
contract descriptions. In Müller, E. Andre, S. Sen, and C. Frasso, editors, Proceedings of
the Fifth International Conference on Autonomous Agents, pages 51–58, Montreal, Canada,
2001. ACM press.

21. A. Roychoudhury, C. Ramakrishnan, and I. Ramakrishnan. Justifying proofs using memo
tables. In Proc. of Principles and Practice of Declarative Programming, 2000.

22. K. Sagonas, T. Swift, D. S. Warren, J. Freirre, and P. Rao. Xsb programmers manual, 2001.
http://xsb.sourceforge.net/.

23. D. Saha and C. Ramakrishnan. Incremental evaluation of tabled logic programs. In Proc. of
Intl. Conf. on Logic Programming, 2003.

24. B. Sarna-Starosta and S. D. Stoller. Policy analysis for security-enhanced linux. In Proceed-
ings of the 2004Workshop on Issues in the Theory of Security (WITS), pages 1–12, 2004.
Available at http://www.cs.sunysb.edu/ stoller/WITS2004.html.

25. J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky. Programming with sets; an
introduction to SETL. Springer-Verlag, New York, NY, USA, 1986.

