A Symbolic Constraint Solving Framework for Analysis of
Logic Programs

C.R. Ramakrishnan

I.V. Ramakrishnan

Dept. of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794-4400.

R.C. Sekar

Bellcore
445, South Street
Morristown, NJ 07960.

Abstract

Abstract Interpretation of logic programs using symbolic constraints has attracted a lot of
attention lately since such approaches can yield very elegant formulation of many analyses.
Moreover, the performance of an analysis that uses constraints to represent program properties
and symbolic constraint solving techniques to infer them, can be largely insensitive to domain
size. However, implementations of these techniques must balance the conflicting requirements
of (a) providing efficient constraint solving algorithms for specific constraints, and (b) being
general enough to deal with a large class of constraints. We overcome the apparent conflict by
implementing the analysis and constraint solving operations in multiple layers such that the top
most layer is completely generic. The lower layers become increasingly specialized for a particular
analysis. Each layer provides a set of operations for the higher layer using the operations
provided by the lower layers. Such layering enables us to choose the most efficient algorithms
appropriate for that layer, independent of the other layers. The critical aspect of this framework
is the identification of interfaces between the layers that enables us to modularize not only our
algorithms and implementations, but also the proof efforts. A prototype implementation of our
framework shows that it scales very well to large domains, and furthermore, compares favorably
with the existing implementations of other analysis methods.

Contact Author : C.R. Ramakrishnan
e-mail : cram@cs.sunysb.edu
Phone : (516) 632 8470
Fax : (516) 632 8334

This main paper is 13 pages long including figures and tables. The appendix contains supple-
mentary reference material and is provided for the convenience of the referees.

1 Introduction

Abstract interpretation, introduced by Cousot and Cousot in [8], provides a foundation for anal-
ysis of programs. Logic program analysis using abstract interpretation has received considerable
attention (e.g., see [9]). Abstract interpretation based analysis interprets the program using a
nonstandard semantics, where the concrete domain of values is replaced by an abstract domain of
descriptions of values, and each operator is replaced by the corresponding nonstandard interpre-
tation. Top-down analyses (e.g., [1]) compute the set of abstract substitutions for each variable
at each call site; bottom-up analyses compute the abstract success set of each predicate. Thus, in
abstract interpretation, we compute a set of tuples of substitutions that describes a relation (z.e.,
the property of interest) over the abstract domain. Implementations of abstract interpretation
typically compute the program property by enumerating the tuples in this relation (e.g., see [3, 5]).

Note that the efficiency of enumeration-driven implementations is dependent on the size of
the abstract domain. For example, consider a predicate p(K, K) interpreted over a domain D =
{di1,...,d,}. Enumerative methods represent the relation as the set {(di,d1),...,(dn,ds)}. The
size of this representation can become large for large domains, particularly for domains obtained
as a product of other domains [6]. Alternatively, the same relation can be represented symbolically
using the constraint (X; = X3), with its size unaffected by changes to the domain. Thus methods
based on symbolic representation can be less sensitive to domain size.

The idea of using symbolic constraints to represent relations was first proposed by Wegbreit
[23] for analysis of flow chart programs. In the context of logic programs, the use of symbolic
constraints was formally studied by Codognet and File [4] and Giacobazzi et al [13]. They compute
the relation using a fix-point algorithm that is parameterized by operations on the constraints.
However, the design of efficient algorithms for actually performing these constraint operations was
not addressed. Corsini et al, in [5], present an efficient static analyzer where the relations are
represented by symbolic constraints in the Toupie language. The constraint solving technique used
in this work is based on Bryant’s Decision Diagrams [2] which compactly represent the relations,
leading to a very efficient implementation. However, this representation is still enumerative thereby
making the implementation domain dependent. Analyses of Jacobs and Langen [14], Muthukumar
and Hermenegildo [20] and others to detect sharing among program variables, can be viewed as
using symbolic constraint solving techniques. In addition to providing a formal basis for analysis of
sharing in an abstract interpretation framework, these works also present algorithms for operations
on the sharing constraints. However, their works do not explore the effect of adding other constraints
on this algorithm, or the effect of dealing with abstract domains other than those of groundness
and freeness. We address the above issues in this paper and develop a modular framework for
implementing bottom-up abstract interpretation of logic programs using symbolic constraint solving
techniques.

1.1 Overview
The salient feature of our work is that it proposes a solution to the conflicting problems of

e providing constraint solving algorithms, which necessarily requires the method to focus on
the specifics of the constraints, and

e providing a general method that is capable of dealing with a large class of constraints.

We overcome this apparent conflict by splitting the constraint solving process into several layers.
Such layering permits us to modularize our algorithms so that dependence on specific characteristics

| Layer | Requires | Provides
Generic Layer Simplify (S), project (P), | Fix point iteration,
implication (), composition

base constraints
Boolean Simplification | product (x), quotient (/), | S, P, T

Layer project conjuncts (P,)

Atomic Constraints glb, subset, superset *, / and P,

Layer

Domain Layer nothing glb, subset, superset,

base constraints

Figure 1: Structure of the Framework

of constraints are localized. The layers in our framework are shown in Figure 1. The top most
layer is generic and does not even fix a representation for the constraints. Lower layers successively
specify the form of these constraints and become increasingly specialized for a particular analysis.
Each layer provides a set of operations for the higher layer. These operations are parameterized
with respect to the operations provided by the lower layer. However, the algorithms in any layer are
based only on those aspects of the constraint representation that are fixed by that layer. Because
of this, the implementation of any layer is unaffected by changes to the layers above or below it.

The critical aspect of this framework is the identification of the interfaces between the layers.
An interface is characterized by a set of operations, along with a set of correctness requirements
for these operations. We establish the correctness of algorithms specified in a layer (which are in
turn the requirements of the upper layer) based only on the correctness requirements on the lower
layer. This enables us to modularize not only the algorithms and implementations, but also the
proof efforts. In the following we briefly describe the overall structcture of the framework.

The top layer of the framework, called the generic layer, operates on programs and computes
program properties bottom up, using composition and fix point operations. It relies on the lower
layers to define the representation of these properties and provide three operations, namely, simplify,
project and implication. Stmplify is used to maintain these properties in a canonical form; project is
used to eliminate intermediate variables from properties; and implication is used to check whether
a fix point has been reached. In terms of functionality this layer corresponds to the fix-point
algorithms in [4, 23] and the GAIA [17].

The boolean simplification layer specifies the form of the properties to be disjunctive normal
formulae (DNF’s) over atomic constraints. (The form of atomic constraints is, in turn, specified
by lower layers.) It realizes the simplify and implication operations on DNF’s through a set of
operations (called guotient and product) on atomic constraints. The quotient operation, denoted
by ¢/’, is a generalization of implication so that C;/C; returns the set of additional constraints
under which C, implies C;. The product operation, denoted by ‘x’, returns the conjunction of two
constraints in canonical form.

The third layer, called the atomic constraints layer, fixes the form of atomic constraints. In this
paper, we have chosen two types of atomic constraints: the equality constraint of the form X = ¢,
where ¢ is a term (possibly containing other variables) whose depth is bounded; and a membership
constraint of the form X € d, which captures the notion that X takes substitution from a subset of
the Herbrand base denoted by d. The latter constraint is designed to capture the notion of abstract
substitution, as in abstract interpretation based analyses. This layer provides the operations * and

/ for simplifying atomic constraints and the projection on conjuncts, based on the domain-specific
operations called glb, subset and superset. These operations are provided by the domain layer. For
simplicity of presentation, we restrict the formulation of the framework to domains that possess
finite ascending chain property. The framework can be easily extended to general domains using
widening operations [12], as discussed in section 8.

The rest of this paper is organized as follows. The four layers in our framework are described
in sections 2 through 5. Following this, we present the results of our prototype implementation.
These results compare favorably with the results of two well known implementations, namely, Toupie
[5], that performs bottom-up abstract interpretation and the GAIA [16], that performs top-down
abstract interpretation. The results also show that our method is largely insensitive to domain size.
For instance, a three-fold increase in the domain size resulted in an average increase of 10% in the
analysis time. In contrast, in the system based on Toupie solver increases in domain size leads to
(more than) proportionate increase in analysis times. In section 7 we compare the accuracy of our
method with other analysis methods, and indicate possible extensions to our framework. Details
that may aid the refereeing process but are not central to the paper are given in the appendix.

Notation The symbols of our language are drawn from three mutually exclusive sets: variables
denoted by X,Y, Z; function symbols denoted by a, b, c; and predicate symbols, denoted by p, g, r.
The symbols may appear with or without subscripts. Lists and sets of variables are denoted by
symbols X,Y, Z. Constraints (denoted by ¢ and 1) are built using conjunction and disjunction
over atomic constraints of the form C(Xy,...,X,,), where C is the name of the atomic constraint
and Xq,...,X, are variables. Thus constraints are (negation-free) first order formulae with free
variables. Logical implication (denoted by ‘=-"), defined as usual in terms of substitutions, forms a
partial order over the set of constraints.

2 Generic Layer

The generic layer is parameterized with respect to the base constraints (¢.e., constraints on built-
in predicates) and the operations of simplification (S), projection (P) and implication (Z). The
properties of predicates are computed bottom up based on these operations. We restrict our
attention to properties that are valid when a predicate succeeds. Properties that are dependent
on some execution order can be obtained using transformation techniques such as Magic templates
[21].

For every predicate p(X) in the program we associate a constraint p#(X) such that every
substitution that satisfies p also satisfies p#. Hence p# is a necessary condition for p to succeed
and therefore can be viewed as a property® of p. Given 7# for every built-in predicate 7, the aim
of the analysis is to compute p# for every p defined in the program. Let a predicate p be defined
by clauses of the following form:

n(X) « ¢(X1)....dk, (X5).

(X)) « (X)) (XT).

!Properties that depend on sufficient conditions of the predicates can also be obtained in our framework by
essentially reversing the direction of implication.

Then the constraint p# is given by the following equations:

pit = PXSAN (a)D)
k=1
p* = Sv(\7l/pj#)

The functions S, and Sy, henceforth referred to collectively as S, simplify a given constraint
and maintain it in a canonical form. The operation P projects the given constraint onto X, the
head variables of p. For each built-in predicate r (e.g., ‘<’ and ‘is’) we have r#(X) = ¢,(X) where
o, is the base constraint fixed by the particular analysis.

The above rules are used directly to compute p# if p is nonrecursive. Otherwise p# is computed

by a fix-point iteration procedure as the limit of the sequence p#©, p#:!, ... defined as follows?:
p# % = False
— mj #

7. — X j 7._1

pi*t = PXSAA (@))
k=1

. n .

= Su(V)
j=1

The fix point is identified using the implication operator Z that tests if one constraint implies
the other. In order to stop iterations as soon as a fix point is reached, the implication test must be
complete. However, many constraint domains lack independence of negated constraints (see Jaffar
and Maher [15]); ¢.e., a finite disjunction ¢ may imply a conjunction %, but no individual conjunct
in ¢ may imply . In such domains, complete implication tests are notoriously hard since whole
disjunctions have to be considered at once. Hence we relax the conditions on Z and only demand
that it be sound. But, to ensure termination, we require the existence of a partial order C such
that S and P are monotonic in C and 7 is complete with respect to C; z.e., V1,02 1 C 3 =
Z(p1,%2). Note that the particular order L is fixed in the lower layers; all we need here in this
layer is a guarantee that this property holds.

Clearly, with an incomplete implication test we may not stop iterations as soon as a fix point
is reached. Nevertheless, to preserve the genericity of this layer we leave it to the lower layers to
make the tradeoff between (possibly) longer iterations and an expensive test for implication.

Proof Obligations In order to prove the soundness and termination of this layer we assume the
following properties on the base constraints and S, P and 7.

Requirement 2.1 (Soundness)

a. The simplification, projection, and implication operators S, P and Z are sound; i.e., for
every constraint ¢, ¢ = S(p), ¢ = P(p) and if Z(p1, p2) = True then 1 = @,.

b. The constraints ¢, that represent properties of built-in predicates r are sound.

Requirement 2.2 (Termination)

a. Monotonicity: There ts a partial order C such that S and P are monotonic w.r.t. C, and T
is complete w.r.t. C.

b. Finite Ascending Chains: The range of P has no infinite strictly ascending chain w.r.t. C.
That is, for every (possibly infinite) chain o1 C @q C -+, the set {P(p1), P(p2),...} is finite.

ZNote that these equations correspond to Jacobi’s method of successive approximations (see [9], page 136).

Theorem 2.1 (Soundness) The fiz-point iteration procedure correctly computes p# for recursive
predicates p.

Theorem 2.2 (Termination) For every predicate p in the program, p* can be effectively computed.

3 Boolean Simplification Layer

Given that conjunctions and disjunctions are the primary operations used by the generic layer,
an obvious representation for program properties is to use a disjunctive normal form, where each
component of a conjunction is an atomic constraint. (The structure of the atomic constraints
themselves is defined by the subsequent layer.) A DNF is capable of capturing simple case-splitting
that occurs in programs due to the presence of multiple clauses defining a single predicate. Although
DNF’s can become very large in the worst case, this does not seem to happen in practice®. The
canonical form chosen by this layer is thus a DNF representation.

In order to provide the simplify and implication operations on DNF’s, this layer makes use of
the quotient and product operators supplied by the atomic constraints layer. Note that it is in the
atomic constraints layer that these operations are defined and the notion of canonical form is fixed.
However, we describe the properties of these operations here in order to explain the operations of
the boolean simplification layer.

The product of two atomic constraints C; and C; is a conjunction (C] A --- A C},) that approxi-
mates (Cq A Cy). This operation defines the notion of orthogonality: two atomic constraints C; and
Cy are orthogonal iff C; * C2 = C; A Ca. A conjunction (Cy A --- A C},) is said to be in canonical
form iff the C;’s are pairwise orthogonal. Observe that the conjunction (X = a) A (Y = a) can be
represented (without redundant information) in several alternate ways, such as (X = Y)A (Y = a),
(X =Y)A(X = a), and so on. The product operation is used to choose one of the possible
representations, say, (X = Y) A (Y = a). With this choice of product, X = a and Y = a are not
orthogonal, whereas X = Y and Y = a are orthogonal. The properties of the product operation
are formalized in requirement 3.1 below.

The quotient operation is defined as follows. Intuitively, given that Cs is satisfied, the quotient
C1/C, gives the extra conditions that are needed to satisfy C;. For example, given X = ¢(Y)
and we want to prove that X = ¢(b); then the additional constraint we need is ¥ = b. Hence
(X =¢(0)/(X =¢(Y)) = (Y =b). In the definition of quotient, we exploit the fact that it
is used only in the context of formulas already in canonical form. For instance, given X = ¢,
the additional constraints we need to have for showing Y = tisone of {Y = t,X =Y, Y = X},
i.e., a disjunction of these three constraints. However, disjunctions are not permitted in the above
definition of quotient. We have chosen our canonical form so that only one of these three constraints
can be in a conjunction that contains X = ¢, and are hence able to define the quotient operation.

Based on these functions, the realization of simplify, implication and project is sketched in
figure 2. In this figure, we use ¢ to denote a DNF, v to denote a conjunct and C' (with or without
subscripts or primes) to denote atomic constraints. The algorithms in the figure are expressed
using oriented equations, from which a computational procedure can be readily derived using the
following “meta” rules: (1) the rules are matched by treating A and V as associative-commutative
symbols (e.g., when C A ¢ matches C; A Cz A C3, C can match any of C;, Cs, or Cs), and (2) a

30ur experimental results indicate that the average number of conjunctions that arise in a DNF is very close to
1, and rarely exceeds 1.2.

1. Sv(p1,p2) — absorb(p1 V p2)
2. Salp1,02) — absorb([[(e1, ¢2))
3a. I(¥1Vepr,p2) — [z € p2 (conj_quotient(z, ¥1) = True)] AZ(p1, p2)
3b. I(False,pz) — True
4. PX(1V Vi) — absorb(PaX (1) V-V Pa X (%))
5a. absorb(Y1 VY2 V@) — if (conj_quotient(ta, 1) = True) then absorb(y2 V ¢)
5b. absorb(p) — ¢
6a. conj_quotient(C A 31,%2) — cons_quotient(C,¥2) A conj_quotient(v1, 9¥2)
6b. conj_quotient(True,v2) — True
Ta. cons_quotient(C,C1 A¢) — if (C/C1 = True) then True
else if (C/C; # C) then
conj_quotient(C/C1, C1 A)
7b. cons_quotient(C,y) — C
8. (%1 v Vabn), (1 V- V) — V,j conjproduct(v;, ¢5), (1<i<n,1<j<m)
9a. conj_product(y1,C A2) — cons_product(conj_product(y1,¥2), C)
9b. conj_product(y1, True) —
10a. cons_product(C1 A, C) — if (C/Cy = True) then C1 A9
else if (C/C; = C) then
if (C1/C = Cy) then
C1 A cons_product(y, C)
else conj_product(cons_product(y, C), C1/C)
else conj_product(, C * C1)
106. cons_product(True,C) — C

Figure 2: Equations defining S, P and Z.

rule that appears later in the text is used only when earlier rules are not applicable. For example,
absorb(y) can be implemented as follows: if there are two conjunctions i, in ¢ such that
conj_quotient(vz, 1) = True, then invoke absorb(¢ — ¢1), t.e., eliminate v; from ¢; otherwise,
return o.

The simplification function uses absorption laws to eliminate redundant conjunctions, ¢.e., con-
junctions that are implied by other conjunctions in the same DNF. Both the simplification function,
as well as the implication function, make use of conj_quotient to determine if one conjunction im-
plies another. Actually, conj_quotient is an extension of the quotient operation on conjunctions,
and hence is a generalization of the implication operation on conjunctions. It uses cons_quotient in
turn, which is ultimately realized in terms of the quotient operation provided by the atomic con-
straints layer. The functions conj_product and cons_product extend the product operation in the
same way conj_guotient and cons_quotient extend the quotient operation. The projection function
P is performed by projecting each conjunction using P, followed by the absorb operation to remove
redundant conjunctions from the result.

Proof Obligations The soundness and termination of this layer are established based on the
following properties of %, / and Pa.

Requirement 3.1 The product (Cy % Cy) of two atomic constraints Cy1 and Cy is a conjunction
Ci A+ A C}, in canonical form such that (C1 A C2) = (C1 A -+ ACY).

Requirement 3.2 The quotient C1/C4 of two atomic constraints C; and C; is a conjunction
Ci{ A--- A C} in canonical form such that Y1 such that (Cy A ¢) is in canonical form, [¢p =
(CIA---ANC] & [(CaAp) = C4].

Requirement 3.3 * is monotonic; furthermore, YC € Cq % Cy, C <ypo C1 07 C <yt
Cy or C1 xCy = C1 or C1 % Cy = Cy, where <y, s some well-founded order.

Requirement 3.4 VC € C1/Cy, C <yjs, C1 or C1/Cy = Ci.

Requirement 3.5 P, is sound, monotonic and the range of Pn has no infinite strictly ascend-
ing chain.

Theorem 3.1 (Soundness) S, P and I are sound.

Theorem 3.2 (Termination) There exists a partial order C such that T is complete, S and P are
monotonic, and range of P has no infinite ascending chain w.r.t. C.

4 Atomic Constraint Layer

This layer deals with atomic constraints and provides the operations /, * and P, and operations
needed by the boolean formula layer. We first need to select the type of atomic constraints supported
and specify their canonical form. In this paper, we have chosen the equality and membership atomic
constraints. Analyses that can be modeled using these two constraints include, for example, those
that are typically formulated using Prop domain (proposed by Marriot and Sondergaard in [18]
and refined by Cortesi et al [7]). The equality constraint enables us to capture aliasing, whereas
membership constraints enable us to capture the notion of a variable taking a substitution from an
abstract domain. The membership constraint views each domain point as representing a subset of
the Herbrand base of a program (commonly referred to as the concretization of the domain point),
and thus membership implies that a variable takes its substitution from this set. For instance, in
groundness analysis, if g is a point in the abstract domain representing the set of all ground terms,
an abstract substitution of the form [X « g] is equivalent to the constraint X € g. Similarly any
abstract domain can be described by a domain D of subsets of the universe of terms.

More concretely, the (canonical representation of) constraints are of the form X =Y or X =
c(Y1,...,Y,)or X € dor X € ¢(dy,...,d,), where ¢ is a function symbol, X,Y,Y3,...,Y, are
variables and d,di,...,d, are elements of the abstract domain. We refer to any one of these
constraints an atomic constraint on X. Observe that although this representation restricts the
rhs of the constraints to be of depth 1, term structure constraints of any depth can be captured
using intermediate variables, e.g., X = ¢(¢1,...,t,) can be captured as the conjunction (X =
c(Yi,..., Y))A (Y1 = 1) A--- A (Y, = t,). We prevent duplicate representation of the equality
constraint between variables (¢.e., X =Y which can also be represented as Y = X) by defining a
total order on the set of variables and ensuring that if X = Y occurs as a constraint then X precedes
Y in that order. Given orthogonality, this condition actually ensures that any conjunction of atomic
constraints that is in canonical form will contain at most one constraint on any one variable. This
fact, together with the ordering, enables us to identify all the constraints on a variable X by
recursively following the constraints on variables appearing on the rhs of the constraint on X in an
efficient manner. This fact is exploited in our definition of the P, function.

0. C/C — True

la. X=t/(vr=t) - (¥=X) fy>X
(X =1t) otherwise

1b. c(Xx,t)/c'(X',¢) — C(X,t), whenever X # X'

2a. (X =¢t)/(X €t) — True

2b. (X=t)/(Xet) — (X=1%)

3a. (Xet)/(X=Y) — (Yet)

3b. (X €ed)/(X =c(Y1,....,Yn)) — A (Yi €di) where d; = subset(d, c, i)

3c. (X €c(..))/(X=((...)) — False, ifc#c

3d. (X €c(diy s dn))/(X =c(Y1,..,Y)) — A (Yied)

4a. (X=Y)/(X=¢t) — (Y=1

4b. (X=t)/(X=2) - (Z=1)

4c. (X =¢(...))/(X=¢((..)) — False, ifc#c

4d. (X =c(Y1,.. Yo))/(X =c(Y{,...Y,) — A (Y =Y)

5a. (X €d1)/(X €dy) — if (glb(dq,dz) = d3) then True
else (X € dq)

5b. (X €c(dy,....,dn))/(X €d) — (X €c(dr,...,dn))

5¢c. (X €c(...))/(X €c(...)) — False, ifc#c

5d. (X €c(dq,...,dn))/(X € c(dl,...,d},)) — if (glb(d;,d}) = d}) then True

else (X € ¢(dy, ..., dn))

Figure 3: Equations defining quotient (/).

Having defined the canonical form of atomic constraints, we now describe the operations needed
by this layer from the domain layer. The quotient and product operations are defined using two
domain-dependent functions, called glb and subset. The function glb computes the greatest lower
bound of two domain elements, which corresponds to (an approximation of)) the intersection of the
sets of terms represented by the two domain points. For description of subset let d be a domain
constant, ¢ be a function symbol and ¢ an integer. The value returned by subset(d,c,i) is the smallest
domain element d' such that ¢(¢1,...,t,) € d = t; € d'. For example, in order for ¢(Y3,...,Yy,)
to be in ¢ we need Y7 € g,...,Y, € g. Hence subsei(g,c,i) = g for 1 < 7 < n. The P, function
requires a third operation from the domain layer, named superset, which takes an argument ¢ of
the form ¢(ds,...,d,) and returns a domain element that is the minimal superset of its argument
t. More formally, let S be the set of terms that are instances* of ¢£. Then superset(t) returns the
smallest domain element that corresponds to a superset of S. Properties of the domain-dependent
functions are formalized in requirements 4.1, 4.2 and 4.3.

The procedure for computing quotient is specified by the rules in Figure 3. Product operation is
defined along the same lines (see appendix, section C). In the figure, d (with or without subscripts)
denotes some point in the domain. Equation 2b assumes that equality constraints are never partially
implied by € constraints and equation 5b assumes that not all terms contained in a domain element
have the same root symbol. The proofs of soundness and termination of / and * can be easily
obtained, based on the properties of glb and subset.

We now sketch the definition of the projection function P, on conjuncts. We ensure that P, has
a finite range by restricting the depth of the projected constraints to some constant k, similar to the

* An instance of ¢(di,...,dn) is a term ¢(s1, ..., 8n) such that Vi s; € d;.

depth-k abstraction of Sato and Tamaki [22]. The depth-k approximations of a set of constraints
is computed by replacing the constraints on variables that occur below depth k by their zero-depth
approzimations. The zero-depth approximation of a constraint C (X, t) is found by replacing ¢ with
its zero-depth approximation. Zero-depth approximations of variable-free terms are given by a
domain dependent function superset. This procedure is illustrated by the following example.
Consider the conjunct ¢ = (X = ¢(Y))A(Y = b(Z))A(Z € g). To perform a depth-1 projection
of ¢ onto { X } we first find zero-depth approximation of the constraint on Y, which in turn will need
zero-depth approximations of the constraints on Z. The constraint on Z is already its zero-depth
approximation. Assuming superset(b(g)) = g, we obtain the zero depth approximation for Y as
Y € g. Substituting this into constraint on X gives the depth-1 projection of ¢ on X as (X € ¢(g)).

After propagating and truncating constraints as described above, intermediate variables that
occur in depth-k constraints are renamed consistently. In particular, variables that represent the
same position in a term on the rhs of a constraint on a specific variable have the same name. This
is done to ensure that implication operation need not check for consistency of the constraints on
the intermediate variables. The proofs of soundness of P, is routine and is based on the following
correctness requirements of the domain layer functions.

Requirement 4.1 (glb): Vd;,d; Vt tediAtedy=te€ glb(dy,dz).
Requirement 4.2 (subset): Vd' (c(t1,...,t,) € d = t; € d') = subset(c,d, i) C d'.
Requirement 4.3 (superset): Vd (c(t1,...t,) € dAVL t; € d;) = superset(ds,...,d,) C d.

Requirement 4.4 The domain D has no infinite strictly ascending chain.

5 Domain Layer

We illustrate the domain dependent functions by formulating type analysis in our framework, with
the the domain D = {T,g,list, L} where T represents the universe of terms, | represents the
empty set, list denotes lists and g denotes non-list ground terms. g¢lb is defined such that T is the
greatest element, L is the least and list and g are incomparable; i.e., glb(list, g) = glb(g, list) = L.
The functions superset and subset are defined by the following equations (here d denotes some
arbitrary element in D and cons represents the list constructor):

= T
list
= d, Vi, d#list

subset(list, cons,1
subset(list, cons, 2

subset(d, ¢,

list if dy = list, T otherwise
list

)

)

)
superset(d) = d

superset([d|ds])

superset([|)

)

superset(c(ti,...,t,)) = g ifVit; =g, T otherwise

The base constraints for this analysis are provided for the built-in predicates such as <, s, etc.
For example, is#(X,Y) = (X = Y) A (Y € g). The soundness proofs for glb, subset, superset and
the base constraints are straightforward and omitted.

As an example of the type analysis as formulated here, consider the append predicate:

append([],Y,Y).
append([U|V],Y,[U|W]) :— append(V,Y,W).

The abstract equation defining append¥ is:

append®(X,Y,2) =PEVIHS,(SA(X=[]AY =2) Vv
SA(X = [U|V]A Z = [U|W] A append* (V, Y, W))))

We obtain the following iterations. (See appendix for a more detailed illustration of the example.)

append#’0 = False

append®! = (X =[])A(Y = 2)
append™? = (X € list)
append®® = (X € list)

Note that fix point is reached after 2 iterations. Thus, we infer that X is always a list, but nothing
is known about Y and Z, since append([|,t,t) succeeds for any term ¢.

6 Implementation

Based on our framework, we implemented groundness and type analyses. All analyses reported
in this section share the generic, boolean simplification and atomic constraint layers. The domain
dependent functions are specified separately for each analysis. These functions form only 10% of
the code, thereby allowing us to reuse the other 90% across all the analyses.

In Table 1, we compare the performance of groundness analysis in our method (listed under
‘SCS’, short for Symbolic Constraint Solving) with that on the GAIA with re-execution [16]. The
performance of both the implementations were evaluated on a number of programs. The programs
and input modes used were the same as those used in [16]. The programs are: an alpha-beta
procedure Kalah, an equation solver Press, a cutting-stock program CS, a disjunctive scheduling
program Disj, a peephole optimizer Peep, a planning program Plan, an n-queens program Queens,
a tokenizer Read by R. O’Keefe and D.H.D. Warren, a program PG by W. Older and a quicksort
program Qsort.

The accuracies of the implementations are listed in the table as the percentage of variables
determined to be ground by each implementation. The table shows that SCS achieves essentially
the same accuracies reported by GAIA. The GAIA timings were taken from [16] and the timings
for SCS were obtained on a Sparcstation-1, the same architecture as used in [16]. In order to
compute both input and output modes (as done in GAIA), SCS analyses were performed after
Magic Templates transformation [21]. The execution times for SCS given in the table include the
transformation time. The table shows that the SCS is three to four times faster than the GAIA. It
should be noted, however, whereas the SCS figures are for groundness analysis, GAIA figures are
for extracting both groundness and freeness together.

In Table 2, we compare the performance of our method with that of the implementation based
on Toupie system [5], on the following domains:

e 2pt-ground: Two point domain for groundness,

e 3pt-ground: Three point domain for groundness,

e 4pt-types: Four point domain ({int, const, list, funct}) for type,

e 5pt-types: Five point domain {int, const, list, funct, u} for type, and
e BigType: The type domain in figure 4.

The first four domains correspond respectively to the Prop, Prop+, Types and Types+ domains
used in [5]. The timings for Toupie are not available for BigType. The timings for SCS were

10

Accuracy Execution Time

(% vars ground) (seconds)
GAIA SCS || GAIA SCS
CS 100 100 4.32 1.09
Disj 100 100 2.42 0.63
Kalah 98 98 1.88 0.55
Peep 86 87 2.92 0.70
PG 100 100 0.27 0.10
Plan 97 97 0.21 0.09
Press 27 27 7.73 1.37
Qsort 78 78 0.11 0.05
Queens 100 100 0.07 0.02
Read 57 62 4.37 1.09

Table 1: Performance of SCS compared to GAIA.

2pt-ground 3pt-ground 4pt-types Ept-types BigType

Toupie | SCS || Toupie | SCS || Toupie | SCS || Toupie | SCS SCS
cs 0.53 | 0.14 0.90 | 0.18 0.20 | 0.12 0.21 | 0.12 0.14
Disj 0.48 | 0.17 0.68 | 0.22 0.30 | 0.12 0.36 | 0.13 0.15
Gabriel 0.18 | 0.04 0.26 | 0.05 0.18 | 0.04 0.21 | 0.04 0.05
Kalah 0.50 | 0.11 0.80 | 0.15 0.35 | 0.12 0.43 | 0.12 0.13
Peep 0.83 | 0.08 1.30 | 0.11 0.55 | 0.10 0.70 | 0.10 0.11
PG 0.11 | 0.02 0.16 | 0.03 0.11 | 0.02 0.15 | 0.02 0.03
Plan 0.10 | 0.02 0.15 | 0.02 0.06 | 0.02 0.11 | 0.02 0.03
Press 0.76 | 0.15 1.20 | 0.20 0.68 | 0.16 1.00 | 0.17 0.17
Qsort 0.03 | 0.01 0.05 | 0.01 0.06 | 0.01 0.08 | 0.01 0.01
Queens 0.03 | 0.01 0.06 | 0.01 0.03 | 0.01 0.03 | 0.01 0.01
Read 0.83 | 0.25 1.51 | 0.28 2.40 | 0.26 4.05 | 0.26 0.27

Table 2: Performance compared to Toupie (all times in seconds).

obtained on a Sparc IPX, the same architecture as used in [5]. The results show that SCS is on
the average about 5 times faster than the Toupie system. The differences between the accuracies
of these two implementations are also negligible. However the results reflect information obtained
independent of the calling context and greater accuracy can be achieved by post-processing for a
given context. Due to the differences in the representations, the results of post-processing may
differ for the two methods, as discussed in Section 7.

Dependency on Domain Size Note that when domain size is increased from 2 to 3 (2pt-ground
to 3pt-ground) the analysis times went up by 30% on the average on SCS, compared to 60% on
the Toupie system. Increasing the domain size from 4 to 5 (4pt-types to 5pt-types) results in
less then 2% increase in analysis times on SCS whereas the analysis times on the Toupie system
increase by 50% on the average (and 30% if extreme data points are omitted).

We performed type analysis on a 14-point domain (figure 4) in order to measure the domain
sensitivity of our approach. In figure 4, ‘(a]’ denotes a list of type o and ‘T’ denotes unknown

11

O

AN

int const funct m]]
[int] [const] [funct] (o1

[lint]] [fconst] ([[funct]

nil

Figure 4: Structure of the 14-point type domain (BigType)

e r(Y) :- p2(X, X, ¥).
q(X, Y) :- pi(a, X, Y). S2a, b, 7).

pi1(z, x, [z]Y]). p2(X, X, [1).
(a) (b)

Figure 5: Programs illustrating differences in accuracy.

type. The analysis times on this domain are given in the last column of table 2. Note that when
the domain size is increased from 5 to 14, (an increase of 280%) the analysis time increases, on the
average, by only 10%. This shows that the SCS framework is largely insensitive to domain size.

7 Discussion

In our method, the constraints are interpreted over the concrete domain and abstraction itself
is done only when lossy constraint solving operations are performed. Thus, our method can be
considered as a bottom-up abstract interpretation technique over the concrete domain. The use
of lossy operations on relations in our framework corresponds to the use of lossy conjunction and
disjunction of Wegbreit [23] and the lossy composition of Codognet and File [4] and to the notion
of insertion due to Marriot and Sondergaard [19].

In contrast to our use of lossy operations, the loss of information in a Prop-domain based
system such as [5] occurs only at the abstraction step, and the resulting constraints are solved
exactly. It [10] Cousot and Cousot showed that loss of information at iteration time can yield more
precise analyses compared to the Galois-connection based approaches where loss of information
occurs at abstraction time. However, since the language used to represent the properties in our
framework and Prop-domain based systems differs considerably, the accuracy of the two approaches
are incomparable. For instance, consider groundness analysis of predicate ¢ in Figure 5a. Using
membership and equality constraints in our method as described in Section 4 yields no information.
However, analyses using the Prop domain can conclude that X € g iff Y € g. On the other
hand, groundness analysis of predicate r in Figure 5b using the Prop domain does not yield any

12

information since a and b are mapped to the same point in the abstract domain. However, in our
framework, since constraints are interpreted over the concrete domain, we can conclude that Y € g.
Although the accuracies of the two approaches can potentially differ, experiments indicate that our
method and those in [5, 16] have similar accuracies in practice.

The accuracy of analyses in our framework can be improved in several ways. Firstly, the op-
erations in atomic constraint layer can be extended to return disjunctions instead of conjunctions
and the rules of the boolean simplification layer can be suitably modified. Secondly, additional
constraints, such as those that represent sharing and containment relations, can be introduced by
modifying the atomic constraints layer®. Note that both approaches enlarge the set of representable
properties, thereby increasing accuracy since the loss of information is governed by what can be
represented. With either of these extensions, groundness analysis on the example in Figure 5a
yields (X € g,Y € g) V(X € ng,Y € ng).

8 Conclusions and Future Work

We presented a modular framework that implements bottom-up abstract interpretation of logic
programs using symbolic constraint solving techniques. Such a framework needs to balance the
conflicting requirements of providing efficient constraint solving algorithms for particular types of
constraints and at the same time being general enough to deal with a large class of constraints. The
framework presented here attempts to satisfy these requirements by dividing the analysis and con-
straint solving operations into many layers, thereby sharing these operations across different kinds
of constraints. Each layer provides a set of operations for the higher layer using the operations pro-
vided by the lower layers. Computations within each layer are independent of the implementation
as well as the constraint representation used in the other layers. Interfaces between the layers are
characterized by a set of operations and corresponding correctness requirements. The correctness
of the complete framework is established based on these interface requirements. A prototype im-
plementation of our framework shows that it scales very well to large domains and furthermore,
compares favorably with existing implementations of other analysis methods.

The framework can be easily extended to domains without ascending chain condition, by intro-
ducing widening operators [12]. In particular, the implication operation, instead of returning true
or false, can be modified to invoke the widening operator if the implication is false, thus return-
ing the next (extrapolated) iterate. Note that the finiteness condition on the project operation
in atomic constraints layer (requirement 3.5) can now be relaxed, leading to the relaxation of the
finiteness condition on the domain (requirement 4.4) in the domain layer. Modularizing the widen-
ing operations along the same lines as simplify and project while preserving efficiency is a topic of
current research.

Other possible extensions to the framework can be based on modifying the requirements on the
different operators: by weakening them, thereby yielding more general analyses or strengthening
them to make the analyses more efficient. For example, the completeness condition on the quotient
operator in the atomic constraints layer can be weakened (analogous to the weakening of complete-
ness of implication in boolean formula layer), thus enabling quotients to be defined for a larger
class of constraints. Further research is needed to investigate the tradeoff between relaxing and
tightening the requirements.

®As an illustration, in section D of Appendix, we present the rules added to the atomic constraints layer for
handling constraints that represent sharing.

13

Acknowledgements

We thank Pascal Van Hentenryck for providing us with the benchmark programs, and Marc-Michel
Corsini, Saumya Debray, Pascal Van Hentenryck and David S. Warren for their comments on an
earlier version of this paper.

References

[1]

2]
[3]

[4]

[5]

[11]

M. Bruynooghe. A practical framework for the abstract interpretation of logic programs.
Journal of Logic Programming, 10:91-124, 1991.

R.E. Bryant. Ordered binary-decision diagrams. ACM Computing Surveys, 24(3), 1992.

M. Codish and B. Demoen. Analysing logic programs using “Prop”-ositional logic programs
and a Magic wand. In International Logic Programming Symposium, pages 114-129. MIT
Press, 1993.

P. Codognet and G. File. Computations, abstractions and constraints. In International Con-
ference on Computer Languages, pages 155-164. IEEE Press, 1992.

M-M. Corsini, K. Musumbu, A. Rauzy, and B. Le Charlier. Efficient bottom-up abstract
interpretation of Prolog by means of constraint solving over symbolic finite domains. In In-
ternational Symposium on Programming Language Implementation and Logic Programming,
number 714 in LNCS, pages 75-91. Springer Verlag, 1993.

A. Cortesi and G. File. Abstract interpretation of logic programs: an abstract domain for
groundness, sharing, freeness and compoundness analysis. In Symposium on Partial Fvaluation
and Semantics-based Program Manipulation, pages 52—61. ACM Press, 1991.

A. Cortesi, G. File, and W. Winsborough. Prop revisited: Propositional formula as abstract
domain for groundness analysis. In IEEE Symbosium on Logic in Computer Science, pages
322-327. IEEE Press, 1991.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In ACM Symposium on Priciples
of Programming Languages, pages 238-252. ACM Press, 1977.

P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. Journal
of Logic Programming, 13:103-179, 1992.

P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing ap-
proaches to abstract interpretation. In International Symposium on Programming Language
Implementation and Logic Programming, number 631 in LNCS, pages 269-295. Springer Ver-
lag, 1992.

P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to Comport-
ment analysis generalizing strictness, termination, projection and PER analysis of functional
languages. In International Conference on Computer Languages, pages 95-112. IEEE Press,
1994.

14

[12] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
progam. In ACM Symposium on Priciples of Programming Languages, pages 84-96. ACM
Press, 1978.

[13] R. Giacobazzi, S. Debray, and G. Levy. A generalized semantics for constraint logic programs.
In International Conference on Fifth Generation Computing Systems, 1992.

[14] D. Jacobs and A. Langen. Accurate and efficient approximation of variable aliasing in logic
programs. In North American Conference on Logic Programming, pages 154-165. MIT Press,
1989.

[15] J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic Program-
ming, pages 503-582, 10th Anniversary Special Issue 1994.

[16] B. Le Charlier and P. Van Hentenryck. Reexecution in abstract interpretation of Prolog. In
Joint International Conference/Symposium on Logic Programming, pages 750-764. MIT Press,
1992.

[17] B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic abstract interpre-
tation algorithm for PROLOG. ACM Transactions on Programming Languages and Systems,
16(1):35-101, January 1994.

18] K. Marriot and H. Sondergaard. Notes for a tutorial on abstract interpretation of logic pro-
g g
grams (unpublished). In North American Conference on Logic Programming, 1989.

[19] K. Marriot and H. Sondergaard. Bottom-up dataflow analysis of normal logic programs. Jour-
nal of Logic Programming, 13:181-204, 1992.

[20] K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable dependency using
abstract interpretation. Journal of Logic Programming, 13:315-347, 1992.

[21] R. Ramakrishnan. Magic Templates: A spellbinding approach to logic programming. In Joint
International Conference/Symposium on Logic Programming, pages 140-159. MIT Press, 1988.

[22] T. Sato and H. Tamaki. Enumeration of success patterns in logic programs. Theoretical
Computer Science, 34:227-240, 1984.

[23] B. Wegbreit. Property extraction in well founded property sets. IEEE Transactions on Software
Engineering, SE-1(3):270-285, September 1975.

15

Appendix

(This appendix contains only supplementary reference material.)

A Proofs for the Generic Layer

A.1 Soundness

We first consider only non-recursive programs and use this result to prove soundness of the general
case.

Lemma A.1 Let p be a predicate as defined before (Equation 1 on page 3), and (qi;)# be sound
for each qi respectively. Then p* = Sy(Vj—, P(SA(Ary (qk)#))) is sound for p.

Proof: (Sketch) Given that s;#(Y) and s;#(Z) are necessary conditions for s;(Y) and s5(Z)

respectively, then clearly 51#(Y) A 53#(Z) is a necessary condition for the goal sl(Y), s2(Z). Tt is
easy to see that Ay~ qk#(Xk) is a necessary condition for the goal ql(XJ) ,qmj (Yij) From
requirement 2.1a We have ¢ = P(Sa(¢)), and it follows that P(SA(AL2, qk (Xk))) is a necessary
condition for the j** clause p;(X).

Furthermore, 51#(Y) V 5,#(Z) is a necessary condition for the goal s,(Y);s2(Z) whenever
51#(Y) and s, (7) are necessary conditions for s;(Y) and sy(Z) respectively. It follows that

Sv(Viz1 P(SA(AZ, (qk)#))) is a necessary condition for predicate p. |
Theorem A.2 For each predicate p in a nonrecursive program p* is a necessary condition for p.

Proof: By induction on height of the dependency graph (dag). The base case relates the predicates
that are at the bottom of the call graph — i.e., those that are pre-defined or built-in. This is a direct
consequence of requirement 2.1b. The rest of the proof follows easily from lemma A.1. |

The above theorem is used to establish that every fix point of p is a necessary condition.

Theorem A.3 If ¢, is a fiz point for p, then ¢, is a necessary condition for p.

Proof: Let ¢,,¢,,... be the fix points for p,g,.... For each predicate p, define p°, p',... as
follows. For each rule that defines p of the form
p(X) :— Body.
define
p°(X) :— loop.
and for 7 > 0

p'(X) i— I'y(Body).

where loop represents some non-terminating computation I';(s) replaces each occurrence of any
predicate symbol ¢ in s by ¢°.

16

Since p® never terminates, ¢, is a safe necessary condition for p°. Note that p* is nonrecursive
for 7 > 0. By taking the necessary condition for p° as ¢,, we get the necessary condition for p' as
©p, since @, is a fix point. By induction we obtain ¢, as a necessary condition for p*, for all 4.

The behavior of p and p* is identical for all execution sequences of length < i. Given any
execution sequence of p, say of length n, behavior of p is identical to that of p"; and ¢, is a
necessary condition for p”. Hence ¢, is a necessary condition for p. |

The soundness theorem 2.1 follows as a corollary to the above theorem.

A.2 Termination
Lemma A.4 For every predicate p in the program, p#+* C p#»t1,

Proof: The proof is by induction on i. For the base case, p#° C p#! for every predicate p.
For nonrecursive predicates, p#° = p# = p#:1, and hence p#:° T p#:1. For recursive predicates
p#0 = False and False C ¢ for every ¢ € ®. Hence p#° C p#L.

For the induction step, assume that p#* C p#7*! for all i < m. Let t,, denote the formula
Sv(Viz1 P(SANL, (qi)#’m_l))). Note that t,,,1 is obtained from 4, by replacing ¢# ™! by
g#™. Since Sy, S, and P are monotonic in C (from requirement 2.2a), and ¢# ™! C ¢#™ (by
induction hypothesis), p# ™! = 4,11 = ¥,, = p¥™. |

The termination theorem (theorem 2.2), which is restated below, can now be established.
Theorem A.5 For every predicate p in the program, p* can be effectively computed.

Proof: Since the range of P has no infinite ascending chain, (requirement 2.2b), the chain
p#0 p#l .. reaches a limit after a finite number of steps. Furthermore, since Z is complete
with respect to C (by definition) we can compute the smallest i for which p#*t! C p#, and due
to lemma A.4 effectively compute the limit. |

B Proofs for the Boolean Simplification Layer

B.1 Soundness

We first establish the soundness of equations 6, 7, 9, and 10 in figure 2 through the following
lemmas. We prove that the base cases of these equations are sound and that each equation preserves
soundness. Hence, in the following, an operation f is sound means that f is sound whenever it is
computable. We establish the computability of these operations later in this section.

Lemma B.1 conj_quotient and cons_quotient are sound and complete. That is,

Vi [(2 A) = ¢1] & [¢ = conj_quotient(e)q,v2)], and
Vi [(2 A) = C] & [¢ = cons_quotient(C, 5)].

Proof: To show that equation 6a preserves soundness and completeness, let ' =
cons_quotient(C,) and ¢" = conj_quotient()1,v2). From the soundness and completeness as-
sumptions on the rhs, we have, V¢ [(2 A = C) & ¢ = ¢'] and V¢ [(P2 A ¥ = 1) & ¢ = ¢"].
Then, V¢ [(Y2A Y => p1 AC) & (P2 A = C)A (YA = 1) & (=P)A (P =¥ & (¥ =
P AP,

That equation 6b is sound and complete is trivial to establish since V¥ [¢5 A ¢ = True & ¢ =
True].

17

To show that equation 7a preserves soundness and completeness, we consider the following two
cases:
Case 1: C'/Cy = True: From requirement 3.2 we have C; = C. Hence V¢' [C1 A A¢' & C] and
it follows that Vo' [(C1 A Y A Y = C) < o' = Truel.
Case 2: C/Cy # C: Let C/Cq = 91 and conj_quotient(¢1, C1 A) = 9. Hence, Vo' [(C1 AP AY' =
V1) & P’ =). Since YY" [(C1AY" = C) & ¢" = ¢1], we have, V' [(¢' = ¢2) & (C1AYAY' =
P1) & (CLACIAYAYP' = C) & (CLAYpAY = C)).

Observe that equation 7b is used only when VC; €4 C/C; = C. Hence, VC1 €9 V' [(C1AY' =
C) & o' = C], from requirement 3.2, and it follows that V¢' [(A9’ = C) & ' = C]. [|

Lemma B.2 conj_product and cons_product are sound. That is,

11 A 2 = conj_product(y,) and
1 A C = conj_product(,C).

Proof: We assume that the conj product and cons_product appearing on the rhs of equations 9
and 10 are sound and show that every application of the equations preserve soundness.

Soundness of equations 9b and 10b are trivial since ; A True = 1 and True A C = C.

In equation 9a the soundness assumption on the rhs means that 3 A (C A¢2) =1 A2 AC =
conj_product(v1,12) A C = cons_product(conj_product(1,2), C') = conj_product(ip1,C A).

Now we show that every application of equation 10a preserves soundness. If C/C; = True
(first alternative) then clearly (C1 A ¢) A C = C Ay = cons_product(Cy A ¢, C). If C and C; are
orthogonal (second alternative) then (C1 A P)AC = C1 A (¢ A C) = C1 A cons_product(y,C) =
cons_product(C1 A, C). If C is independent of C; (third alternative) then (C1 AY)AC = C1A (YA
C) = cons_product(yp, C) A C1 = cons_product(cons_product(y,C),C1) = cons_product(Cy A ,C).
Otherwise (fourth alternative), (C1 A¥p)AC = ¢ A(C ACy) = ¥ A(C xCq) (from requirement 3.1)
= conj_product(y,C x C1) = cons_product(C1 A, C). |

We can now establish the soundness of equations 5 and 8.
Lemma B.3 absorb and I are sound.

Proof: Soundness of absorb (i.e., ¢ = absorb(y)) is easily proved by induction on the number of
conjuncts in ¢ and the soundness of conj_quotient (lemma B.1). For induction step, observe that
conj_quotient(vz, 1) = True < 11 = 2 and hence 91 V ¥ = 1Ps.

Soundness of II (i.e., ¢1 A @2 = II(p1, ¢2)) is also easily obtained by induction on the number
of conjuncts in ¢; and ¢, and the soundness of conj_product (lemma B.2). |

The Soundness Theorem (theorem 3.1), restated below, can now be established.
Theorem B.4 (Soundness) S, P and Z are sound.

Proof: Soundness of absorb and II (lemma B.3) directly lead to soundness of S.

Soundness of P follows directly from the soundness of P, (requirement 3.5) and the soundness
of absorb. (lemma B.3). |

B.2 Termination

Lemma B.5 There is a partial order C such that T is complete w.r.t. C.

18

Proof: Define C to coincide with = over all conjunctions. Note that for conjunctions,
conj_quotient and hence Z are complete w.r.t. = and therefore w.r.t. C.

Now, define C over disjunctions as follows: @1 C @y iff Vip1 € @1 ¢y € @a [¢h1 C 92]. Note
that C is Hoare’s powerdomain ordering (see, e.g., [11]). Transitivity and antisymmetry of C are
straightforward. Since the definition of Z mimics the definition of C and conj quotient is complete
w.r.t. C, Z is also complete w.r.t. C. |

Note that since C has been defined to be coincident with = over conjunctions, monotonicity of
operations over conjunctions can be proved using either partial order.

Lemma B.6 Quotient (/) is monotonic in its first argument.

Proof: Let C;/C = ¢; and C3/C = 1,. Hence, from requirement 3.2, we have, V¢ [(C A ¢ =
Ci) & (¥ = 1)) and Vo [(C AY = Ca) & (¢ = %2)]. Let Cy = Ca. Then, Vo [(¢ = 1) =
(¥ = 2)] from the definition of 1, and 5, and hence 1 = ,. [|

Lemma B.7 cons_quotient and conj_quotient are monotonic in their first argument.

Proof: Equations 6b and 7b clearly define operators that are monotonic in their first argument.
Equation 6a preserves monotonicity follows since A is monotonic. Furthermore, equation 7a clearly
preserves monotonicity since the change to the first argument uses / which, by lemma B.6, is
monotonic in its first argument. |

Lemma B.8 cons_product and conj_product are monotonic.

Proof: Equations 9b and 10b clearly define a monotonic operator. Since composition of two
monotonic operators is monotonic, equation 9a and 10a define a monotonic operator whenever the
operations on the rhs are monotonic. Since * and A are monotonic (requirement 3.3), it follows
that equations 9a and 10a preserve monotonicity. |

Lemma B.9 absorb and Il are monotonic with respect to C.

Proof: Follows from lemmas B.7 and B.8. |
Lemma B.10 conj_quotient and conj_product are computable.

Proof: Note that conj quotient and conj product are defined using equations; hence computability
means existence of a terminating computational procedure that implements the equations.

Note that there is a procedure that computes cons_quotient such that there are no direct calls
to cons_quotient. The only non-trivial case arises when C/C; # C, when conj_quotient is invoked.
Hence cons_guotient terminates whenever conj_quotient terminates.

For termination of conj_gquotient, observe that subsequent calls to conj_quotient are such that

1. The number of atomic constraints in the first argument is strictly decreasing. This case arises
for all direct calls to conj_quotient.

2. The first argument of the resultant call (via cons_quotient) is a conjunct ¥’ such that VC'¢€
' [C' <o C], for some C in the first argument of the original call, from requirement 3.4.

19

It is easy to construct an irreflexive, well founded partial order, <, based on the above observations
such that every subsequent calls to conj_quotient strictly decreases the first argument with respect
to <.

Termination of conj_product can be established along the same lines as that for conj_guotient,
using the requirement 3.3. |

Lemma B.11 absorb and II are computable.

Proof: Follows readily from the computability of conj_quotient and conj_product (lemma B.10).
|

This leads us to the following Termination theorem (theorem 3.2) restated below:

Theorem B.12 (Termination) There exists a partial order C such that T is complete w.r.t C and
S and P are monotonic w.r.t. C. Furthermore the range of P is finite.

Proof: That 7 is complete w.r.t. C has been established by lemma B.5.
Monotonicity of S follows from the monotonicity of absorb and II (lemma B.9).

P is monotonic due to the monotonicity of absorb and P,. Furthermore, the finite ascending
chain property of P follows from finite ascending chain property of P, (requirement 3.5).

Computability of all four operators is assured by the computability of absorb, II (lemma B.11)
and conj_quotient (lemma B.10). |

C Rules for Product (Atomic Constraints Layer)

0. CxC — C
1. C(X,t)«C'(X',t) — C(X,t)AC(X',t"), whenever X # X'
2a. (Xet)x(X=Y) - (Yet)A(X=Y)
2b. (Xed)x(X =c(V1,...,Yn)) — (X =c(Y1,...,Ya)) AN (Y: € subset(d, c, 1))
2c. (X €e(..))*(X=¢((...)) — False, ifc#c
2d. (X €c(diy...,dn))*x (X =c(V1,...,Yn) — (X =c(V1,.. ., Y)AAN_ (Vi €di)
3a. (X=Y)x(X=t) - (X=Y)A(Y =1
3b. (X=t)x(Y=t) - (X=Y)A(Y=t) ifX>Y
Y=X)A(X=t) HY>X
3c. (X =c(..))* (X =('(...)) — False, ifc#c
3. (X =c(Y1,. . Yn)* (X =c(¥{,...Y})) — X =c(Y1,....Y)AA_,(Yi=Y))
4a. (X € dl) * (X € dz) — (X € glb(dl, dz))
4b. (X €c(dr,--,dn))* (X €d') — (X €c(dl,...,d))),
where d} = glb(d;, subset(d',c,i)) 1 <i<mn
4c. (X €c(..)*x(X €c(...)) — False, ifc#£c
4d. (X €c(dr,...,dn))* (X €c(dy,...,dy)) — (X €c(dy,...,dM)),

where df' = glb(d;,d}) 1 <i<mn

D Formulating Sharing Constraints

We now illustrate how new constraints can be added to the atomic constraints layer, by adding
constraints to capture sharing information. Sharing is represented by the atomic constraint (X ~ 5)

20

where S is the set of variables that share a variable with X. Note that 5 is the sharing group for
X, in the terminology of Jacobs and Langen [14].

We now describe the rules for computing quotient and product for sharing constraints. These
rules are added to the quotient and product rules for equality and membership constraints, specified
in the atomic constraints layer (figure 3 and section C of Appendix). Observe that the interaction
of sharing constraints with membership and equality constraints completely defined by these rules.

The quotient operation is very simple and is described by the following rules:

la. (X ~85)/(X~8) - (X~5—5
1b. C/(X~S) — C

2. (Z~SU{X})/(X=Y) — (Z~SU{¥})
2. (Z ~5)/C — (Z~5)

The definition of product uses a domain dependent function subsup, to be supplied by the domain
layer. The function subsup(d) is specified using the following property: Let ¢ be some term such
that ¢t € d, and s be a subterm of t. Let t' be any term containing s. Now, if subsup(d) = d' then
t' € d'. For example, let the domain be {g, f,u} where g represents the set of all ground terms,
f represents set of all terms with functor root (i.e., non-variable terms) and u be the universe of
terms. Then, subsup(g) = f, subsup(f) = f and subsup(u) =

The rules for product are:

la. (X=Y)*x(X~8) — (X=Y)A (Y S {Y}

15. (X Y) () — (X = Y) A (

le. (X=Y)x(Z ~ SU{X}) - (X=Y)A(Z ~ SU{X,Y})

1d. (X Y) () — (X = Y) A (Z ~ S)

2a. (X =) () — (X = t) (X ~ S)

2b. (X=c"1,...,. YR)*x(Yi~S) — (X =c,--))/\(XNS)/\/\?:1(Y,~ ~ 5)

2¢. (X =c¢(Y1,...,Yn))* (Z SU{Y}) = (X =cY,....)N (Z~SU{X,Yi})

2. (X=t)e(Z~85) — (X=O)A(Z~$)

3a. (X ~{¥,.... R)* (X ed) — (X ~{Y,....Y.})A(X €d) AN, (Y; € subsup(d))
3b. (X ~{1,.. . Yu}P)*x(Ysed) — (X ~{Y,...,Yu}) A (X € subsup(d)) A /\:LII(Y, €d)
4a. (X S)x(X~8) - (X~S5U8")

4b. (X~89)*x(Y~8) - (X~SA (Y ~5)

E An Example of Type Analysis — append

We provide a detailed illustration of the type analysis, formulated in section 5, on the append
predicate (from page 10). The abstract equation for append is

append®(X,Y,2) =PEVINS((X =[]AY =2) V
(X = [U|V]AZ = [U|W] A append* (V, Y, W))))

Since append is recursive, we have append®® = False. The fix-point computation proceeds in
the following sequence.

append®® = False
append®! = PIEYINX —[IAY = Z)
= (X=[]AY=2)
append®? = PIEYVINS (X =[]AY = 2),

SA(X =[UVIAZ = [U[W]),(V = []AY =W))))

21

append#3

PIXYIN S, (X = []AY = 2),(X = [U|V]AV =[] A Z = [U]Y))))
PEYTN(X = [JAY = Z) V(X = [U|V]AV =[] A Z = [U[Y]))
absorb((X = []AY = Z) V (X € list))

—~

(X € list)
7’{XYZ}(S (X = []/\YIZ),

SA((X =[UIVIAZ =[UW]),(V=[]AY = W)V (V € list)))))
pLEYINs, (XZ[] z),

(ANY =
absorb([[((X = [UVIA Z = [UIW]),(V =[]AY = W)V (V € list))))))
PIEVIH S (X = [1AY = 2),

absorb((X = [U|VIAV =[JAZ =[U|Y)) V(X = [U|V]AV €list A Z = [U|W]))))
PIEYIN S, (X = []AY = 2), (X = [U|V]AV €list A Z = [U|W])))
PIEY 2} (gbsorb((X = [|AY = Z) V(X = [U|V]AV €list A Z = [U|W))))
PIEYIY(X = [|AY =2Z)V (X = [U|V]AV elist A Z = [U|W]))
absorb((X = []AY = Z) V (X € list))
(X € list)

22

