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1 Introduction

XMC is a toolset for specifying and verifying concurrent systems.1 Its main mode
of verification is temporal-logic model checking [CES86], although equivalence
checkers have also been implemented. In its current form, temporal properties
are specified in the alternation-free fragment of the modal mu-calculus [Koz83],
and system models are specified in XL, a value-passing language based on
CCS [Mil89]. The core computational components of the XMC system, such
as those for compiling the specification language, model checking, etc., are built
on top of the XSB tabled logic-programming system [XSB99].

A distinguishing aspect of XMC is that model checking is carried out as query
evaluation, by building proof trees using tabled resolution. The main advantage
to making proof-tree construction central to XMC is the resultant flexibility
and extensibility of the system. For example, XMC provides the foundation
for the XMC-RT [DRS99] model checker for real-time systems, and for XMC-
PS [RKR+00], a verification technique for parameterized systems. Secondly, it
paves the way for building an effective and uniform interface, called the justifier,
for debugging branching-time properties.

The main features of the XMC system are as follows.

– The specification language, XL, extends value-passing CCS with parameter-
ized processes, first-class channels, logical variables and computations, and
supports SML-like polymorphic types.

– XL specifications are compiled into efficient automata representations using
techniques described in [DR99]. XMC implements an efficient, local model
checker that operates over these automata representations. The optimization
techniques in the compiler make the model checker comparable, in terms of
performance, to SPIN [HP96] and Murphi [Dil96].

– The model checker is declaratively written in under 200 lines of XSB tabled
Prolog code [RRR+97]. XSB’s tabled-resolution mechanism automatically
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yields an on-the-fly, local model checker. Moreover, state representation using
Prolog terms yields a form of data-independence [Wol86], permitting model
checking of certain infinite-state systems.

– The model checker saves “lemmas”, i.e. intermediate steps in the proof of
a property. The XMC justifier extracts a proof tree from these lemmas and
permits the user to interactively navigate through the proof tree.

The XMC system has been successfully used for specifying and verifying dif-
ferent protocols and algorithms such as Rether [CV95], an Ethernet-based proto-
col supporting real-time traffic; the Java meta locking algorithm [ADG+99,BSW00],
a low-overhead mutual exclusion algorithm used by Java threads; and the SET
protocol [SET97], an e-commerce protocol developed for Visa/MasterCard.

Below we describe the salient features of the XMC system.

2 XL: The Specification Language

XL is a language for specifying asynchronous concurrent systems. It inherits the
parallel composition (written as ‘|’), and choice operators (‘#’), the notion of
channels, input (‘!’) and output (‘?’) actions, and synchronization from Milner’s
value-passing calculus. XL also has a sequential composition (‘;’), generalizing
CCS’s prefix operation, and a builtin conditional construct (‘if’). XL’s support
of parameterized processes fills the roles of CCS-style restriction and relabeling.

Complex processes may be defined starting from the elementary actions using
these composition operations. Process definitions may be recursive; in fact, as in
CCS, recursion is the sole mechanism for defining iterative processes. Processes
take zero or more parameters. Process invocations bind these parameters to
values: data or channel names.

Data values may be constructed out of primitive types (integers and boolean),
predefined types such as lists (written as [Hd|Tl] and [] for empty list) or ar-
bitrary user-defined (possibly recursive) types. XL provides primitives for ma-
nipulating arithmetic values; user-defined computation may be specified directly
in XL, or using inlined Prolog predicates. The specification of a FIFO channel
having an unbounded buffer given in Figure 1 illustrates some of these features.

Type declarations are not always necessary, as the example illustrates. XMC’s
type-inference module automatically infers the most general types for the differ-
ent entities in the specification.

3 The XMC Compiler and Model Checker

The XMC system incorporates an optimizing compiler that translates high-level
XL specifications into rules representing the global transition relation of the un-
derlying automaton. The transitions can be computed from these rules in unit
time (modulo indexing) during verification. The compiler incorporates several
optimizations to reduce the state space of the generated automaton. One opti-
mization combines computation steps across boundaries of basic blocks, which



chan(Read, Write, Buf) ::=

receive(Read, Write, Buf) # {Buf \== []; send(Read, Write, Buf)}.

receive(Read, Write, Buf) ::=

Read?Msg; chan(Read, Write, [Msg|Buf]).

send(Read, Write, Buf) ::=

strip_from_end(Buf, Msg, NBuf); Write!Msg; chan(Read, Write, NBuf).

{* % Inlined Prolog code appears between braces

strip_from_end([X], X, []).

strip_from_end([X,Y|Ys], Z, [X|Zs]) :- strip_from_end([Y|Ys], Z, Zs).*}

Fig. 1. Example Specification in XL

cannot be done based on user annotations alone, and has been shown as partic-
ularly effective [DR99].

The mu-calculus model checker in XMC is encoded using a predicate models
which verifies whether a state represented by a process term models a given
modal mu-calculus formula. This predicate directly encodes the natural seman-
tics of the modal mu-calculus [RRR+97]. The encoding reduces model checking
to logic-program query evaluation; the goal-directed evaluation mechanism of
XSB ensures that the resultant model checker is local.

Various statistics regarding a model-checking run, such as the memory us-
age, may be directly obtained using primitives provided by the underlying XSB
system. In addition, certain higher-level statistics, such as the total number of
states in the system, are provided by the XMC system.

4 Justifier

Tabled resolution of logic programs proceeds by recording subgoals (“lemmas”)
and their provable instances in tables. Thus, after a goal is resolved, the relevant
parts of the proof tree can be reconstructed by inspecting the tables themselves.
In XMC, model checking is done by resolving a query to the models predicate.
The justifier inspects the tables after a model-checking run to create a justifica-
tion tree: a representation of the proof tree or the set of all failed proof paths,
depending on whether the verification succeeded or failed, respectively.

The justification tree is usually too large for manual inspection. Hence XMC
provides an interactive proof-tree navigator which permits the user to expand
or truncate subtrees of the proof. Each node in the proof tree corresponds to
computing a single-step transition or a subgoal to the models predicate; at each
node the justifier interface shows the values of the program counters and other
variables of each local process corresponding to the current global state.

5 Future Work

Work to extend the XMC system is proceeding in several directions. First, we are
adding a local LTL model checker to the system. Secondly, we are expanding the



class of systems that can be verified by incorporating a model checker for real-
time systems, XMC-RT [DRS99] built by adding a constraint library to XSB.
Thirdly, we plan to include deductive capabilities to XMC by incorporating our
recent work in automatically constructing induction proofs for verifying param-
eterized systems [RKR+00]. Finally, we are enhancing the proof-tree navigator
by integrating message sequence charts for better system visualization.
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