
On the Optimality of Scheduling Strategies in
Subsumption based Tabled Resolution�

Prasad Raoy

C.R. Ramakrishnan
I.V. Ramakrishnan

Department of Computer Science
SUNY at Stony Brook

Stony Brook, NY 11794-4400
email: prasadr@bellcore.com,fcram, ramg@cs.sunysb.edu

Abstract
Subsumption-based tabled logic programming promotes more aggressive reuse of

answer tables over variant-based tabling. However resolving subgoals against answers
in tabled logic programming may require accessing incomplete answer tables (i.e.,
more answers remain to be added). In subsumption-based tabling it is far more efficient
to retrieve from completed tables. Scheduling strategies promote more frequent usage
of such tables by exercising control over access to incomplete tables. Different choices
in the control can lead to different sets of proof trees in the search forest produced by
tabled resolution. The net effect is that depending on the scheduling strategy used,
tabled logic programs under subsumption can exhibit substantial variations in perfor-
mance. In this paper we establish that for subsumption-basedtabled logic programming
an optimal scheduling strategydoes not exist— i.e., they are all incomparable in terms
of time and space performance.

Subsumption-based tabled resolution undercall abstractionminimizes the set of
proof trees constructed. In the presence of call abstraction, we show that there exists
a family of scheduling strategies that minimize the number of calls that consume from
incomplete answer tables produced by strictly more general calls.

1 Introduction

Tabled resolution for general logic programs [1, 10, 3] as embodied in the XSB system,
introduces a new level of declarativeness over traditional (Prolog-like) logic programming
systems. Availability of tabled logic programming systems makes it feasible to develop a
larger class of efficient declarative solutions to complex applications than heretofore possi-
ble using traditional Prolog-based systems. (See [6] for example.)

At a high level, top-down tabling systems evaluate programs by recording subgoals
(referred to ascalls) and their provable instances (referred to asanswers) in a table. Pred-
icates are markeda priori as eithertabledor nontabled. Clause resolution, which is the
basic mechanism for program evaluation of a subgoal, proceeds as follows. Fornontabled
predicates the subgoal is resolved against program clauses. For tabled predicates, if the

�Research partially supported by NSF grantsCCR-9404921,9510072,9705998 & 9711386, CDA-9303181
and INT-9314412 & 9600598.

yCurrent Address: Bellcore, 445 South Street, Morristown, NJ 07960.

subgoal is “already present” in the table, then it is resolved against the answers recorded
in the table; otherwise the subgoal is entered in the table, and its answers, computed by
resolving the subgoal against program clauses, are entered in the table. For both tabled
and nontabled predicates, program clause resolution is carried out using SLD. While SLD
derivations can be captured as a prooftree, derivations using a tabled resolution strategy
can be viewed as aforestof proof trees, with each proof tree corresponding to an answer
table.

Following the original formulation of tabled resolution in [10], we say that a subgoalt1
is present in the table if there already exists another subgoalt2 in the table thatsubsumes
t1, i.e., t1 is an instance oft21. On the other hand one can also say, as is done in the XSB
system, that a subgoalt1 is present in the table only if the table contains avariantof t1 i.e.
t2 is identical tot1 up to renaming of their variables. Since in a subsumption-based system a
new call� is resolved using the answers of an earlier call� even when� is a proper instance
of �, subsumption-based tabling promotes more aggressive reuse of computations than
variant-based tabling. Note that, in subsumption-based tabling, when a call� is resolved
against the answers of a more general call� made earlier, only a subset of the answers in
the answer table of� are relevant for�. Hence, we need mechanisms to quickly index
into the answers of� that are relevant for�. We showed, via an implementation [8] that,
with judicious choice of data structures for representing tables in a subsumption-based
system, the aggressive reuse can result in considerable improvement in performance over
any tabling system based solely on variant checks.

From a computational viewpoint, resolving subgoals against answers in tabled logic
programming systems may require accessingincompleteanswer tables,i.e., tables where
more answers remain to be added. In a subsumption-based system, when answer clause res-
olution is performed against incomplete tables, we need to retrieve asubsetof answers from
a dynamically growing set. However, answer clause resolution againstcompletetables—
tables with no more answers to be added— selects a subset of a static set. The problem of
indexing (selecting a subset of answers from) a dynamic set is inherently more expensive
than indexing a static set, making incomplete table accesses considerably more expensive
than complete table accesses (sometimes by a few orders of magnitude). Therefore, tech-
niques that promote consumption from complete tables over consumption from incomplete
tables are central to efficient implementation of subsumptive tabling.

In a tabling system,scheduling strategiesdetermine the order in which proof trees of a
forest are selected to be explored. (The search within a proof tree itself is determined by
the resolution strategy.) Note that, while exploring a proof tree the corresponding answer
table is incomplete. Hence we can use scheduling strategies to control access to incom-
plete tables, and consequently, promote use of complete tables over incomplete tables. In
subsumption-based systems, different scheduling strategies can lead to construction of dif-
ferent sets of trees in the proof forest2. The net effect is that depending on the scheduling
strategy used, tabled logic programs can exhibit substantial variations in performance. The
interesting question is whether there exists a scheduling strategy that constructs the mini-
mum number of proof trees for computing allanswers to a query, while at the same time,
promoting access to complete tables.

In this paper we first establish that for subsumption-based tabled logic programming an
optimal scheduling strategydoes not exist— i.e., scheduling strategies are all incomparable
in terms of time and space performance. In general, incomparability is primarily caused
by lack of control over the number of trees that can be generated by a scheduling strategy.

1We say thatt1 strictly subsumest2 (t2 is strictly more general thant1) iff t1 subsumest2 but is not its
variant.

2Note that the forest generated by any scheduling strategy isalwaysa subset of the forest generated by a
variant engine.

An intriguing question then is: if all scheduling strategies produce the same forest, then
are there nontrivial cost measures under which scheduling strategies can be compared.
We show that this is indeed possible for tabling engines augmented withcall abstraction.
In tabled resolution under call abstraction, whenever a callc is encountered, we make a
most general callc0 such thatc0 will be eventually made, and letc consume from the the
answer table ofc0. Subsumption-based tabled resolution with call abstraction constructs
the minimum set of proof trees, independent of scheduling strategies. For resolution under
call abstraction, we describe a family of scheduling strategies thatminimizethe number of
calls that consume from incomplete answer tables produced by strictly more general calls.

1.1 Overview of Proofs

We show that, given any two different scheduling strategiesS1 andS2, neither is uniformly
better (in terms of running time and table space used) than the other over all programs (see
Definition 3.3). The above result is established as follows:

� ABSTRACT EXECUTION MODEL (Section 2): We first present a formal definition
of a scheduling strategy, based on the development of an abstract execution model
for subsumption-based tabling engines.

� EXECUTION TRACE (Section 3): In order to quantify the effect of a scheduling
strategy, we develop the notion of anexecution trace. The trace generated by a
scheduling strategy while evaluating a query is simply the sequence of calls made to
tabled predicates (see Definition 3.1). Two strategiesS1 andS2 are deemed different
if there is a program/query pair such that the execution trace generated by the two
strategies is different. We show that there exist at least two scheduling strategies
and a program/query pair such that these two strategies generate different execution
traces (see Lemma 3.1).

� THE INCOMPARABILITY THEOREM (Section 3): Given a program/query pairhP; qi
such thatS1 andS2 generate tracesT1 andT2 respectively, whereT1 6= T2, we
deriveP 0 fromP such that evaluation ofq in P 0 usingS2 takes longer time than the
corresponding evaluation usingS1 (see Theorem 3.2).

Specifically, suppose that the traces generated byS1 andS2 while evaluatingq in
P 0 areT 0

1 andT 0

2 respectively. By exploiting the properties of the abstract execution
model,P 0 is so constructed thatT 0

1 contains one additional call overT1, while T 0

2

has arbitrarily many additional calls overT2. By suitably adjusting the weight and
number of the additional calls, execution ofP 0 usingS2 can be made slower than the
corresponding execution usingS1. Using the same proof strategy we can establish
that the table space used is also larger.

Note that, by symmetry, we can derive another programP 00 such that evaluation
usingS1 is slower (and uses more table space) than evaluation usingS2. Since
there exist strategies with different traces (Lemma 3.1), this completes the proof for
nonexistence of optimal scheduling strategies.

� SCHEDULING STRATEGIES UNDER CALL ABSTRACTION (Section 4): We first
show that, under call abstraction, all scheduling strategies yield the same subgoal de-
pendency graph for any program/query pair (Lemma 4.2). We introduce the concept
of needed subsumptive consumption from incomplete tablesbased on the structure
of subgoal dependency graphs. We then definelazy scheduling strategies that per-
form only the needed consumption, thereby minimizing the number of subsumptive
consumers of incomplete tables.

Implications of the results of this paper are discussed in Section 5. A detailed illustra-
tion of the table access problem and the scheduling problem in a subsumption-based system
appears in the appendix.

2 Abstract Model of Tabled Resolution

We now describe an abstract model for tabled resolution of positive logic programs based
closely on SLG resolution [3].

Notational Conventions We assume familiarity with the standard logic programming
definitions of terms, formulas, predicates, clauses, Horn-clause logic programs, mgu, sub-
stitution, unification and subsumption [5]. We uset " t0 to say thatt and t0 unify. For
simplicity of exposition our technical development is based on definite Horn clause pro-
grams (i.e. no negative literals in clause bodies). We use the notationha1; a2; : : : ; ani to
denote the sequence of termsa1; a2; : : : ; an andA � B denotes the concatenation of two
sequencesA andB.

Following Prolog convention we use uppercase letters to begin variable names and
lowercase letters to begin names of constants. The symbol “” stands for an anonymous
variable.a:-a1; a2; : : : ; an stands for the sequence of clausesa :- a1. a :- a2. . . .a :- an.

Tabled Resolution: In tabled resolution, derivations are captured as a proofforest, with
each tree in the forest corresponding to an answer table. The search for answers within
each proof tree is controlled by the resolution strategy (e.g., left-to-right literal selection
order), whereas theinterleavingof the searches among individual trees is controlled by the
scheduling strategy. The model we present here abstracts away operational details that are
irrelevant to the results of this paper. A more fine-grained abstract operational model of
tabled resolution can be found in [9].

Tabled resolution associates auniqueanswer table with each tree in the proof forest.
Given a programP and a queryq, tabled resolution proceeds by building the proof for-
est using a sequence of the following fourtabling operations, starting with a PROGRAM

RESOLUTION operation forq.

PROGRAM RESOLUTION: A proof tree in the forest is extended by one step using OLD-
resolution [10].

NEW SUBGOAL: This operation is applicable whenever a tabled subgoalg is encountered
in the process of program clause resolution. Given a subgoalg, this operation creates
aconsumernode forg in the current proof tree, and if necessary, creates a new proof
tree for computing the answers forg using program clause resolution. In a variant-
based engine, a new proof tree is created forg whenever there is no proof tree for a
variant ofg at the time this operation is performed. In a subsumption-based engine,
a new proof tree is created forg only when there is no proof tree for anyg0 such that
g0 subsumesg, at the time this operation is done. The root of a newly created proof
tree is called theproducerof the tree (and the associated answer table).

NEW ANSWER: Applicable whenever a new answera has been computed for a tabled sub-
goalg (i.e., whenever a success leaf is derived in the proof tree forg), this operation
placesa in the answer table forg.

ANSWER RESOLUTION: This operation is parameterized by an answer tablet to consume
from, a subgoalg, and a set of answersA from t that have been previously used for

resolution ofg. The operation becomes applicable whenever there is some answera

in t that is not inA; thena is resolved againstg.

The construction of the proof forest terminates when none of the above operations can
be applied. The above description of tabled resolution follows the development of the op-
erational semantics of SLG resolution in [3, 2, 4]. Note that COMPLETION operation in
tabled resolution does not lead to a growth in the forest of proof trees and hence is treated
separately from the above four operations. COMPLETION can be considered simply as a
marking scheme implemented in the tabling engine by which all mutually dependent sub-
goals are marked as complete when none of them have pending PROGRAM RESOLUTION

or ANSWER RESOLUTION operations. The operation is formalized by first defining the
notion of a subgoal dependency graph.

Definition 2.1 (Subgoal Dependency Graph)The subgoal dependency graph for evalu-
ating all answers to a queryq over programP with a scheduling strategy isG(q; P; S) =

(V;E) such that:

(a) V is the set of all subgoalsg such that:

(i) a NEW SUBGOAL for g was applicable during resolution (g is aconsumer), or

(ii) a proof tree withg as the root is constructed in the forest (g is aproducer).

(b) E is the set of edges(g1; g2) satisfying one of the following conditions:

1. g1 is a producer subgoal andg2 is a consumer node ing1’s proof tree (i.e.,
NEW SUBGOAL operation forg2 became applicable when constructingg1’s
proof tree).

2. g1 is a consumer node in some proof tree,g2 subsumesg1 and answers tog1
are computed by performingANSWER RESOLUTION againstg2’s answer table
(due to subsumptive answer clause resolution).

3. g1 is a consumer node in some proof tree andg1 is a variant ofg2 such that
answers tog1 are computed by performingANSWER RESOLUTION against
g2’s answer table (due to variant answer clause resolution).

We denote the edges that satisfy conditions (1), (2) and (3) above as type-1, type-2
and type-3 edges respectively.

The subgoal dependency relationdependsis the path relation on the subgoal depen-
dency graph. We denote the set of all subgoals thatg depends on bydep(g). We use�(g)
to represent the set of all subgoalsg0 that are mutually dependent ong, i.e., �(g) = fg0 j
g0 2 dep(g) ^ g 2 dep(g0)g. Note that the set of mutually dependent subgoals form a
strongly connected component of the subgoal dependency graph.

A subgoalg is deemed complete if no more answers can be added to its answer table.
Formally,
Definition 2.2 (Complete) An answer table for a subgoalg is completeiff there are no
PROGRAM RESOLUTION or ANSWER RESOLUTION steps applicable for the proof tree of
g, and all answer tables to subgoals indep(g) are complete. A producer subgoal is said to
be complete if its associated answer table is complete.

In order for the rest of the system to know whether an answer table is complete (so
that future subgoals may use more efficientaccess algorithms to consume from complete
tables), tabling engines implement a completion detection procedure thatmarkstables as
complete. For efficiency, implementations of completion detection procedures perform the
marking as soon as possible. However, for the results presented in this paper, we require
that the completion detection procedure satisfies the following weaker property:

Proposition 2.1 Suppose there are no non-PROGRAM RESOLUTION steps applicable for
the proof tree of a tabled subgoalp, and suppose thatdep(p) = �. Then the answer table
for p will be markedas complete as soon as the lastPROGRAM RESOLUTION step applied
to the proof tree ofp fails.

It should be noted that it is straightforward to design completion detection algorithms that
satisfy the above requirement (see,e.g., [9]).

2.1 Scheduling of Tabling Operations

Note that, in the above model to construct proof forests for tabled resolution, more than
one resolution operation may be applicable at any step. In a sequential implementation
of tabled resolution, the order in which these operations are done needs to be determined.
Traditionally [11], a unique “active” tree is chosen, and is “grown” using PROGRAM RES-
OLUTION steps until no more such steps are applicable. Such a configuration is called a
decision pointof the proof forest construction procedure. At a decision point, another tree
is selected as active (possibly after performing a tabling operation—i.e., NEW SUBGOAL,
NEW ANSWER or ANSWER RESOLUTION), and grown; these steps are repeated until no
further operations are applicable.Scheduling strategiesselect the tabling operation to be
performed at each decision point, and determine the order in which trees of the proof forest
are grown, as described below.

Since we perform program clause resolution using OLD-resolution, there will be at
most one PROGRAM RESOLUTION operation applicable for a given proof tree at any step.
Moreover, the sequence of PROGRAM RESOLUTION steps either ends in a tabling opera-
tion or ends in failure (when there are no more PROGRAM RESOLUTION steps possible for
the subgoal). The tabling operations may lead to switching between proof trees (making
some other tree active). When a NEW SUBGOAL operation is selected, the next active tree
is determined uniquely by the operation itself. After applying NEW ANSWER, however, we
can choose to continue exploring the currently active tree (thereby attempting to generate
more answers), or apply an ANSWER RESOLUTION operation (to consume the newly gen-
erated answer). When an ANSWER RESOLUTION operation is applicable, we can either
perform the resolution or choose to generate more answers for some other subgoal (in an
attempt to consume from complete tables as far as possible). However, once we choose to
perform an ANSWER RESOLUTION operation, note that the active tree remains unchanged.

Scheduling strategies (deterministically) select the next tabling operation to perform,
based only on the set of tabled operations on incomplete tables applicable at the current
step, and the dependencies between these tables. We assume that complete tables can
be treated the same way as static code (as is done in the XSB system where complete
tables are “compiled” into WAM code). Hence scheduling strategies do not distinguish
between PROGRAM RESOLUTION operations and ANSWER RESOLUTION operations that
consume out of complete tables. Furthermore, scheduling strategies do not postpone a
NEW SUBGOAL operation. If the NEW SUBGOAL operation creates a new producer, note
that there is no informationbeforeapplying the operation about the producer itself, and
hence it is consistent with the view that the scheduling decisions be solely based on the
current state of the incomplete tables. We concretize the notion of scheduling strategies
below.

Definition 2.3 (Scheduling Strategies)A scheduling strategy is a deterministic algorithm
that selects both the tabling operation to be performed and the next active proof tree. The
selection is based only on the set of applicable tabling operations, the corresponding proof
trees and the dependencies between them. The selection algorithm is such that

1. ANEW SUBGOAL operation is performed whenever possible;

2. If anANSWER RESOLUTION operation is applicable for the currently active tree, it
is performed whenever the operation consumes out of a complete answer table and
rule (1) is not applicable;

3. If a NEW ANSWER operation is selected, then the operation is performed and either

(a) the current proof tree stays active, or

(b) a proof tree with an applicableANSWER RESOLUTION operation is made ac-
tive;

4. If an ANSWER RESOLUTION operation is selected, then the corresponding proof
tree is made active and the operation is performed.

2.2 Properties of the Abstract Model

The abstract model presented above captures certain essential properties of tabled resolu-
tion that are independent of the scheduling strategy used. We formally state these properties
as they will be used in our proofs.

First of all, from the definition of scheduling strategies, observe that there is no way to
postpone program clause resolution for producers.

Proposition 2.2 Program clause resolution for a producer is never postponed.

Secondly, recall that decisions in scheduling strategy are based solely on the state of
incomplete tables. Therefore, invoking a tabled subgoal that fails without performing any
other tabling operations does not affect any scheduling decisions in the future. Formally,

Lemma 2.3 Let r be a tabled predicate in a programP such thatr does not depend on
any tabled predicate (including itself) andr has no answers. Let� be the sequence of
SLG operations produced by a scheduling strategyS while resolving some queryq against
P such that� containsNEW SUBGOAL for r. LetP 0 be a program obtained fromP by
replacing every occurrence ofr in P by fail . Then the sequence of SLG operations
�0 scheduled byS while resolvingq againstP 0, is identical to the sequence obtained by
deleting the occurrence ofNEW SUBGOAL for r from�.

Proof (Sketch): The sequences� and�0 are clearly the same until the occurrence of NEW

SUBGOAL for r. LetA be the set of applicable operations when NEW SUBGOAL of r was
selected byS. Sincer derives no new answers, the set of applicable operations after the
failure of r is A� f NEW SUBGOAL for r g, which is identical to the set of applicable
operations had fail been called instead ofr. From Proposition 2.1,r will be marked as
complete upon failure. The rest of the proof follows from the fact that scheduling decisions
are based only on the state of incomplete tables.

3 Nonexistence of Optimal Scheduling Strategy

Using the properties of the abstract model developed in the previous section we now estab-
lish the main results of this paper. We first define the concepts used in the development of
our main result.

3.1 Trace Equivalence and Optimality

We use the sequence of program clause resolution steps resulting from the evaluation of
tabled predicates to distinguish between scheduling strategies.

Program P:
:- table p/2, q/1.
w(X) :- p(X,Y),q(a).
p(a,b).
p(a,c) :- q(b).
q(a).

trace1 = hp(X;Y); q(b); : : :i
trace2 = hp(X;Y); q(a); : : :i

Figure 1: Existence of strategies that are not trace equivalent.

Definition 3.1 (Trace) The trace generated by a scheduling strategyS while evaluating
query q using programP , denotedtracehS;P;qi, is an ordered sequence of producers
hp0; p1; : : : ; pni where the callpi is made beforepj for all i andj such thati < j.

Intuitively, the trace of a program evaluation consists of all and only those subgoal
invocations that are producers. We use traces to distinguish between scheduling strategies
as follows.

Definition 3.2 (Trace Equivalence)Let S andS0 be two scheduling strategies.S andS0

are trace equivalentiff for all programsP and for all queriesq, tracehS;P;qi = tracehS0;P;qi:

We denote trace equivalence by=trace, i.e.,S =trace S
0 means thatS andS0 are trace

equivalent.

Lemma 3.1 There exist at least two strategies that are not trace equivalent.

Proof: Consider the evaluation of the program in Figure 1 for the queryw(X) . A proof
tree forw(X) is initially constructed and, when doing PROGRAM RESOLUTION for w(X) ,
NEW SUBGOAL for p(X,Y) is performed, resulting in a new proof tree forp(X,Y) . Now,
when answerp(a,b) is generated by PROGRAM RESOLUTION of p(X,Y) , a NEW AN-
SWER operation becomes applicable. After placing the answer inp(X,Y) ’s table we can
choose to either (i) continue resolution ofp(X,Y) , or (ii) perform ANSWER RESOLUTION

in the proof tree forw(X) that has just become applicable. In case (i), the next NEW SUB-
GOAL operation will be forq(b) , while in case (ii) the next NEW SUBGOAL operation
will be for q(a) . The two scenarios yield two different traces (see Figure 1).

The significance of the above lemma is that we can prove results based on trace equiv-
alence without losing generality.

We shall compare two strategies based on the running time and the table-space used
for evaluating all answers to a query. We shall usetimehS;P;qi to denote the time taken by
strategyS for evaluating all answers to a queryq using programP .

Definition 3.3 (Uniformly Faster) We say thatS is uniformly faster thanS0 if and only if
for all programsP and queriesq, timehS;P;qi < timehS0 ;P;qi

3.2 Formal Presentation of the Proof

Our proof relies on the properties of a predicatef defined in Figure 2.g is a non-tabled
predicate whose rules are a database of facts. Letng denote the number ofg facts. LetP
be a tabled logic program that containsf andg.

:- table f/1.
f(X) :- g(Y),fail.
g(1). g(2). g(3). ...g(ng)

Figure 2: Program definingf andg

Note that every call tof(X) (X can be bound or free) has no answers. Hence, it
follows from Lemma 2.3 that a call tof(X) (X either bound or free) does not affect any of
the engine’s subsequent scheduling decisions. Secondly, the program clause resolution for
such a call completely backtracks throughg’s database of facts. Let� be the time taken to
backtrack through this entire database of facts.� is proportional tong . We can make� as
large as we want by suitably choosingng.

We are now ready to establish our main result. We show that if two strategies are not
trace equivalent then neither of them can be uniformly faster than the other.

Theorem 3.2 (Incomparability Theorem for Time) LetS1 andS2 be two scheduling strate-
gies such thatS1 6=trace S2. Then neitherS1 norS2 is uniformly faster than the other.

Proof: Without loss of generality we prove thatS2 is not uniformly faster thanS1 since
the other case is symmetric. SinceS1 6=trace S2 we can find a programP and queryq such
thattracehS1;P;qi 6= tracehS2;P;qi. EithertimehS1 ;P;qi < timehS2 ;P;qi or timehS1 ;P;qi �
timehS2 ;P;qi. In the former case we have nothing left to prove. Hence let us assume the
latter,i.e.,8P; q timehS1 ;P;qi � timehS2 ;P;qi and prove the above theorem by arriving at
a contradiction.

We proceed as follows: Let� and� be the calls wheretracehS1 ;P;qi andtracehS2;P;qi
first differ (� is in the trace generated byS1 and� is in the trace generated byS2). Let
A�h�i�B1 denotetracehS1;P;qi . Similarly let tracehS2;P;qi be denoted byA�h�i�B2.

We transformP toP 0 by adding the rules forf , the database of facts forg and two new
rulesR� (based on�) andR� (based on�) toP such thattracehS1;P 0;qi = A�h�,f() i�B1

andtracehS2;P 0;qi = A�h�;f(1), f(2), ...f(k-1)f() i�B2. Notice that the only
changes in the trace are the addition of the calls tof . Intuitively this means that the com-
putation not involvingf is left unchanged.

R� andR� are so designed that when� is called, eitherR� alone is triggered orR�

is triggered beforeR�; similarly when� is called,R� alone is triggered orR� is triggered
beforeR�.

Let �0 denote� in which all its variables are bound to new constants not inP (i.e.
a ground instance of�). Similarly let �0 denote a ground instance of� in which all its
variables have been bound to constants not inP or �0. Let R� be the clause�0 :- f()
andR� be the clause�0 :- f(1);f(2);...;f(k-1);f() .

Observe that if� subsumes� then�0 will not unify with �, but � unifies with�0.
Symmetrically, if� subsumes� then�0 will not unify with � but�0 will unify with �. We
addR�, R� and the clauses off andg defined as in Figure 2 (f andg are assumed to be
new symbols that do not occur inP) to the beginning of programP to getP 0.

To triggerR� andR� in the right order we placeR� beforeR� if � subsumes�, oth-
erwise we placeR� beforeR�. (Note that if� and� are incomparable under subsumption
then the order of insertion does not matter.)

We will prove that

(a) tracehS1;P 0;qi = A�h�;f() i�B1

(b) tracehS2;P;qi = A�h�;f(1), f(2), ...,f(k-1),f() i�B2.

(c) � (the time taken to computef()) can be made the dominating component intimehS1 ;P 0;qi

(d) k � � is the dominating component intimehS2 ;P 0;qi

� Proof of (a): InS1 the call� immediately triggersR�. This results in a producer
f() which is not postponed (by Proposition 2.2).

The callf() fails without computing any answers and returns. Thus the rest of the
proof for (a) follows directly from Lemma 2.3.

� Proof of (b): The details of this proof are similar to the proof of (a) and hence omitted.

� Proof of (c): We can chooseng, the number of facts in theg’s database, to make the
evaluation off() the dominant part intimehS1 ;P 0;qi.

� Proof of (d): Observe thatf(1), f(2), ...,f(k-1), f() are producers
in tracehS2;P 0;qi. Evaluation of eachf(i) takes time� and there arek such calls.
Hence,k � � is the dominating part oftimehS2 ;P 0;qi.

From (a), (b), (c) and (d) above, it follows thattimehS2 ;P 0;qi > timehS1 ;P 0;qi, resulting
in a contradiction.

We have shown that if two strategies are not trace equivalent then neither is better than
the other. Now we can use Lemma 3.1 to show the generality of this result, namely:

Theorem 3.3 (Nonexistence of Time-Optimal Scheduling Strategy)For evaluating def-
inite logic programs using subsumption-based tabling, there exists no scheduling strategy
S such that for all strategiesS0 , if S and S0 are different then evaluation underS is
uniformly faster than evaluation underS0.

Proof: By contradiction. Let us assume there exists a strategyS that is optimal. By
Lemma 3.1 we can findS2 that is not trace equivalent toS. If S is optimal thenS is
uniformly faster thanS2. However this contradicts Theorem 3.2.

We can immediately derive two results from the previous theorems. First of all, since
the class of positive programs is a subset of the class of normal logic programs, non-
existence of optimal strategies for positive programs clearly implies non-existence for the
larger class also. Hence,

Corollary 3.4 For evaluating normal logic programs using subsumption-based tabling,
there exists no scheduling strategyS such that for all strategiesS0 , if S andS0 are different
then evaluation underS is uniformly faster than evaluation underS0.

Secondly, from the proof of Theorem 3.2 it is straightforward to show a similar result
for table space. We denote the table space consumed by a strategyS for evaluating all
answers to a queryq using programP by spacehS;P;qi . Then:

Theorem 3.5 (Nonexistence of Space-Optimal Scheduling Strategy)For evaluating def-
inite logic programs using subsumption-based tabling, there is no scheduling strategyS

such that for all scheduling strategiesS0, if S andS0 are different then8P; q spacehS;P;qi <

spacehS0;P;qi.

Proof: We use the transformation in the proof of this theorem to obtainP 0 from P . Ob-
serve that the call table that results whenS2 evaluates queryq using programP 0 contains
f(1), f(2),..., f(k-1) . These calls are absent whenS1 is used for evaluation
instead.

4 Minimizing Incomplete Table Accesses under
Call Abstraction

Observe from the proof of Theorem 3.2 in Section 3 that incomparability of scheduling
strategies in subsumption-based engines stems from lack of control over the sets of trees
produced. Now suppose all scheduling strategies generate the same forest. Would it then be
possible to compare them with respect to specific cost measures? We explore this question
in this section. We show that under such conditions we can indeed devise a scheduling

strategy to minimize the number of calls that consume out of incomplete answer tables
produced by strictly more general calls.

The differences between the sets of proof trees constructed by different scheduling
strategies in subsumption-based tabled resolution arises from the differences in the order
in which specific and more general calls are made. To ensure that the same proof forest
is constructed irrespective of the scheduling strategy, we can modify the construction pro-
cess such that proof trees are built only for the most general calls. When the first NEW

SUBGOAL operation for subgoalg is encountered, instead of starting a new proof tree forg

and computing its answers by PROGRAM RESOLUTION, we build a proof tree forg0 such
thatg0 subsumesg and NEW SUBGOAL for g0 will be encountered subsequently; we then
compute answers forg by ANSWER RESOLUTION. The general subgoalg0 is called an
abstraction ofg and is represented byabs(g). We call this resolution strategy astabled
resolution under call abstraction. Note that in practice,abs(g) may not be computable and
can only be estimated, as discussed in Section 5.

Observe that the traces generated by scheduling strategies for any program/query pair
in variant-based tabled resolution are permutations of one another. Moreover, the sets of
calls in traces produced by any subsumption-based resolution are subsets of the set of calls
in traces produced by variant-based resolution. This enables us to defineabs(g) as:

Definition 4.1 (Call Abstraction) Let! be trace produced by a variant tabling engine for
a queryq and programP . LetC be the set of callsc0 such thatc0 subsumesc and there
is no other callc00 in ! that subsumesc0. The abstraction of the callc in !, denoted by
abs(c), is a callc0 in C chosena priori, independent of the scheduling strategy.

We distinguishbetween two kinds of consumers from an answer tablec depending upon
the type of edge connecting the producer and consumer in the subgoal dependency graph.
Whenever(c0; c) is a type-2 edge, thenc0 is asubsumptive consumerof c; when(c00; c) is
a type-3 edge,c00 is a variant consumerof c. Recall that our original motivation was to
minimize the use of incomplete tables by subsumptive consumers, and hence we choose
the set of subsumptive consumers to incomplete tables as our cost measure:

Definition 4.2 The set of subsumptive consumers of incomplete tables is the set of callsc

in a subgoal dependency graphG that consume answers out of incomplete tablesc0 such
that(c; c0) is a type-2 edge inG.

Note that in any subgoal dependency graph, for any nodec, either there is a single
outgoing edge(c; c0) of type-2 or type-3, or one or more outgoing edges of type-1. Fur-
thermore, under call abstraction, program clause resolution is done only for the abstracted
calls. Therefore,

Proposition 4.1 Under call abstraction, the subgoal dependency graph for any given pro-
gramP , queryq and scheduling strategyS has the following property: Ifabs(c) strictly
subsumesc then there is a type-2 edge fromc to abs(c).

From the above property, we can show that for any given program/query pair, all
scheduling strategies under call abstraction yield the same subgoal dependency graph.

Lemma 4.2 For any programP the subgoal dependency graph constructed while evalu-
ating all answers to a queryq using subsumption-based tabled resolution under call ab-
straction is independent of the scheduling strategy.

Proof (Sketch): LetG1 andG2 be the subgoal dependency graphs produced by scheduling
strategiesS1 andS2 respectively. Since the subgoal dependency graphs are such that every
node is reachable from initial queryq, G1 andG2 are identical if for each path of lengthn
from q in G1, there is an identical path inG2. We show this by induction on path length as
follows.

The base case (for 0-length paths fromq) trivially holds since bothG1 andG2 contain
q.

Assume, as induction hypothesis, that for every path of lengthn from q in G1, there is
an identical path inG2.

Now letq; p2; : : : ; pn; pn+1 be a path of lengthn+1 starting atq inG1. From induction
hypothesis, there exists a pathq; p2; : : : ; pn in G2. We now have three cases, based on the
relationship betweenpn andpn+1.

Case 1: (pn; pn+1) is a type-1 edge inG1. Since type-1 edges correspond to dependencies
due to PROGRAM RESOLUTION operations which are independent of scheduling
strategies, there is a type-1 edge(pn; pn+1) in G2 also.

Case 2: (pn; pn+1) is a type-2 edge inG1. Due to call abstraction,pn+1 = abs(pn), and
sincepn is in G2, so isabs(pn). Hence, by proposition 4.1, there must be a type-2
edge frompn andabs(pn) in G2.

Case 3: (pn; pn+1) is a type-3 edge inG1. Again, due to call abstraction,pn = abs(pn),
otherwise the edge will not be a type-3 edge. Moreover,pn is a consumer node in
G1. Since there is a unique producer node foreach proof tree,pn+1 is uniquely
determined givenpn. Sincepn = abs(pn), there will be a producer corresponding
to abs(pn) in G2 also. Hence(pn; pn+1) is a type-3 edge inG2.

Henceq; p2; : : : ; pn; pn+1 is a path inG2.
We can now characterize subsumptive consumers that always consume from incomplete

tables, irrespective of the scheduling strategy. Observe, from Definition 2.2 that ifc1 and
c2 belong to the same SCC in the subgoal dependency graph,c2 cannot complete unlessc1
has consumed all its answers. Formally,

Proposition 4.3 (Needed Consumption from Incomplete Tables)For every type-2 edge
(c1; c2) in the subgoal dependency graph such thatc1 2 �(c2), c1 consumes out ofc2’s
incomplete table under any scheduling strategy.

The above property leads to the definition of scheduling strategies that schedule only
theneededsubsumptive consumers to perform answer clause resolution against incomplete
tables.

Definition 4.3 (Lazy Scheduling Strategies)A scheduling strategy islazy iff for every
type-2 edge(c1; c2) in the subgoal dependency graph,c1 consumes out ofc2’s incomplete
table only whenc1 2 �(c2).

An immediate consequence of Proposition 4.3 and Definition 4.3 is:

Theorem 4.4 (Optimality of Lazy Scheduling Strategies)Lazy scheduling strategies min-
imize the set of subsumptive consumers from incomplete tables.

5 Discussion

Subsumption based evaluation of tabled logic programs has the potential to yield superior
performance over variant engines since they reuse answers computed for more general
calls instead of recomputing them for each specific call. To realize this potential, however,
one must reduce the overheads associated with accessing answer tables, especially from
incomplete tables. Hence scheduling strategies are devised to improve performance by
controlling access to incomplete tables. We showed that for subsumption-based tabled
resolution there is no scheduling strategy that is uniformly better than any other.

Our proof of non-existence of optimal scheduling strategies also applies to tabled res-
olution with backward subsumption. When resolving with backward subsumption, PRO-
GRAM RESOLUTION of subgoalg is terminated when a more general subgoalg0 is encoun-
tered; the remaining answers tog are then computed by ANSWER RESOLUTION, consum-
ing out of the answer table ofg0. Note that, the gadgetf/1 used in our proof is such that
the particular calls are completed before the general call is made, and hence the proof is
not affected by backward subsumption.

The incomparability of scheduling strategies in subsumption based engines arises due
to lack of control over the sets of proof trees produced. By ensuring that all scheduling
strategies produce the same forest via tabled resolution under call abstraction, we showed
that lazy strategies can in fact minimize the set of subsumptive consumers of incomplete
tables. Observe that our optimality result above is predicated on call abstraction, which is
not computable in general. One can only hope to implement approximations of tabled res-
olution under call abstraction by using estimates ofabs(g) computed via program analysis.
Subsumption-based tabled resolution under call abstraction has other significant applica-
tions. For instance, in a deductive database environment, due to the disk accesses involved,
making a few calls that return a large number of answers is clearly more efficient than
making a large number of more specific calls. Call abstraction can identify the set of most
general calls. Hence, from the viewpoint of optimizing subsumption-based tabling engines,
development of program analysis techniques for call abstraction is an important and worth-
while research endeavor.

Although scheduling strategies are in general incomparable, our optimality result for
lazy strategies seems to indicate that by using tabled resolution under call abstraction
scheduling strategies can be compared with respect to other cost measures also. Identi-
fying such measures is an interesting avenue of research.

Finally some remarks are due about scheduling strategies for a variant tabling engine.
Since the difference in cost between accessing complete and incomplete tables is insignifi-
cant in a variant engine (see [7] for details), minimizing incomplete table accesses does not
appear to be a meaningful cost measure. Observe that, in variant-based tabled resolution,
the traces generated by different strategies are permutations of one another. So scheduling
strategies only control the order in which the search forest is explored. The operations un-
derlying such a control do not lead to arbitrary slowdowns. Hence we strongly conjecture
that scheduling strategies for variant-based tabled resolution differ in performance by at
most a constant factor.

References
[1] R. Bol and L. Degerstadt. Tabulated resolution for well-founded semantics. InProc. of the

Symp. on Logic Programming, 1993.

[2] W. Chen, T. Swift, and D.S. Warren. Efficient implementation of general logical queries.J.
Logic Programming, September 1995.

[3] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.JACM,
43(1), 1996.

[4] J. Freire, T. Swift, and D.S. Warren. Taking I/O seriously: Resolution reconsidered for disk. In
Proc of Intl. Conf. on Logic Programming, 1997.

[5] J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.

[6] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. W. Swift, and
D. S. Warren. Efficient model checking using tabled resolution. InProc. of the 9th Intl. Conf.
on Computer-Aided Verification, 1997.

[7] I.V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D.S. Warren. Efficient table access mech-
anisms for logic programs. InInternational Conference on Logic Programming, 1995.

:- table a/2, h/2.
a(X,Y) :- p(X,Y).

h(X,Y) :- a(A,X),a(A,Y), X 6= Y.
p(1,2). p(2,3). p(1,4).

Figure 3: A Tabled Program

[8] P. Rao, C. R. Ramakrishnan, and I. V. Ramakrishnan. A thread in time saves tabling time. In
Proc. of the Joint Int’l Conf. and Symp. on Logic Programming, 1996.

[9] Prasad Rao.Efficient Datastructures for Tabled Resolution. PhD thesis, SUNY at Stony Brook,
1997.

[10] H. Tamaki and T. Sato. OLDT resolution with tabulation. InThird Int’l Conf. on Logic Pro-
gramming, pages 84–98, 1986.

[11] The XSB Group. The XSB tabled logic system v1.7.2, 1997. Dept. of
Computer Science, SUNY at Stony Brook. Available by anonymous ftp from
http://www.cs.sunysb.edu/ �sbprolog .

Appendix

Problem Illustration

Consider evaluation of the callh(X,Y) made to the tabled predicate shown in Figure 3.
Figures 4(a) and 4(b) show the sequence of calls made (a()’s and p()’s) and answers com-
puted (the integers appearing singly or in pairs) by a tabling system for that call.

Note that each column represents a specific call made at a particular time followed by
the sequence of answers computed for that call. For instance, in Figure 4(a) the second
column represents the calla(A,X) (made at timet2) and its answers(1,2), (2,3),
(1,4) that were computed and recorded in the table at timest3; t6 and t9 respectively.
Observe that when the calla(1,Y) is made at timet4, it is subsumed by the calla(A,X)
made earlier. Rather than recomputing the answers fora(1,Y) through program clause
resolution we now resolve it against the answers computed for the calla(A,X) (the second
column). The only answer computed so far fora(A,X) is (1,2) and so we record the first
answerY=2 for a(1,Y) in its answer table (third column) at timet5. The rest of the
entries in Figure 4(a) are computed similarly.

Observe that the set of answers to a subsumed call is a subsequence of the answers
computed for the more general subsuming call. For instance, the answer (Y=4) to the call
a(1,Y) is a subsequence of answers ((1,2),(1,4)) for the calla(A,X) . Secondly,
note that on invoking a subsumed call one can either resolve it immediately against the
answers computed for the more general call (i.e. the answer tables areeagerlyconsumed)
or we can choose to suspend it (resulting indelayed consumption). Figures 4(a) and
4(b) illustrate the sequence of calls and answers generated by the former and latter choices
respectively.

A consequence of eager consumption is that incomplete answer tables may need to be
accessed for performing answer resolution. For example, in Figure 4(a), at timet3 only the
first answer to the calla(A,X) has been computed. At timet4 the calla(1,Y) has to
access this incomplete table. Accessing incomplete tables is expensive since answers to a
subsumed call are to be retrieved from a dynamically growing answer table associated with
the general call. On the other hand if we postpone doing answer resolution of a subsumed
call until the answer table for the general call is complete then we only need to retrieve

tim
e

t1 h(X,Y)
t2 a(A,X)
t3 1, 2
t4 a(1,Y)
t5 2
t6 2, 3
t7 a(2,Y)
t8 3
t9 1, 4
t10 a(1,Y)
t11 2
t12 4, 2
t13 4
t14 2, 4
t15 4

h(X,Y)
a(A,X)

1, 2
a(1,Y)

2, 3
a(2,Y)

1, 4
a(1,Y)

2
4

2,4
3

2
4,2

4
(a) (b)

Figure 4: (a)Eager Consumption and (b) Delayed Consumption

:- table p/3.
p(A,B,C) :- body of p/3.
q(X,Y) :- p(1,X,Y),

p(1,X,B),
p(A1,A2,A3).

q(X,Y) :- p(2,X,Y).
.
.
q(X,Y) :- p(n,X,Y).

Figure 5: Illustrative Example

the answers from a static set.(In Figure 4(b) all the calls subsumed bya(A,X) consume
answers from its answer table only after it is complete.) Hence delayed consumption can
result in consuming answers from completed tables and thereby improve efficiency of table
access.

Delayed consumption however can introduce new program resolution steps and easily
offset these gains. For example, consider the calls resulting from the queryq(X,W),fail
made to the program in Figure 5. Assume thatp(1,X,Y) succeeds withX bound to some
constant�. Suppose we defer the consumption of answers until completion ofp(1,X,Y) .
Observe that we will end up exploring alternative paths of computation which will result
in calls top(2,X,Y) , p(3,X,Y) , . . . , p(n,X,Y) . All of these calls are solved using
program clause resolution. On the other hand by lettingp(1, �,B) eagerly consume
answers,p(A1,A2,A3) will be called next. All of the callsp(2,X,Y) , p(3,X,Y) ,
. . . , p(n,X,Y) will be made later and will be solved by resolving against answers in
the answer table ofp(A1,A2,A3) . Thus by deferring consumption of answers until
completion of the answer table, we have increased the number of program clause resolution
steps which could have been avoided by eager consumption. In addition, we also created
answer tables forp(2,X,Y) , p(3,X,Y) , . . . , p(n,X,Y) and thus increased thetable
space for computing the queryq(X,W) .

