On the Optimality of Scheduling Strategies in
Subsumption based Tabled Resolution

Prasad Rao
C.R. Ramakrishnan
[.V. Ramakrishnan

Department of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794-4400
email: prasadr@bellcore.cofgram, ram@cs.sunysb.edu

Abstract

Subsumption-based tabled logic programming promotes more aggressive reuse of
answer tables over variant-based tabling. However resolving subgoals against answers
in tabled logic programming may require accessing incomplete answer tables (
more answers remain to be added). In subsumption-basedtabling it is far more efficient
to retrieve from completed tables. Scheduling strategies promote more frequent usage
of such tables by exercising control over access to incomplete tables. Different choices
in the control can lead to different sets of proof trees in the search forest produced by
tabled resolution. The net effect is that depending on the scheduling strategy used,
tabled logic programs under subsumption can exhibit substantial variations in perfor-
mance. In this paper we establish that for subsumption-basedtabled logic programming
an optimal scheduling strateglpes not exist-i.e,, they are all incomparable in terms
of time and space performance.

Subsumption-based tabled resolution uncdt abstractionminimizes the set of
proof trees constructed. In the presence of call abstraction, we show that there exists
a family of scheduling strategies that minimize the number of calls that consume from
incomplete answer tables produced by strictly more general calls.

1 Introduction

Tabled resolution for general logic programs [1, 10, 3] as embodied in the XSB system,
introduces a new level of declarativeness over traditional (Prolog-like) logic programming
systems. Availability of tabled logic programming systems makes it feasible to develop a
larger class of efficient declarative solutions to complex applications than heretofore possi-
ble using traditional Prolog-based systems. (See [6] for example.)

At a high level, top-down tabling systems evaluate programs by recording subgoals
(referred to agalls) and their provable instances (referred taaswer$ in a table. Pred-
icates are marked priori as eithettabledor nontabled Clause resolution, which is the
basic mechanism for program evaluation of a subgoatgeds as follows. Farontabled
predicates the subgoal is resolved against program clauses. For tabled predicates, if the

*Research partially supported by NSF gra@BR-9404921,9510072,9705998 & 9711386, CDA-9303181
and INT-9314412 & 9600598.
tCurrent Address: Bellcore, 445 South Street, Morristown, NJ 07960.



subgoal is “already present” in the table, then it is resolved against the answers recorded
in the table; otherwise the subgoal is entered in the table, and its answers, computed by
resolving the subgoal against program clauses, are entered in the table. For both tabled
and nontabled predicates, program clause resolution is carried out using SLD. While SLD
derivations can be captured as a prtref derivations using a tabled resolution strategy

can be viewed as forestof proof trees, with each proof tree compesding to an answer

table.

Following the original formulation of tabled resolution in [10], we say that a subigoal
is present in the table if there already exists another suligaalthe table thasubsumes
t1, i.e, t; is an instance of,. On the other hand one can also say, as is done in the XSB
system, that a subgo#l is present in the table only if the table containgagiantof ¢, i.e.
ty isidentical tat; up to renaming of their variables. Since in a subsumption-based system a
new calle is resolved using the answers of an earlier 8al/en whew is a proper instance
of 8, subsumption-based tabling promotes more aggressive reuse of computations than
variant-based tabling. Note that, in subsumption-based tabling, when @ isatesolved
against the answers of a more general gathade earlier, only a subset of the answers in
the answer table g8 are relevant forx. Hence, we need mechanisms to quickly index
into the answers gf that are relevant fosz. We showed, via an implementation [8] that,
with judicious choice of data structures for representing tables in a subsumption-based
system, the aggressive reuse can result in considerable improvement in performance over
any tabling system based solely on variant checks.

From a computational viewpoint, resolving subgoals against answers in tabled logic
programming systems may require accessimgpmpleteanswer tables, e, tables where
more answers remain to be added. In a subsumption-based system, when answer clause res-
olutionis performed against incomplete tables, we need to retrisibsedf answers from
a dynamically growing set. However, answer clause resolution againgtletetables—
tables with no more answers to be added— selects a subset of a static set. The problem of
indexing (selecting a subset of answers from) a dynamic set is inherently more expensive
than indexing a static set, making incomplete table accesses considerably more expensive
than complete table accesses (sometimes by a few orders of magnitude). Therefore, tech-
niques that promote consumption from complete tables over consumption from incomplete
tables are central to efficient implementation of subsumptive tabling.

In a tabling systenscheduling strategiedetermine the order in which proof trees of a
forest are selected to be explored. (The search within a proof tree itself is determined by
the resolution strategy.) Note that, while exploring a proof tree the corresponding answer
table is incomplete. Hence we can use scheduling strategies to control access to incom-
plete tables, and consequently, promote use of complete tables over incomplete tables. In
subsumption-based systems, different scheduling strategies can lead to construction of dif-
ferent sets of trees in the proof forésThe net effect is that depending on the scheduling
strategy used, tabled logic programs can exhibit substantial variations in performance. The
interesting question is whether there exists a scheduling strategy that constructs the mini-
mum number of proof trees for computing aliswers to a query, while at the same time,
promoting access to complete tables.

In this paper we first establish that for subsumption-based tabled logic programming an
optimal scheduling strategloes not exist-i.e., scheduling strategies are all incomparable
in terms of time and space performance. In general, incomparability is primarily caused
by lack of control over the number of trees that can be generated by a scheduling strategy.

lWe say that; strictly subsumes; (¢ is strictly more general thahy ) iff ¢, subsumes, but is not its
variant.

2Note that the forest generated by any scheduling strateginiaysa subset of the forest generated by a
variant engine.



An intriguing question then is: if all scheduling strategies produce the same forest, then
are there nontrivial cost measures under which scheduling strategies can be compared.
We show that this is indeed possible for tabling engines augmentectalltabstraction

In tabled resolution under call abstraction, whenever accalencountered, we make a
most general ca’ such that’ will be eventually made, and letconsume from the the
answer table o€’. Subsumption-based tabled resolution with call abstraction constructs
the minimum set of proof trees, independent of scheduling strategies. For resolution under
call abstraction, we describe a family of scheduling strategiesiiramizethe number of

calls that consume from incomplete answer tables produced by strictly more general calls.

1.1 Overview of Proofs

We show that, given any two different scheduling strate§ieand.S., neither is uniformly
better (in terms of running time and table space used) than the other over all programs (see
Definition 3.3). The above result is established as follows:

e ABSTRACT EXECUTION MODEL (Section 2): We first present a formal definition
of a scheduling strategy, based on the development of an abstract execution model
for subsumption-based tabling engines.

e EXECUTION TRACE (Section 3): In order to quantify the effect of a scheduling
strategy, we develop the notion of amecution trace The trace generated by a
scheduling strategy while evaluating a query is simply the sequence of calls made to
tabled predicates (see Definition 3.1). Two stratedieandS; are deemed different
if there is a program/query pair such that the execution trace generated by the two
strategies is different. We show that there exist at least two scheduling strategies
and a program/query pair such that these two strategies generate different execution
traces (see Lemma 3.1).

e THE INCOMPARABILITY THEOREM (Section 3): Given a program/query péR, ¢}
such thatS; and S, generate trace®; and T, respectively, wherd; # T3, we
derive P’ from P such that evaluation @fin P’ usingS, takes longer time than the
corresponding evaluation usiy (see Theorem 3.2).

Specifically, suppose that theatres generated by, and S, while evaluatingg in

P’ areT, andTj respectively. By exploiting the properties of the abstract execution
model, P’ is so constructed th&, contains one additional call ov&t, while T}

has arbitrarily many additional calls ov&. By suitably adjusting the weight and
number of the additional calls, execution®fusingS; can be made slower than the
corresponding execution usitfj. Using the same proof strategy we can establish
that the table space used is also larger.

Note that, by symmetry, we can derive another prog®isuch that evaluation
using Sy is slower (and uses more table space) than evaluation WingSince
there exist strategies with different traces (Lemma 3.1), this completes the proof for
nonexistence of optimal scheduling strategies.

e SCHEDULING STRATEGIES UNDER CALL ABSTRACTION (Section 4): We first
show that, under call abstraction, all scheduling strategies yield the same subgoal de-
pendency graph for any program/query pair (Lemma 4.2). We introduce the concept
of needed subsumptive consumption from incomplete tallesd on the structure
of subgoal dependency graphs. We then ddéag scheduling strategies that per-
form only the needed consumption, thereby minimizing the number of subsumptive
consumers of incomplete tables.



Implications of the results of this paper are discussed in Section 5. A detailed illustra-
tion of the table access problem and the scheduling problem in a subsumption-based system
appears in the appendix.

2 Abstract Model of Tabled Resolution

We now describe an abstract model for tabled resolution of positive logic programs based
closely on SLG resolution [3].

Notational Conventions We assume familiarity with the standard logic programming
definitions of terms, formulas, predicates, clauses, Horn-clause logic programs, mgu, sub-
stitution, unification and subsumption [5]. We usé ¢’ to say thatt and¢’ unify. For
simplicity of exposition our technical development is based on definite Horn clause pro-
grams {.e. no negative literals in clause bodies). We use the notgtigrus, ..., a,) to
denote the sequence of terms a2, . .., a, and A - B denotes the concatenation of two
sequenced andB.

Following Prolog convention we use uppercase letters to begin variable names and
lowercase letters to begin names of constants. The symbsetdnds for an anonymous
variable.a:-a1; as; . . . ; a,, Stands for the sequence of clausesa;. a :- az. ...a - a,.

Tabled Resolution: In tabled resolution, derivations are captured as a piarest with

each tree in the forest corpgnding to an answer table. The search for answers within
each proof tree is controlled by the resolution strategyy,(left-to-right literal selection

order), whereas thiaterleavingof the searches among individual trees is controlled by the
scheduling strategy. The model we present here abstracts away operational details that are
irrelevant to the results of this paper. A more fine-grained abstract operational model of
tabled resolution can be found in [9].

Tabled resolution associatesiniqueanswer table with each tree in the proof forest.
Given a programP and a query, tabled resolution proceeds by building the proof for-
est using a sequence of the following fdabling operationsstarting with a ROGRAM
RESOLUTION operation forg.

PROGRAM RESOLUTION: A proof tree in the forest is extended by one step using OLD-
resolution [10].

NEW SUBGOAL: This operation is applicable whenever a tabled subgigkncountered
in the process of program clause resolution. Given a sulggdlails operation creates
aconsumenode forg in the current proof tree, and if necessary, creates a new proof
tree for computing the answers fgiusing program clause resolution. In a variant-
based engine, a new proof tree is createdyfahenever there is no proof tree for a
variant ofg at the time this operation is performed. In a subsumption-based engine,
a new proof tree is created fgronly when there is no proof tree for agysuch that
g’ subsumeg, at the time this operation is done. The root of a newly created proof
tree is called th@roducerof the tree (and the associated answer table).

NEw ANSWER Applicable whenever a new answehas been computed for a tabled sub-
goalg (i.e, whenever a success leaf is derived in the proof treg)fathis operation
placesa in the answer table fay.

ANSWERRESOLUTION: This operation is parameterized by an answer taldeconsume
from, a subgoad, and a set of answers from ¢ that have been previously used for



resolution ofg. The operation becomes applicable whenever there is some amswer
in ¢ thatis not in4; thena is resolved against.

The construction of the proof forest terminates when none of the above operations can
be applied. The above description of tabled resolution follows the development of the op-
erational semantics of SLG resolution in [3, 2, 4]. Note thaMPLETION operation in
tabled resolution does not lead to a growth in the forest of proof trees and hence is treated
separately from the above four operationsOMPLETION can be considered simply as a
marking scheme implemented in the tabling engine by which all mutually dependent sub-
goals are marked as complete when none of them have pendingfAM RESOLUTION
or ANSWER RESOLUTION operations. The operation is formalized by first defining the
notion of a subgoal dependency graph.

Definition 2.1 (Subgoal Dependency Graph)The subgoal dependency graph for evalu-
ating all answers to a query over programP with a scheduling strategy 6(q, P, S) =
(V, E) such that:

(a) V is the set of all subgoalgsuch that:

(i) a NEw SuBGOAL for g was applicable during resolutiory (s aconsumey, or
(i) a proof tree withg as the root is constructed in the foregti§ a producey.

(b) E is the set of edggg1, g2) satisfying one of the following conditions:

1. g1 is a producer subgoal ang is a consumer node ig;’s proof tree {.e,
NEW SUBGOAL operation forg, became applicable when constructiggs
proof tree).

2. g1 is a consumer node in some proof trge,subsumeg; and answers t@;
are computed by performingNSWER RESOLUTION againstgs's answer table
(due to subsumptive answer clause resolution).

3. g1 is a consumer node in some proof tree gnds a variant ofg; such that
answers tog; are computed by performingNSWER RESOLUTION against
g2's answer table (due to variant answer clause resolution).

We denote the edges that satisfy conditions (1), (2) and (3) above as type-1, type-2
and type-3 edges respectively.

The subgoal dependency relatidapendss the path relation on the subgoal depen-
dency graph. We denote the set of all subgoalsgtagpends on byep(g). We useu(g)
to represent the set of all subgoalghat are mutually dependent gni.e, u(g) = {g’ |
g € dep(g) AN g € dep(g')}. Note that the set of mutually dependent subgoals form a
strongly connected component of the subgoal dependency graph.

A subgoalg is deemed complete if no more answers can be added to its answer table.
Formally,

Definition 2.2 (Complete) An answer table for a subgoglis completeiff there are no
PROGRAM RESOLUTION or ANSWER RESOLUTION steps applicable for the proof tree of
g, and all answer tables to subgoalsdap(g) are complete. A producer subgoal is said to
be complete if its associated answer table is complete.

In order for the rest of the system to know whether an answer table is complete (so
that future subgoals may use more efficiantess algorithms to consume from complete
tables), tabling engines implement a completion detection procedurmthikstables as
complete. For efficiency, implementations of completion detection procedures perform the
marking as soon as possible. However, for the results presented in this paper, we require
that the completion detection procedure satisfies the following weaker property:



Proposition 2.1 Suppose there are no NnAPROGRAM RESOLUTION steps applicable for
the proof tree of a tabled subgop| and suppose thaiep(p) = ¢. Then the answer table
for p will be markedas complete as soon as the IBR®OGRAM RESOLUTION step applied
to the proof tree op fails.

It should be noted that it is straightforward to design completion detection algorithms that
satisfy the above requirement (seqy, [9]).

2.1 Scheduling of Tabling Operations

Note that, in the above model to construct proof forests for tabled resolution, more than
one resolution operation may be applicable at any step. In a sequential implementation
of tabled resolution, the order in which these operations are done needs to be determined.
Traditionally [11], a unique “active” tree is chosen, and is “grown” usimRpBRAM RES-
OLUTION steps until no more such steps are applicable. Such a configuration is called a
decision poinbf the proof forest construction procedure. At a decision point, another tree
is selected as active (possibly after performing a tabling operatiog,-NEW SUBGOAL,

NEwW ANSWER or ANSWER RESOLUTION), and grown; these steps are repeated until no
further operations are applicabl8cheduling strategieselect the tabling operation to be
performed at each decision point, and determine the order in which trees of the proof forest
are grown, as described below.

Since we perform program clause resolution using OLD-resolution, there will be at
most one ROGRAM RESOLUTION operation applicable for a given proof tree at any step.
Moreover, the sequence o0RBGRAM RESOLUTION steps either ends in a tabling opera-
tion or ends in failure (when there are no mord®&RAM RESOLUTION steps possible for
the subgoal). The tabling operations may lead to switching between proof trees (making
some other tree active). When &W SUBGOAL operation is selected, the next active tree
is determined uniquely by the operation itself. After applyirgNANSWER, however, we
can choose to continue exploring the currently active tree (thereby attempting to generate
more answers), or apply anNSWER RESOLUTION operation (to consume the newly gen-
erated answer). When anN&WER RESOLUTION operation is applicable, we can either
perform the resolution or choose to generate more answers for some other subgoal (in an
attempt to consume from complete tables as far as possible). However, once we choose to
perform an A'SWER RESOLUTION operation, note that the active tree remains unchanged.

Scheduling strategies (deterministically) select the next tabling operation to perform,
based only on the set of tabled operations on incomplete tables applicable at the current
step, and the dependencies between these tables. We assume that complete tables can
be treated the same way as static code (as is done in the XSB system where complete
tables are “compiled” into WAM code). Hence scheduling strategies do not distinguish
between ROGRAM RESOLUTION operations and ASWER RESOLUTION operations that
consume out of complete tables. Furthermore, scheduling strategies do not postpone a
NEW SUBGOAL operation. If the Mw SUBGOAL operation creates a new producer, note
that there is no informatiobeforeapplying the operation about the producer itself, and
hence it is consistent with the view that the scheduling decisions be solely based on the
current state of the incomplete tables. We concretize the notion of scheduling strategies
below.

Definition 2.3 (Scheduling Strategies)A scheduling strategy is a deterministic algorithm
that selects both the tabling operation to be performed and the next active proof tree. The
selection is based only on the set of applicable tabling operations, the corresponding proof
trees and the dependencies between them. The selection algorithm is such that

1. ANEW SUBGOAL operation is performed whenever possible;



2. Ifan ANSWER RESOLUTION operation is applicable for the currently active tree, it
is performed whenever the operation consumes out of a complete answer table and
rule (1) is not applicable;

3. IfaNEw ANSWERoOperation is selected, then the operation is performed and either

(a) the current proof tree stays active, or

(b) a proof tree with an applicablANSWER RESOLUTION operation is made ac-
tive;

4. If an ANSWER RESOLUTION operation is selected, then the corresponding proof
tree is made active and the operation is performed.

2.2 Properties of the Abstract Model

The abstract model presented above captures certain essential properties of tabled resolu-
tion that are independent of the scheduling strategy used. We formally state these properties
as they will be used in our proofs.

First of all, from the definition of scheduling strategies, observe that there is no way to
postpone program clause resolution for producers.

Proposition 2.2 Program clause resolution for a producer is never postponed.

Secondly, ecall that decisions in scheduling strategy are based solely on the state of
incomplete tables. Therefore, invoking a tabled subgoal that fails without performing any
other tabling operations does not affect any scheduling decisions in the future. Formally,

Lemma 2.3 Let r be a tabled predicate in a prograi® such thatr does not depend on
any tabled predicate (including itself) andhas no answers. Lét be the sequence of
SLG operations produced by a scheduling strat&gyhile resolving some quegyagainst

P such that9 containsNEw SUBGOAL for . Let P’ be a program obtained fror® by
replacing every occurrence ofin P by fail . Then the sequence of SLG operations
6" scheduled bys while resolvingg againstP’, is identical to the sequence obtained by
deleting the occurrence &fEw SUBGOAL for » fromé.

Proof (Sketch): The sequencesandd’ are clearly the same until the occurrence @viN
SuBGOAL for r. Let A be the set of applicable operations wheBMNSUBGOAL of r was
selected bys. Sincer derives no new answers, the set of applicable operations after the
failure of r is A— { NEw SuBGOAL for r }, which is identical to the set of applicable
operations had fail been called insteadrofFrom Proposition 2.1x will be marked as
complete upon failure. The rest of the proof follows from the fact that scheduling decisions
are based only on the state of incomplete tables. |

3 Nonexistence of Optimal Scheduling Strategy

Using the properties of the abstract model developed in the previous section we now estab-
lish the main results of this paper. We first define the concepts used in the development of
our main result.

3.1 Trace Equivalence and Optimality

We use the sequence of program clause resolution steps resulting from the evaluation of
tabled predicates to distinguish between scheduling strategies.



Program P:
.- table p/2, g/1.

w(X) - p(X,)Y),q(a). trace; = (p(X,Y),q(b),...)
p(a,b). tracez = (p(X,Y ), q(a),...)
p(ac) :- q(b).

q(a).

Figure 1: Existence of strategies that are not trace equivalent.

Definition 3.1 (Trace) The trace generated by a scheduling straté&gwhile evaluating
query g using programP, denotedirace(s pq), is an ordered sequence of producers
{po,p1, ..., Pn)y Where the calp; is made beforg; for all ¢ andj such that < j.

Intuitively, the trace of a program evaluation consists of all and only those subgoal
invocations that are producers. We use traces togjsish between scheduling strategies
as follows.

Definition 3.2 (Trace Equivalence)Let.S and.S’ be two scheduling strategieS. and S’
aretrace equivaleriff for all programsP and for all queriesy, trace(s, p ) = trace(s: pq)-

We denote trace equivalence By, 4ce, i.€.,.5 =¢race S’ means thab andS’ are trace
equivalent.

Lemma 3.1 There exist at least two strategies that are not trace equivalent.

Proof: Consider the evaluation of the program in Figure 1 for the qu&i¥) . A proof
tree forw(X) is initially constructed and, when doinRBGRAM REsoOLUTION for w(X) ,
NEw SuBGOAL for p(X,Y) is performed, resultingin a new prooftree fifiX,Y) . Now,
when answep(a,b) is generated by ROGRAM RESOLUTION of p(X,Y) , a NEw AN-
SWER operation becomes applicable. After placing the answe(XyY) 's table we can
choose to either (i) continue resolutionX,Y) , or (ii) perform ANSWERRESOLUTION
in the proof tree fow(X) that has just become applicable. In case (i), the next/I$uB-
GOAL operation will be forq(b) , while in case (ii) the next Bw SUBGOAL operation
will be for gq(a) . The two scenarios yield two different traces (see Figure 1). |

The significance of the above lemma is that we can prove results based on trace equiv-
alence without losing generality.

We shall compare two strategies based on the running time and the table-space used
for evaluating all answers to a query. We shall tisee s, p,4y to denote the time taken by
strategysS for evaluating all answers to a queryising program?.

Definition 3.3 (Uniformly Faster) We say tha$ is uniformly faster thar” if and only if
for all programsP and queriesy, times,p,q) < time(s: p q)

3.2 Formal Presentation of the Proof

Our proof relies on the properties of a predichtdefined in Figure 2g is a non-tabled
predicate whose rules are a database of factsn} eienote the number af facts. LetP
be atabled logic program that contafnandg.

- table f/1.
f(X) :- g(Y),fail.
g(1). 9(@. 9. ..9( ng)

Figure 2: Program defining andg



Note that every call td(X) (X can be bound or free) has no answers. Hence, it
follows from Lemma 2.3 that a call f§X) (X either bound or free) does not affect any of
the engine’s subsequent scheduling decisions. Secondly, the program clause resolution for
such a call completely backtracks through database of facts. Letbe the time taken to
backtrack through this entire database of facts proportional tas,. We can make as
large as we want by suitably choosing.

We are now ready to establish our main result. We show that if two strategies are not
trace equivalent then neither of them can be uniformly faster than the other.

Theorem 3.2 (Incomparability Theorem for Time) Let.S; andS; be two scheduling strate-
gies such thaf; Zirace S2. Then neithelS; nor Sy is uniformly faster than the other.

Proof: Without loss of generality we prove th& is not uniformly faster thai$; since
the other case is symmetric. Sin€e #+r.c S2 We can find a prograr® and queryy such
thattrace(s, pq) # trace(s, pq). Eithertimes, pq) < time(s, pq) Ortime(s, pq) >
time(s,.p,q)- IN the former case we have nothing left to prove. Hence let us assume the
latter,i.e.,VP,q times, pq) > time(s,,p,q) and prove the above theorem by arriving at
a contradiction.

We proceed as follows: Lei andg3 be the calls wherérace s, p ) andirace s, p,q)
first differ (« is in the trace generated I8 andg is in the trace generated t8s). Let
A-(a)-B; denotéraces,, p,q) - Similarly letiraces,, p,q) be denoted byi-(G)-Bs.

We transformP to P’ by adding the rules fdr, the database of facts fgrand two new
rulesR,, (based omx) andRg (based oif) to P such thatraces,  p.qy = A<{(a,f( ) )-B:
andtrace(s,,pr gy = A«(B,f(1), f(2), ...f(k-1)f( ) )-Bz. Notice that the only
changes in the trace are the addition of the calls.tintuitively this means that the com-
putation not involving is left unchanged.

R, andRg are so designed that whenis called, eithelR,, alone is triggered oR,
is triggered befordg; similarly wheng is called,Rg alone is triggered oRg is triggered
beforeR,,.

Let o’ denotea in which all its variables are bound to new constants naPifi.e.

a ground instance af). Similarly let 3’ denote a ground instance 8fin which all its
variables have been bound to constants nd?ior o’. Let R, be the clause’ :- f( )
andRg be the clausg’ :- f(1);f(2);...;f(k-1);( ).

Observe that ifx subsumes3 thena’ will not unify with 8, but « unifies withs’.
Symmetrically, if3 subsumes theng’ will not unify with o buta’ will unify with 5. We
addR,, Rg and the clauses d¢f andg defined as in Figure & (andg are assumed to be
new symbols that do not occur #) to the beginning of prograr® to getP’.

To triggerR,, and Rg in the right order we plac&gs beforeR,, if 8 subsumes, oth-
erwise we place®, beforeRg. (Note that ifo andg are incomparable under subsumption
then the order of insertion does not matter.)

We will prove that

(@)trace(s,,pr,qy = A-(a,f( ) )-B1

(b) trace(s,,p,q) = A-(B,f(1), f(2), ...,f(k-1),1( -) }-Bs.

(c) T(the time taken to compufg _) ) can be made the dominating componeritines, p' q)
(d) k x 7 is the dominating component iime s, , p' q)

e Proof of (a): InS; the calla immediately triggersR,. This results in a producer
f( ) which is not postponed (by Proposition 2.2).

The callf( ) fails without computing any answers and returns. Thus the rest of the
proof for (a) follows directly from Lemma 2.3.



¢ Proof of (b): The details of this proof are similar to the proof of (a) and hence omitted.

o Proof of (c): We can choose,, the number of facts in thg's database, to make the
evaluation off( ) the dominant part itime s, pr g)-

e Proof of (d): Observe thd(1), f(2), ...,f(k-1), f( ) are producers
in trace(s,,pr q)- Evaluation of eacli(i)  takes timer and there aré such calls.
Hence k * 7 is the dominating part dfime s, p',q) -

From (a), (b), (c) and (d) above, it follows thaine s, pr g > time(s, prqy, resulting
in a contradiction. |

We have shown that if two strategies are not trace equivalent then neither is better than
the other. Now we can use Lemma 3.1 to show the generality of this result, namely:

Theorem 3.3 (Nonexistence of Time-Optimal Scheduling Strategyfror evaluating def-

inite logic programs using subsumption-based tabling, there exists no scheduling strategy
S such that for all strategiess’ , if § and S’ are different then evaluation unde is
uniformly faster than evaluation undsf.

Proof: By contradiction. Let us assume there exists a strategiat is optimal. By
Lemma 3.1 we can find; that is not trace equivalent t8. If S is optimal thensS is
uniformly faster tharb,. However this contradicts Theorem 3.2. |

We can immediately derive two results from the previous theorems. First of all, since
the class of positive programs is a subset of the class of normal logic programs, non-
existence of optimal strategies for positive programs clearly implies non-existence for the
larger class also. Hence,

Corollary 3.4 For evaluating normal logic programs using subsumption-based tabling,
there exists no scheduling stratefjpuch that for all strategie8’ , if S and.S’ are different
then evaluation unde$ is uniformly faster than evaluation undst.

Secondly, from the proof of Theorem 3.2 it is straightforward to show a similar result
for table space. We denote the table space consumed by a stfafegyevaluating all
answers to a queryusing progranP by space(s, p,q). Then:

Theorem 3.5 (Nonexistence of Space-Optimal Scheduling Strategypr evaluating def-
inite logic programs using subsumption-based tabling, there is no scheduling st&tegy
such that for all scheduling strategigs, if S and.S’ are differentthe P, ¢ space(s pq) <
spa,ce(srvp’q) .

Proof: We use the transformation in the proof of this theorem to obRdifrom P. Ob-
serve that the call table that results whgnevaluates query using programP’ contains
f(1), f(2),..., f(k-1) . These calls are absent wh&p is used for evaluation
instead. u

4 Minimizing Incomplete Table Accesses under
Call Abstraction

Observe from the proof of Theorem 3.2 in Section 3 that incomparability of scheduling
strategies in subsumption-based engines stems from lack of control over the sets of trees
produced. Now suppose all scheduling strategies generate the same forest. Would it then be
possible to compare them with respect to specific cost measures? We explore this question
in this section. We show that under such conditions we can indeed devise a scheduling



strategy to minimize the number of calls that consume out of incomplete answer tables
produced by strictly more general calls.

The differences between the sets of proof trees constructed by different scheduling
strategies in subsumption-based tabled resolution arises from the differences in the order
in which specific and more general calls are made. To ensure that the same proof forest
is constructed irrespective of the scheduling strategy, we can modify the construction pro-
cess such that proof trees are built only for the most general calls. When thedinst N
SUBGOAL operation for subgoal is encountered, instead of starting a new proof treg for
and computing its answers byRBGRAM RESOLUTION, we build a proof tree fog’ such
thatg’ subsumeg and New SUBGOAL for g’ will be encountered subsequently; we then
compute answers far by ANSWER RESOLUTION. The general subgog! is called an
abstraction ofy and is represented kybs(g). We call this resolution strategy &asbled
resolution under call abstractiorNote that in practicegbs(g) may not be computable and
can only be estimated, as discussed in Section 5.

Observe that the traces generated by scheduling strategies for any program/query pair
in variant-based tabled resolution are permutations of one another. Moreover, the sets of
calls in traces pduced by any subsumption-based resolution are subsets of the set of calls
in traces poduced by variant-based resolution. This enables us to defife) as:

Definition 4.1 (Call Abstraction) Letw be trace produced by a variant tabling engine for
a queryq and programP. LetC be the set of callg’ such that’ subsumes and there

is no other callc” in w that subsumeg’. The abstraction of the call in w, denoted by
abs(c), is a call¢’ in C chosera priori, independent of the scheduling strategy.

We distinguish between two kinds of consumers from an answerdalejgending upon
the type of edge connecting the producer and consumer in the subgoal dependency graph.
Whenever(c', ¢) is a type-2 edge, theti is asubsumptive consumef ¢; when(c”, ¢) is
a type-3 edgeg” is avariant consumenf c¢. Recall that our original motivation was to
minimize the use of incomplete tables by subsumptive consumers, and hence we choose
the set of subsumptive consumers to incomplete tables as our cost measure:

Definition 4.2 The set of subsumptive consumers of incomplete tables is the set ef calls
in a subgoal dependency graghthat consume answers out of incomplete tablesuch
that(c, ¢') is a type-2 edge .

Note that in any subgoal dependency graph, for any npdsther there is a single
outgoing edgéce, ¢') of type-2 or type-3, or one or more outgoing edges of type-1. Fur-
thermore, under call abstraction, program clause resolution is done only for the abstracted
calls. Therefore,

Proposition 4.1 Under call abstraction, the subgoal dependency graph for any given pro-
gram P, queryq and scheduling strateg§ has the following property: l&bs(c) strictly
subsumes then there is a type-2 edge frano abs(c).

From the above property, we can show that for any given program/query pair, all
scheduling strategies under call abstraction yield the same subgoal dependency graph.

Lemma 4.2 For any programP the subgoal dependency graph constructed while evalu-
ating all answers to a query using subsumption-based tabled resolution under call ab-
straction is independent of the scheduling strategy.

Proof (Sketch): Let G; andG» be the subgoal dependency graphs produced by scheduling
strategiess; andS, respectively. Since the subgoal dependency graphs are such that every
node is eachable from iitial queryg, G; andG; are identical if for each path of length

from g in G4, there is an identical path 5. We show this by induction on path length as
follows.



The base case (for 0-length paths frgyrivially holds since bothG; andG2 contain
q.

Assume, as induction hypothesis, that for every path of lengtbm g in G4, there is
an identical path ir672.

Now letg, pa, . . ., pn, Pn+1 De a path of length+ 1 starting ag in G;. From induction
hypothesis, there exists a patfps, . . ., p» in G2. We now have three cases, based on the
relationship betweep,, andp, +1.

Case 1: (pn, pn+1) isatype-1edge if?;. Since type-1 edges correspond to dependencies
due to RROGRAM RESOLUTION operations which are independent of scheduling
strategies, there is a type-1 ed@g, pn+1) in G2 also.

Case 2: (pn,pn+1) IS a type-2 edge id?;. Due to call abstractiom,,+1 = abs(ps), and
sincep, is in G, so isabs(p, ). Hence, by proposition 4.1, there must be a type-2
edge fronp,, andabs(p,) in Gs.

Case 3: (pn,pn+1) IS a type-3 edge id?;. Again, due to call abstractiop,, = abs(ps),
otherwise the edge will not be a type-3 edge. Moreoggris a consumer node in
G.. Since there is a unique producer node éach proof treep, 1 is uniquely
determined givem, . Sincep, = abs(py), there will be a producer corresponding
to abs(pn) in G, also. Hencépy,, p,1+1) is a type-3 edge ii7>.

Henceg, p2, . - ., Pn, Pn+1 iS a path inGa. |
We can now characterize subsumptive consumers that always consume from incomplete
tables, irrespective of the scheduling strategy. Observe, from Definition 2.2 thaanid
¢z belong to the same SCC in the subgoal dependency graphnnot complete unlegs
has consumed all its answers. Formally,

Proposition 4.3 (Needed Consumption from Incomplete TablesJor every type-2 edge
(e1, c2) in the subgoal dependency graph such that p(cz), e1 consumes out af;’'s
incomplete table under any scheduling strategy.

The above property leads to the definition of scheduling strategies that schedule only
theneededsubsumptive consumers to perform answer clause resolution against incomplete
tables.

Definition 4.3 (Lazy Scheduling Strategies)A scheduling strategy ikazy iff for every
type-2 edgécs, c2) in the subgoal dependency gragh,consumes out af’s incomplete
table only where; € u(cz).

An immediate consequence of Proposition 4.3 and Definition 4.3 is:

Theorem 4.4 (Optimality of Lazy Scheduling Strategies)Lazy scheduling strategies min-
imize the set of subsumptive consumers from incomplete tables.

5 Discussion

Subsumption based evaluation of tabled logic programs has the potential to yield superior
performance over variant engines since they reuse answers computed for more general
calls instead of recomputing them for each specific call. To realize this potential, however,
one must reduce the overheads associated with accessing answer tables, especially from
incomplete tables. Hence scheduling strategies are devised to improve performance by
controlling access to incomplete tables. We showed that for subsumption-based tabled
resolution there is no scheduling strategy that is uniformly better than any other.



Our proof of non-existence of optimal scheduling strategies also applies to tabled res-
olution with backward subsumption. When resolving with backward subsumptiam, P
GRAM RESOLUTION of subgoal is terminated when a more general subgdat encoun-
tered; the remaining answersgare then computed by MsWER RESOLUTION, consum-
ing out of the answer table gf. Note that, the gadgétl used in our proof is such that
the particular calls are completed before the general call is made, and hence the proof is
not affected by backward subsumption.

The incomparability of scheduling strategies in subsumption based engines arises due
to lack of control over the sets of proof trees produced. By ensuring that all scheduling
strategies produce the same forest via tabled resolution under call abstraction, we showed
that lazy strategies can in fact minimize the set of subsumptive consumers of incomplete
tables. Observe that our optimality result above is predicated on call abstraction, which is
not computable in general. One can only hope to implement approximations of tabled res-
olution under call abstraction by using estimatesisf(g) computed via program analysis.
Subsumption-based tabled resolution under call abstraction has other significant applica-
tions. For instance, in a deductive database environment, due to the disk accesses involved,
making a few calls that return a large number of answers is clearly more efficient than
making a large number of more specific calls. Call abstraction can identify the set of most
general calls. Hence, from the viewpoint of optimizing subsumption-based tabling engines,
development of program analysis techniques for call abstraction is an important and worth-
while research endeavor.

Although scheduling strategies are in general incomparable, our optimality result for
lazy strategies seems to indicate that by using tabled resolution under call abstraction
scheduling strategies can be compared with respect to other cost measures also. ldenti-
fying such measures is an interesting avenue of research.

Finally some remarks are due about scheduling strategies for a variant tabling engine.
Since the difference in cost between accessing complete and incomplete tables is insignifi-
cant in a variant engine (see [7] for details), minimizing incomplete table accesses does not
appear to be a meaningful cost measure. Observe that, in variant-based tabled resolution,
the traces generated by different strategies are permutations of one another. So scheduling
strategies only control the order in which the search forest is explored. The operations un-
derlying such a control do not lead to arbitrary slowdowns. Hence we strongly conjecture
that scheduling strategies for variant-based tabled resolution differ in performance by at
most a constant factor.

References

[1] R. Bol and L. Degerstadt. Tabulated resolution for well-founded semantic®rda of the
Symp. on Logic Programmin993.

[2] W. Chen, T. Swift, and D.S. Warren. Efficient implementation of general logical queldies.
Logic ProgrammingSeptember 1995.

[3] W. ChenandD. S. Warren. Tabled evaluation with delaying for general logic progd#@s/,
43(1), 1996.

[4] J. Freire, T. Swift, and D.S. Warren. Taking I/O seriously: Resolution reconsidered for disk. In
Proc of Intl. Conf. on Logic Programming997.

[5] J. W. Lloyd. Foundations of Logic Programmingpringer, 1984.

[6] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. W. Swift, and
D. S. Warren. Efficient model checking using tabled resolutiorPrvc. of the 9th Intl. Conf.
on Computer-Aided Verificatiod997.

[7] 1.V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D.S. Warren. Efficient table access mech-
anisms for logic programs. limternational Conference on Logic Programmirig95.



.- table a/2, h/2.
a(x,y) - pX,Y).

h(X,Y) :- a(A,X),a(A)Y), X £ Y.
p(1,2). p(2,3). p(1,4).

Figure 3: A Tabled Program

[8] P. Rao, C. R. Ramakrishnan, and I. V. Ramakrishnan. A thread in time saves tabling time. In
Proc. of the Joint Int'| Conf. and Symp. on Logic Programmih@96.

[9] Prasad RacEfficient Datastructures for Tabled ResolutidthD thesis, SUNY at Stony Brook,
1997.

[10] H. Tamaki and T. Sato. OLDT resolution with tabulation. Tihird Int'l Conf. on Logic Pro-
gramming pages 84-98, 1986.

[11] The XSB Group. The XSB tabled logic system v1.7.2, 1997. Dept. of
Computer Science, SUNY at Stony Brook. Available by anonymous ftp from
http://www.cs.sunysb.edu/ ~sbprolog

Appendix

Problem lllustration

Consider evaluation of the cdi(X,Y) made to the tabled predicate shown in Figure 3.
Figures 4(a) and 4(b) show the sequence of calls made (a()’s and p()’s) and answers com-
puted (the integers appearing singly or in pairs) by a tabling system for that call.

Note that each column represents a specific call made at a particular time followed by
the sequence of answers computed for that call. For instance, in Figure 4(a) the second
column represents the ca(A,X) (made at time;) and its answer§l,2), (2,3),

(1,4) that were computed and recorded in the table at titpgls andig respectively.
Observe that when the cal(1,Y) is made attimey, itis subsumed by the cadl(A,X)
made earlier. Rather than recomputing the answera(fbtY) through program clause
resolution we now resolve it against the answers computed for tha(éaX) (the second
column). The only answer computed so far &A,X) is (1,2) and so we record the first
answerY=2 for a(1,Y) in its answer table (third column) at timig. The rest of the
entries in Figure 4(a) are computed similarly.

Observe that the set of answers to a subsumed call is a subsequence of the answers
computed for the more general subsuming call. For instance, the anéw&xt6 the call
a(l,Y) is asubsequence of answef$,?),(1,4) ) for the calla(A,X) . Secondly,
note that on invoking a subsumed call one can either resolve it immediately against the
answers computed for the more general dadl the answer tables asagerlyconsumed)
or we can choose to suspend it (resultingdiglayed consumption ). Figures 4(a) and
4(b) illustrate the sequence of calls and answers generated by the former and latter choices
respectively.

A consequence of eager consumption is that incomplete answer tables may need to be
accessed for performing answer resolution. For example, in Figure 4(a), @stonky the
first answer to the cath(A,X) has been computed. At tindg the calla(1,Y) has to
access this incomplete table. Accessing incomplete tables is expensive since answers to a
subsumed call are to be retrieved from a dynamically growing answer table associated with
the general call. On the other hand if we postpone doing answer resolution of a subsumed
call until the answer table for the general call is complete then we only need to retrieve



t1 | h(X,Y) h(X,Y)

t a(A,X) a(AX)

ts 1,2 1,2

ta a(LY) a(Ly)

ts 2 2,3

ts 2,3 a2,y)

tr a2.y) 1,4

awin

ts 3 a(L,y)

to 1,4 2

t10 a(l,Y) 4

t11 2 2,4

ti12 4,2 3

t13 4 2

t1a 2,4 4,2

t1s 4 4

a) (b)

Figure 4: (a)Eager Consumption and (b) Delayed Consumption

.- table p/3.

p(A,B,C) :- body of p/3.

q(XvY) - p(l,X,Y),
p(1,X,B),
p(A1,A2,A3).

a(x,yY) :- p(2,X,Y).

d(X,Y) - p(n,X,Y).

Figure 5: Illustrative Example

the answers from a static set.(In Figure 4(b) all the calls subsumagd/}) consume
answers from its answer table only after it is complete.) Hence delayed consumption can
result in consuming answers from completed tables and thereby improve efficiency of table
access.

Delayed consumption however can introduce new program resolution steps and easily
offset these gains. For example, consider the calls resulting from theq€ky), fail
made to the program in Figure 5. Assume th@dtX,Y)  succeeds witlX bound to some
constante. Suppose we defer the consumption of answers until completipfLoX,Y)
Observe that we will end up exploring alternative paths of computation which will result
in calls top(2,X,Y) , p(3,X,Y) ,...,p(n,X)Y) .All of these calls are solved using
program clause resolution. On the other hand by letfifly «,B) eagerly consume
answersp(A1,A2,A3) will be called next. All of the callp(2,X,Y) , p(3,X)Y) ,

., p(n,X,Y)  will be made later and will be solved by resolving against answers in
the answer table op(A1,A2,A3) . Thus by deferring consumption of answers until
completion of the answer table, we have increased the number of program clause resolution
steps which could have been avoided by eager consumption. In addition, we also created
answer tables fop(2,X,Y) ,p(3,X,Y) ,...,p(n,X,Y) and thusincreased thable
spacefor computing the querg(X,w) .



