A Thread in Time Saves Tabling Time

Prasad Rao C.R. Ramakrishnan 1.V. Ramakrishnan

Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11794-4400

{prasad,cram,ram}@cs.sunysb.edu

Abstract

The use of tabling in logic programming has been recognized as a powerful evaluation tech-
nique. Currently available tabling systems are mostly based on variant checks and hence are
limited in their ability to recognize reusable subcomputations. Tabling systems based on call
subsumption can yield superior performance by recognizing a larger set of reusable computa-
tions. However, a straightforward adaptation of the mechanisms used in variant-based systems
to reuse these computations can in fact result in considerable performance degradation. In this
paper we propose a novel organization of tables using Dynamic Threaded Sequential Automata
(DTSA) which permits efficient reuse of previously computed results in a subsumptive system.
We describe an implementation of the tables using DTSA and the associated access mechanisms.
We also report experimental results which show that a subsumptive tabling system implemented
by extending the XSB logic programming system with our table access techniques can perform
significantly better than the original variant-based system.

1 Introduction

The use of tabling in logic programming is beginning to emerge as a powerful evaluation technique,
since it allows bottom-up evaluation to be incorporated within a top-down framework, combining
the advantages of both. Although the concept of tabled evaluation of logic programs has been
around for a decade (see [8, 9]), practical systems based on tabling are only beginning to appear
(e.g., [6, 5, 10]). Early experience with these systems suggest that they are indeed practically viable.
In particular the XSB system, based on SLG resolution [1], computes in-memory deductive database
queries about an order of magnitude faster than current semi-naive methods, and computes Prolog
queries with little loss of efficiency when compared to well known Prolog systems [7].

At a high level, top-down tabling systems evaluate programs by recording subgoals (referred to
as calls) and their provable instances (referred to as answers) in a table. Predicates are marked a
priori as either tabled or nontabled. Clause resolution, which is the basic mechanism for program
evaluation, proceeds as follows. For nontabled predicates the subgoal is resolved against program
clauses. For tabled predicates, if the subgoal is already present in the table, then it is resolved
against the answers recorded in the table; otherwise the subgoal is entered in the table, and its
answers, computed by resolving the subgoal against program clauses, are also entered in the table.
For both tabled and nontabled predicates, program clause resolution is carried out using SLD.

cal: anc_r(X,Y)
answers:

:— table anc_r/2. anc_r(1,.2)
anc_r(2,3)
anc_r(X,Y):-p(X,Y). 2 anc_r(3,4)
anc_r(X,Y):- = aCﬁISI;VZrn;_r(Z,Y)
p(X,2), anc_r(2,3)
anc_r(Z,Y). anc_r(1,3)
cal: anc_r(3)Y)
P (1 s 2). answers:
P (2,3). e 1(24) anc_r(3,4)
p(3,4). call:anc_r(4,Y)
anc_r(1,4)
anc_r(2,4)
(a) (b)

Figure 1: Ancestor program (a) and the sequence of call and answer table entries (b).

Given the relative novelty of table-based logic programming implementations, many promising
avenues for substantially improving performance remain to be explored. Efficient organization and
manipulation of tables is one such avenue and forms the topic of this paper.

When a tabled subgoal is called, a check for the presence of this subgoal in the table is done first.
In currently available tabling systems (e.g., [6, 5]) this is done by checking whether a variant of the
new goal already exists in the table. We say that two terms ¢{; and ¢, are variants of each other
if they are identical up to renaming of their variables. Although a variant check is a light-weight
operation computationally, tabling systems based on such checks can end up computing answers
through expensive program clause resolution steps when they could have as well retrieved them
through answer clause resolution. For example, consider evaluation of the call anc_r(X,Y) made to
the tabled predicate shown in Figure la. Figure 1b shows the sequence of calls made and answers
computed in a variant based engine for this call.

To begin with the call table is empty; hence anc_r(X,Y) is entered in the call table and its an-
swers are computed via program clause resolution. Observe in the figure that the call anc_r(2,Y) is
made after computing three answers. Since anc_r(2,Y) is not a variant of anc_r(X,Y), it is entered
in the call table and its answers are computed next using program clause resolution. Resolving
against the first clause yields anc_r(2,3) as an answer. Note that this answer already exists in
the answer table associated with the call anc_r(X,Y). Instead of simply retrieving this answer it is
recomputed via program clause resolution. Similarly, the remaining answers for anc_r(2,Y) and
anc_r(3,Y) are also recomputed via program clause resolution.

The key to avoiding answer recomputation is to first verify whether the needed answers have
already been computed on behalf of a more general call — <.e., check whether the new goal is
subsumed by one already existing in the call table. We say that a term ¢; subsumes another term
ty if t5 is an instance of ¢;. Based on a subsumption check, if it so turns out that the new call (e.g.,
anc_r(2,Y) above) is subsumed by a more general call in the table (e.g., anc_r(X,Y)) then the
answers to the new call are retrieved from the subsuming call’s answer table. By avoiding expensive
program clause resolution steps, tabled evaluation based on subsumption checks can, in principle,
yield superior performance over one based on variant checks.

But subsumption-based tabling introduces additional overheads that can easily offset the po-
tential gains. First of all, subsumption checks are more expensive than variant checks. Secondly
observe in the above example that answers to the subsumed call anc_r(2,Y) forms a subset of the

answers computed for the subsuming call anc_r(X,Y), necessitating efficient indexing mechanisms
for selecting this subset. Since these subsets have to be extracted from incomplete answer tables?,
an added level of difficulty is imposed on indexing mechanisms. For instance, consider the first
time when the call anc_r(2,Y) is made in the above example. Observe in Figure 1b that at that
time, the answer table for the subsuming call anc_r(X,Y) is incomplete and contains only three
answers. Therefore, only anc_r(2,3) is returned as the answer now. When the answer anc_r(2,4)
is eventually added to the answer table of the subsuming call, it must also be returned as an answer
for anc_r(2,Y).

Selection of subsets and the associated indexing issues do not arise in tabling systems based on
variant checks since all of the answers in a call’s answer table are relevant to any variant of the
call. So organizing the answer table as a simple linked list is adequate for doing efficient retrieval
even for incomplete answer tables: as new answers are generated they are simply added to the end
of the list. But for subsumptive tabling, where a subset of the added answers is retrieved each
time, quickly filtering away irrelevant answers is critical for efficiency. In fact in a preliminary
implementation in which we modified XSB’s engine to perform subsumption checks but retained
the linear list structure of the answer tables, we observed slow downs of more than an order of
magnitude over XSB’s variant based engine on the example in Figure 1a above.

In summary, while subsumptive tabling holds a lot of promise, the issues raised above reveal
that exploiting its potential in practice is a challenging problem. We propose a solution to this
problem in this paper. Specifically, we describe a novel organization of tables for answer clause
resolution called Dynamic Threaded Sequential Automata (DTSA) and provide mechanisms to effi-
ciently manipulate them with minimal overheads (see Section 3). In Section 4 we give an overview
of our implementation of a subsumptive engine for the XSB system centered around DTSA. We
present performance results in Section 5 and conclude in Section 6.

2 Overview of Tabling Operations

We view top-down tabled evaluation of a program in terms of four abstract table operations. In
the following, we describe each of the four abstract operations and how they are used in a tabling
engine.

Call-check-insert Given a call ¢, the call-check-insert operation directs the engine to perform
answer clause resolution in a variant engine whenever a variant of ¢ is found in the table, and in
a subsumptive engine, whenever there is a call ¢’ in the table that subsumes ¢. Note that while
variance is an equivalence relation, subsumption defines only a partial order. Therefore, in variant
tabling, only one variant of any call is present in the table. In contrast, in subsumptive tabling,
there may be many calls ¢y,c¢z,...,c, in the table that subsume a given call ¢. Although the
answer tables for any of the subsuming calls ¢; may be used for correctly resolving ¢, the choice of
the answer table can significantly affect the performance of resolution. Furthermore, in contrast
to variant tabling, selection of a subsuming call ¢; and insertion of ¢ in the table (in the absence
of such a call) cannot be done with just one scan of the symbols in c¢. Hence, call-check-insert
operation in a subsumptive engine is more expensive than in a variant engine.

!We say that the answer table for a call is incomplete whenever all the answers to the call have not yet been
computed.

Answer-check-insert Answers are entered in the table using answer-check-insert operations.
Given an answer a and an answer table T, this operation first checks whether a is already present
in T, and inserts a in T otherwise. Note that this operation must also eliminate any duplicates in
the table.

Retrieve-answer Answer clause resolution of a goal G against a set of terms S = {t1,t5,...,t,}
in an answer table produces a set R such that »r € R <= r = t;0; for some t;, where ; =
mgu(G,t;). This resolution is performed using retrieve-answer operations. Given a call ¢

and an answer table T, answer resolution proceeds as follows. The operation retrieve-answer,
when invoked first with the call ¢ and table T, returns an answer from 7 that unifies with ¢, and a
structure, called an answer continuation, that denotes the computation to be done for retrieving the
remaining answers. When another answer is demanded, retrieve-answer is invoked with the answer
continuation, and returns the next answer alongwith the modified answer continuation. Answer
continuation | denotes that there are no more remaining answers; note that in the presence of
incomplete answer tables, | cannot be interpreted as the end of answer resolution.

Pending-answers When a retrieve-answer operation for a call ¢ on an incomplete table T
returns L, the call ¢ will be suspended. The suspended call is later resumed when new answers have
been added to T, or when T is determined to be complete. Suspension and resumption of calls
are performed by a process called answer scheduling in the engine. The answer scheduler invokes
pending-answers to determine whether a suspended call needs to be resumed. Given an answer
continuation, pending-answers succeeds if, and only if, there are any more answers represented by
the continuation.

3 Dynamic Threaded Sequential Automata

We structure answer tables for subsumptive tabling as Dynamic Threaded Sequential Automata
(DTSA). This structure facilitates good indexing and efficient backtracking — the two ingredients
necessary for efficiently returning (a subset of) answers to a subsumed call from a dynamically
growing answer table. Recall that any technique for retrieving answers from an answer table must
guarantee that every answer that unifies with the subsumed call will be returned even when the
table is not complete. Abstractly, we can regard all the answers in the answer table as being totally
ordered with respect to the time at which they are inserted in the answer table. Ensuring that
the order of the returned answers is consistent with this total order enables us to easily mark the
remaining answers and facilitates efficient retrieval.

The basic building block for DTSA is a Sequential Factoring Automaton (SFA) — a structure
introduced by us in an earlier work on unification factoring [2]. We progressively embellish it with
more features culminating with the DTSA in its full detail. We present our design in three steps. In
the first two steps (see Sections 3.1 and 3.2) we ignore the dynamic aspect of answers being added
to an answer table while retrieval is in progress, and deal with it in the last step (see Section 3.3).

Notations We assume the standard definitions of term, and the notions of substitution and
subsumption of terms. A position in a term is either the empty string A that reaches the root of
the term, or 4.7, where § is a position and 7 is an integer, that reaches the 7** child of the term
reached by §. Positions are totally ordered by a preorder relation <,,s such that § <,,, &' iff
there is some term such that § will be visited before ¢’ in a left-to-right preorder traversal of the
term. By ¢ |s we denote the subterm at position § in t. For example, p(a, f(X)) |22 = X and

p(a, f(X)) |2 = f(X). The symbol at position § in a term ¢ is denoted by sym(t,§). The arity of
a symbol a is denoted by arity(c); note that the arity of variable symbols is 0. An anonymous
variable is denoted by ‘0’. The prefiz of a term ¢ up to position §, denoted by prefiz(t,), is the set
{(¢',0) | &' <pos 6, sym(t,8') = a}. The proper extension of a prefix ¢, denoted by ezt(y), is the
set o U {(d.7,0) | (§,a) € 9, (8.2,8) € ¢,% < arity(a)}. Note that the proper extension of a prefix
denotes a well-formed term. Two prefixes, ¢; and ¢ unify iff the term denoted by exzt(¢;) unifies
with the term denoted by ezt(yp2). We assume that all terms entered in tables are standardized as
follows. If V3, V,,...,V,, are the set of variables in a term ¢ such that V; occurs before V;;; in a
left-to-right preorder traversal of £, then V; is replaced by a standard variable X;. We represent a
totally ordered set {w1,ws,...,w,} by the sequence (wq,ws,...,w,). A stack is represented by the
sequence of elements (w;,ws,...,w,) where w, is on top of the stack.

3.1 SFA: A Basic Building Block for Answer Tables

The problem addressed in the first step can be cast concretely as follows:

Given a static set S of terms, a total ordering < on them and any goal term G, retrieve terms
i S that unify with G such that the order in which they are retrieved is consistent with <.

We use an SFA to solve the above problem. An SFA is an ordered tree-structured automaton,
with the root as the start state, and edges, denoting transitions, representing elementary unification
operations. Let S = {t1,t2,...,t,} be a static set of terms and < a total ordering on them such
that Vi,1 < i< n t; < t;y1. Every leaf state in an SFA represents a distinct term in S and the
transitions on the path from the root to a leaf represent the set of elementary operations needed to
unify the goal with the term associated with that leaf. We assign a preorder number pre(s) to every
state s in the SFA. An SFA is so constructed that the preorder number of the leaf corresponding to
t; is smaller than that for ¢;,,. We remark that although SFA’s and tries are similar in structure,
there are notable differences. Firstly transitions from any state in a trie are all unique. Secondly
transitions in tries usually denote elementary match operations. Lastly no ordering is imposed on
the terms represented by a trie.

Since transitions in a SFA represent elementary unification operations on the goal, the goal
gets progressively instantiated as transitions are made from state to state. Each state s specifies a
position, denoted by 7(s), in this partially instantiated goal where the next unification operation
will be performed. Each outgoing transition from state s, denoted by s > d, represents a unification
operation involving the symbol a and the symbol in the partially instantiated goal at = (s).

Definition 3.1 (Partially Instantiated Goal) Given a goal G and an SFA S, the partially in-
stantiated goal upon reaching state d of S, denoted by Partinst(G,d), is (i) G if d is the root of S,
or (i) G,0 if s > d is in S, where G, = PartInst(G,s) and 0 = mgu(G, |n(s)r @(V1, Vay o5 Vi)
such that V1, Vs, ..., Vi are variables that do not occur in G, or S.

An example SFA is shown in Figure 2b. In that SFA, the goal p(a,X,Y) on reaching s;3
is instantiated as p(a,a,Y) and the label on the transition from sz to s4 specifies a unification
operation involving the symbol a and the variable at position 3 in this instantiation. Note that
PartInst(G, s) is undefined for a state s if the unification operation specified by some transition on
the path from root to s fails for the initial goal G. The transitions from a state that represent
successful unification operations are called applicable transitions, defined as follows.

p(a,a,a).

%
p(b,a,W). 9 b .
p(a,a,c).
p(a,b,b). @Ss (3% S Si3
p(a,a,d). [z{ [lgﬁo S Sia

p@aa PbaxXy) p@ac) pl@bb) p@ad)

(a) (b)

Figure 2: Sequence of answers for call p(X,Y,Z) (a) and the corresponding SFA (b).

Definition 3.2 (Applicable Set of Transitions (for SFA)) The set of all transitions that are
applicable on reaching a state s with an initial goal G, denoted by App(G,s), is such that s =
d € App(G,s) iff (i) s > d is a transition in the SFA and (ii) PartInst(G,d) is defined whenever
PartInst(G, s) is defined.

The process of retrieving answers using the SFA proceeds as follows. We traverse the SFA
starting from the root state, with an empty continuation stack. When a state s is reached, we
choose the leftmost applicable transition (if any) in the order specified by the SFA as the transition
to be made from s. This choice is made using the function first. Before making a transition, we
select the next applicable transition, if one exists, and push it on the continuation stack. This
selection is made using the function nezf. The pending transitions on the continuation stack
form the answer continuation that will be used to retrieve the remaining answers. If there are
no applicable transitions at a state, the next transition to be made is picked from the top of the
continuation stack. The two functions used to select transitions are defined as:

Definition 3.3 First and Next for SFAs

first(s,G) = s dsuch that s > dc App(G,s) and
Vs % d' € App(G,s), d#d = pre(d) < pre(d').
next(s > d,G) = s> d' such that s L qc App(G, s) and

vs 2 v € App(G,s) pre(d") > pre(d) Ad" # d' = pre(d’) < pre(d").

For the SFA in Figure 2b, and initial goal G =p(a,a,V), first(s1,G) = s; — s and nezt(s; —
52, G) is 81 2 sg. Note that first and nezt are not total functions. For example, next(s; Y sg) is
undefined.

The above intuitive description of answer retrieval from an SFA is realized concretely by Al-
gorithm Retrieve_Answer (Figure 3) using the definitions of first and nezt. Recall from previous
section that we distinguish between the first and subsequent invocations of Retrieve_Answer. When
Retrieve_Answer is invoked with a goal G for the first time, it calls first_answer to retrieve the first
answer and returns with an answer continuation. For subsequent invocations it takes as input an
answer continuation, calls subsequent_answer to retrieve the next answer represented by the input
continuation, and returns an updated answer continuation.

Using the SFA in Figure 2b, when Retrieve_Answer is invoked the first time with the goal
p(a,a,V), it is easy to see that the the root-to-leaf path from s; to s will be taken and p(a,a,a)
will be returned as the answer along with the continuation stack (s; % sg). On calling it again with
this continuation stack, p(a,a,c) will be returned as the next answer. The following soundness
result can be readily established.

function get_answer(this_trans, cont_stack, G)
/* cont_stack: continuation stack */

begin

. Igo first_ G

while TRUE do ey
if this_trans is not defined then begir;
endif;‘aﬂ this_trans := first(root,G)

. cont_stack := empty
neat_trans := neat(this_trans, G) answer := get_answer(this_trans
if next_trans is defined then cont sta_ck) - !
push(nezt.trans, cont.stack) return (ans_wer ,cont stack)

endif end ! -

let d = dest(this_trans)
let G4 = Partinst(G,d)
/* Note: transition is done here */

algo subsequent_answer(cont_stack, G)

* G: Goal
if d is a leaf then / . . "
cont_stack: continuation stack */
return G4 .
begin
else

this_trans := pop(cont_stack)

if this_trans is not defined then answer := get.answer(this_trans,
: cont_stack, G)

this_trans := pop(cont_stack)
. return (answer, cont_stack)

endif d

endif <
endwhile
end

this_trans := first(d, G)

Figure 3: Algorithm Retrieve_Answer.

Theorem 3.1 Let(t1,...,t,) be the sequence of answers represented by an SFA, and let (t,,,...,t,,)
be its subsequence that unify with G. Then (i) Retrieve_Answer returns k answers, and (it)

Vj,1 < j < k the j** answer returned is tr; -

Observe that, using an SFA, we did not even attempt to do the unnecessary unification opera-
tions involving the symbol b in states s; and sg. In contrast, when selecting from an answer list, lack
of indexing would have forced us to attempt them and fail. Although SFA is a clear improvement
over an answer list, we can in fact do much better. In the example above, even the two unifications
that were done to make the transitions from s; to sg and from sg to sg can be eliminated. This is be-
cause, for the two selected terms p(a,a,a) and p(a,a,c), prefiz(p(a, a,a),2) = prefiz(p(a, a, c), 2).
We can use such common prefixes as an index for quickly selecting relevant answers. To exploit
such opportunities we enhance our basic SFA structure with threads as follows.

3.2 From SFA to Threaded Sequential Automata

The sequence of positions seen on any root-to-leaf path in an SFA corresponds to some top-down
traversal of the term represented by the leaf. Henceforth, we assume that this traversal corre-
sponds to a preorder traversal. We can regard each state of an SFA as representing a prefix of
term(s) in the SFA. In Figure 2b, sg represents the prefix {(A,p),(1,5),(2,a)} while s;; represents
{(A,p),(1,0),(2,0)}.

Given the goal p(a,a,V), the SFA in Figure 2b retrieves p(a,a,a) first by following the path
from s; to s4. To retrieve the next answer p(a,a,c) it backtracks to the root and then follows the
path from s; to s;g. But observe that whenever states sy and s3 are visited, states sg and sg are

@Ss 3% (3N

G e

paaa PbaxXy) p@ac) pl@bb) p@ad)

3
p@a p(Xyb) p(ac)

Sequence of answers
TSA for answers in Figure 2a. and corresponding TSA.

(a) (b)
Figure 4: Examples of TSAs.

also guaranteed to be visited. This is because s; and sg denote the same prefix ({(A,p),(1,a)}) and
so do s3 and sg ({(A,p),(1,a),(2,a)}). This idea is captured by the following notion of equivalent
states.

Definition 3.4 (Equivalent States) A state s is equivalent to state s' (denoted by s = s') in an
SFA if (i) s=s' or (ii)) t S s and t' % s' are transitions in the SFA and t = t'.

Note that = is an equivalence relation. We convert an SFA into a Threaded Sequential Automa-
ton (TSA) by threading states in each equivalence class R induced by = using equivalence links as
follows. Let (dq,ds,...,d;) be the sequence of states in R with increasing preorder numbers. Then
we place an equivalence link from d; to d;;; for all 1 <7 < k. The TSA obtained from the SFA in
Figure 2b is shown in Figure 4a.

Intuitively, following equivalence links amounts to doing indexing. For instance, using the TSA
in Figure 4a, after returning the first answer to the goal p(a,a,V) upon reaching state s4, the next
answer, p(a,a,c), can be retrieved by backtracking to sz, following the equivalence link to sg and
making the transition to sio.

Whereas in an SFA the only possible transitions that could be taken from a state s were all
rooted at s, in a TSA it is possible to traverse an equivalence link and make transitions rooted
at a different state. For example, in the TSA in Figure 4a, on reaching s; if the next symbol is
¢ then one can make transition to sjg by first taking an equivalence link from sz to sg. We now
expand the set of applicable transitions to include these types of transitions. This is readily done
by modifying Definition 3.2 as follows:

Definition 3.5 (Applicable Set of Transitions (for TSA)) Given a TSA, the set of all tran-
sitions that are applicable on reaching a state s with an initial goal G, denoted by App(G,s), is
such that s' % d' € App(G,s) iff (i) s = &', (i1) s = d' is a transition in the TSA and (iii)
PartInst(G,d') is defined whenever PartInst(G,s') is defined.

In an SFA, due to its tree structure, it is straightforward to guarantee that a transition will be
taken at most once. But since a TSA is a directed acyclic graph, it is possible to take a transition
more than once leading to two undesirable consequences, namely (i) the same answer may be
retrieved more than once, and (ii) the order in which answers are returned may not be consistent
with the given total order. For example, invoking Retrieve_Answer on the goal p(a,Y) using the

TSA in Figure 4b will return with the answer p(a,a) and continuation stack (s; X S4, 86 — s7).

Invoking Retrieve_Answer a second time will return p(a,c) and the continuation stack (s; 4 S4).

A third invocation will return with p(a,b) — which ought to have preceded the previously returned
answer — and the continuation stack (s; > sg). In any case we have now retrieved all the answers
to the goal. However, the continuation stack still has one more pending transition, whose effect
will be to return p(a,c) once more when Retrieve_Answer is called again.

The above example illustrates that although threads provide the mechanism for indexing, they
have to be used with care. Had the transition s — s; been not regarded as pending then it
would not have been pushed onto the continuation stack. We would then have returned all answers
once, and in the correct order. The source of this problem stems from our expanded definition of
applicable transitions which results in s — s7 to be pushed on the stack. We know on reaching s,
that answers reachable through the transition sg — s; can also be reached through the transition
$1 — 84 that is already on the stack. Hence we modify the selection of transitions so as to consider
only those transitions that reach answers which cannot be reached through the pending transitions
on the stack. Such transitions are called safe transitions, defined below.

Definition 3.6 (Safe Transitions) Given a goal G, a continuation stack ts and a state s, the set
of safe transitions, denoted by Safe(G,ts,s), is such that s' > d' € Safe(G,ts,s) iff (i) s' > d' €
App(G, s), and (i) Vs" B dn e ts pre(d') < pre(d").

Simply restricting the traversal of equivalence links without modifying what may appear on the
continuation stack will preclude us from taking any equivalence link. For example, using the TSA
in Figure 4a, first_answer for the goal p(a,a,V) will pick s; = s;, placing s; — sg on the stack.
But doing so will disable us from making a transition to sg via s3 for retrieving p(a,a,c). The
solution is to ensure that nezt(r) is a transition 7/ such that there is some answer reachable from
7' but not from 7. The modified definitions for first and nezt for TSAs are as given below.

Definition 3.7 First and Next for TSA

first(G,ts,s) = s = d'such that s’ Lde Safe(G, s, s) and
Vs" % d" € Safe(G,ts,s) d' #d" = pre(d') < pre(d").
next(G,ts,s > d) = s 2, & such that &' 2 @' ¢ Safe(G,s,s),a # B and

vs" 2 a4 e Safe(G,ts,8) pre(d’) > pre(d)Ad" £d' =
pre(d') < pre(d").

Algorithm Retrieve_Answer now uses these modified first and nezt functions to retrieve answers
from a TSA. The soundness theorem for the SFAs (Theorem 3.1) can be established for TSAs when
Retrieve_Answer is modified as specified above. Moreover, we can establish the following efficiency
result that exactly characterizes the unifications avoided through the use of threads.

Theorem 3.2 Let (t1,...,t,) be the sequence of answers represented by the TSA, and let (t,,,...,t,,
be its subsequence that unify with G. Then, in the retrieval of t,, and i, , using Retrieve_Answer,
the unification operation at a position & is shared iff (i) prefiz(t,;,6) = prefiz(t,;,,,6), and (i)
there is no k,r; < k < rj41 such that prefie(ty,d) unifies with prefie(G,8) and prefiz(ty,§) #
preﬁw(t,,j) 5) :

3.3 From TSA to Dynamic TSA

We now address the problem of retrieving answers from incomplete tables and complete the
design of DTSA. To understand the issues here, consider retrieving answers to the goal p(a,X,c)
using the TSA in Figure 4a. The very first call made by Retrieve_Answer will return with p(a,a,c)

algo validate(G, inp_cont_stk, s)
/* (s, inp_cont_stk):
input answer continuation

T G: Goal */
%y begin
e VB let inp_cont_stk = (c1,...,Ck)
Sig such that ¢; = s; = v;
3 e Vi3 if s, = s then
V6_Q s, %51 :%d Si4 n:i=k%k
i ’ : L] else
paaa pb.ax) p@Eac) pab,b) p(a,ad) let spy1 = s
(a) ni=k+1
endif
S » /* ts: Output cont. stack */

ts := ()

fori:=1ton—-1
let 7 = next(G, ts, s; =5 s;41)
5 if 7 is defined then

- New push(t, ts)
218 Vs endif
endfor
p(aaa) Pp(baX) p@ac) pabb) paad pabc)
return is
end

(b) ()

Figure 5: DTSA corresponding to the TSA of Figure 4a (a), with an added answer(b); Algorithm
Validate (c).

and the continuation stack (sg b, s11). The next call will fail at s;3 and will return with no answers
and an empty continuation stack. Further invocations of Retrieve_Answer will fail to return any
answer even when new answers are added to the TSA.

The problem essentially boils down to one of keeping “appropriate” information on the contin-
uation stack to be able to proceed from the point where the last return was made. Observe that
due to the total order on the answers, the leaf corresponding to a new answer will have a higher
preorder number than the leaf nodes of answers inserted earlier. This observation implies that, in
the above example, either s1, sg or s13 in Figure 4a are the only states that can be on the paths of
any new answer that unifies with the goal p(a,X,c); for instance, when p(a,b,c) is added to the
TSA in Figure 4a the states s; and sg will be on its root-to-leaf path.

The idea then is to keep on the continuation stack all and only those states that can be on
the paths of new answers that unify with the goal. Operationally this translates to keeping only
those states seen on the last root-to-leaf path taken by Retrieve_Answer on the stack. To force such
states onto the stack we convert a TSA into a DTSA as follows. We associate with every state s; a
special state »; with pre(v;) = co. From every state s; for which there is no outgoing equivalence
link, we create a special transition s; g v;. (See DTSA in Figure 5a corresponding to TSA in
Figure 4a.) The nature of the special transitions is such that although they may be applicable to

10

any goal, they will never be taken during traversal.
Given the goal p(a,X,c), on invoking Retrieve_Answer on the DTSA in Figure 5a, the first

answer along with the continuation stack (s; 5 V1, Sg 2, s11) is returned. The next call returns
with no answer after failing at s;3 with the continuation stack (s; 5 V1, Ss e Vg, S13 e} r1s). It
is easy to see that whenever we return with no answers the continuation stack will always have a
transition s; = v; on top.

To retrieve new answers from the information on the stack we proceed as follows. We augment
answer continuation to be a pair (s,7) where s is the state last visited by Retrieve_Answer and 7 is
the continuation stack. Let a DTSA S contain the answer sequence {¢1,%2,...,t;}. Suppose (s,7)is
the answer continuation returned by some invocation of Retrieve_Answer over S with s; — v; on top
of the continuation stack. Assume that answers {tg+1,%k+2,-..,%} have been subsequently added to
S, yielding a DTSA S’, before the next invocation of Retrieve_Answer. To reflect the new answers
that have been added we transform v to 7' such that had we retrieved all the answers, starting
with the first one, from S’ then 4’ would have been the state of the continuation stack on reaching
s. For instance, had we retrieved all our answers for p(a,X,c) from the DTSA in Figure 5b, on

reaching s;3 the continuation stack will be (s; 5 V1, Sg b, s15). The desired transformation of v to
7' is performed by Algorithm Validate (Figure 5c).

Our modified strategy to retrieve answers from DTSA is as follows. Whenever an invocation
of Retrieve_Answer returns with no answers and an answer continuation (s,), we invoke Validate
to transform v to 4'. If no answers are returned using 7' then we assert that there are no new
answers to return at the present time. Continuing with our example above, when Retrieve_Answer
is invoked with the continuation (si3, (s1 5 V1, 88 = Vg, 513 = v13)) on the DTSA in Figure 5b
it will fail to return an answer. When Validate is called with this continuation it will return the
continuation stack (s; 5 V1, S8 2, s15). Now we can retrieve the answer p(a,b,c). It can be
established that Theorem 3.1 (soundness) and Theorem 3.2 (efficiency) carry over to DTSA also.

4 Implementation

We now sketch the implementation aspects of tabling operations for a subsumptive engine based on
DTSA. Specifically we extend the variant based tabling engine of XSB to support the operations
for subsumptive tabling. Our description focuses on operations whose implementation is subtle and
interesting while omitting those that are straightforward and routine.

Call-check-insert The call table is organized as a trie (see Figure 6a for an example). Each leaf
in the trie represents a call, and the states in a root to leaf path denote positions in a left-to-right
preorder traversal of the corresponding call. An edge (s,d) in the trie is labeled with a symbol «
such that all calls in the leaves reachable from that edge have « in the position specified by state s.
Given a call ¢, the search for a subsuming call is performed by recursively backtracking through the
call trie, trying to match the edge labels with symbols or subterms at the corresponding positions
in ¢. A non-variable label on an edge can match only with an identical symbol in c¢. If the label
on an edge is a variable, say Z, match is done as follows. On the first occurrence of Z, it is bound
to the subterm in ¢, and match succeeds; on subsequent occurrences, the subterm in ¢ must be
identical to the term bound to Z for match to succeed. It can be readily established that the above
scheme handles non-linear terms correctly.

Note that there may be many calls in the table that subsume a given call ¢. In such cases,

11

p(a,b,X)
p(X,b,c)
p(a,X,c)
p(a,X,Y) S43)

Answer
List
Sequence of calls and Answer trie for answers
corresponding call trie. in Figure 2a.

(a) (b)

Figure 6: Examples of Tries.

for efficient answer resolution, we must find a minimally subsuming call, since if ¢’ subsumes ¢”,
then ¢’ will have at least as many answers as ¢”. We can find a minimally subsuming call by
matching non-variable edges before variable edges at every step. As an immediate consequence, we
are guaranteed to find a variant of ¢ whenever one exists. Moreover, if a variant does not exist, the
traversal algorithm can be easily extended to insert ¢ in the table without rescanning the longest
prefix of ¢ that is already present in the table.

Answer-check-insert An answer table consists of an answer trie and a DTSA. The DTSA is
implemented as a threaded tree, with each state s represented by a node, denoted by node(s), in
the tree. The tree is implemented using child and sibling pointers — a standard technique for
implementing trees of arbitrary branching factor. The list of children of a node n is called the
child list of n. Apart from child and sibling fields, node(s) contains fields to store the equivalence
link and preorder number of s. The symbol « on a transition s = d is stored in the atom field of
node(d).

The answer-check-insert operation inserts a new answer ¢ into the answer trie as well as the
DTSA and eliminates duplicates using the answer trie. Inserting ¢ in the DTSA amounts to adding
a rightmost path in the DTSA. To do it efficiently, we maintain the rightmost path of the DTSA
in a chain, say r. We traverse ¢t and r simultaneously as long as the the symbols in ¢ and r are
identical. Starting from the point of the first mismatch, the symbols in ¢ are inserted into the
DTSA and r is updated appropriately.

Although the DTSA itself can be used to perform duplicate checks, using an additional answer
trie has several advantages. Observe that each state in the answer trie has a unique prefix, and
corresponds to an equivalence class of states in the DTSA. For instance, in Figure 6b the state s3
in the trie corresponds to the states s3, sg and s13 of the DTSA in Figure 5a. As a consequence,
duplicate checks can be performed more efficiently using an answer trie. For instance, in the answer
trie in Figure 6b, when checking for the existence of an answer p(a,a,b), we will check for an edge
with label b from state s3 of the trie. In contrast, to perform the same check with the DTSA, we
will have to check for an outgoing transition with label b in each of the states s3, sg9 and s13. In
addition, new nodes that may be added to the end of equivalence chains during insertion can be
added in constant time by maintaining a pointer to the last node in an equivalence chain (of the
DTSA) in the corresponding trie node. Finally, the trie, rather than the DTSA, is used to retrieve
answers from completed tables (see below). Maintaining a separate trie allows us to reclaim space

12

on completion of a table by simply deallocating the DTSA.

Retrieve-answer If the answer table is complete then the answer trie is compiled into WAM code
and answers are retrieved by backtracking through this compiled trie (see [4] for details). In this
case, the WAM choicepoints used for backtracking form the answer continuation. For incomplete
tables, if no indexing is needed to retrieve answers from the table (%.e., in the case of variant calls
where all answers in the table are relevant), an answer list is used to return answers in sequence.
Otherwise, answers are retrieved by traversing the associated DTSA using the technique described
in Section 3.

4.1 Comparison with Variant Tabling Implementation

In our implementation we directly borrow the concept of call and answer tries (see Figures 6a,b)
from our earlier work on variant tabling for XSB [4]. However, unlike in the variant case, here the
call-check-insert operation searches for a subsuming call by backtracking through the call trie. More
importantly we have replaced the answer list in the answer trie (see Figure 6b) by a DTSA and
the corresponding answer retrieval algorithm. Another feature borrowed from our variant tabling
is the technique of substitution factoring by which we store only the substitutions for variables in
a call in the answer table. In our current implementation we apply substitution factoring only
to subsuming calls. However it is not difficult to extend the machinery to perform substitution
factoring on subsumed calls also and reap the ensuing benefits.

Finally, some remarks are due about the connection between our earlier work on factoring and
this paper. We borrowed the idea of SFA from our work in [2]. In that paper SFA was used to
develop a compilation technique for efficient sharing of elementary unification operations performed
on Prolog clause-heads. But the two critical ingredients of DTSA, namely, indexing and dynamism
were absent in that work. Our subsequent work on Clause Resolution Automata [3] described a
compile-time transformation technique to share program and answer clause resolution steps based
solely on information in program clause-heads. The effect of this technique can be viewed as
facilitating sharing among answer tables in a limited sense. The same transformation can also be
used as a compile-time optimization for evaluating programs using a subsumptive engine.

5 Performance

We have implemented a subsumption-based tabling system by extending the variant-based tabling
operations in XSB (version 1.4.3) with the operations described in previous sections. Below, we
first provide experimental results (in Table 1) that measure the effectiveness of our subsumptive
engine on program/query pairs that show subsumptive behavior: that is, some calls made during
evaluation of the query are subsumed by previously made calls. We then report the overheads
of the implementation as observed by its performance on programs and queries that do not show
subsumptive behavior. We also present an optimization to reduce the overheads of evaluating such
programs and show the effectiveness of this optimization (in Table 2).

Effectiveness Table 1 shows the performance of the subsumption-based system relative to that
of the native variant-based system on the following programs (that are typically used to stress test
deductive database engines): left-, right- and doubly-recursive transitive closure programs that
compute the ancestor relation (anc_1, anc_r and anc_d), and a program same_gen to compute

13

| Program | Query | Database (size) | Variant | Subsumption | Speedup |
anc_r anc_r(X,Y) Chain 128 0.73 0.70 1.04
256 2.59 2.37 1.09

512 10.42 9.48 1.10

1024 41.10 35.70 1.15

Tree 512 0.52 0.58 0.90

1024 1.36 1.06 1.28

2048 3.86 2.25 1.72

4096 12.83 5.85 2.19

anc_d anc_ d(X,Y) Chain 32 0.36 0.29 1.24
64 2.42 1.67 1.45

128 18.18 12.49 1.46

256 | 142.51 98.84 1.44

Tree 512 0.98 1.03 0.95

1024 2.55 2.56 1.00

2048 6.51 5.85 1.11

4096 18.45 13.23 1.39

anc_1 anc_1(1,X), Chain 512 5.29 0.10 52.90
anc_1(2,X) 1024 21.16 0.22 96.18

2048 85.92 0.42 204.57

4096 | 343.39 0.80 429.24

Tree 512 3.24 0.10 32.40

1024 13.03 0.18 72.39

2048 47.17 0.41 115.05

4096 | 185.10 0.81 228.52

same_gen | same _gen(X,Y) | Chain 128 0.34 0.07 4.86
256 1.20 0.16 7.50

512 4.63 0.50 9.26

1024 18.52 1.18 15.75

Tree 32 0.33 0.22 1.50

64 2.33 1.41 1.56

128 16.51 10.19 1.62

256 | 125.50 77.56 1.61

Table 1: Performance of subsumption-based tabling.

the same generation relation. The queries were evaluated over databases with different structures
(Chains and Binary Trees) and sizes? The table shows that our implementation of subsumption-
based tabling can indeed exploit the subsumptive behavior of these programs effectively. Moreover,
observe that the subsumption-based engine often exhibits better time complexity in evaluating
programs compared to the variant-based engine. The reason is that while the overheads for sub-
sumption add only a constant factor to the evaluation time, the number of program clause resolution
steps saved may, and often does, increase with the size of the program.

The subsumption-based engine is slower than the variant-based engine on two cases in the table:
right- and doubly-recursive ancestor programs on trees of size 512. Note that, for a tree-shaped
parent database, the atoms at the leaves of the tree cannot be an ancestor of another. In both
ancestor programs, half the total number of subgoals of the form anc(a,Z) (i.e., anc_r(a,Z) and

2 All benchmarks were run on a SparcStation 2 using SunOS 4.1.1.

14

Program Query Database (size) | Variant Subsumption
Original Optimized
Time | Speedup || Time | Speedup
anc 1 anc 1(1,Y) | Chain 1024 1.08 1.28 0.84 1.09 0.99
2048 2.20 2.53 0.87 2.09 1.05
4096 4.08 4.79 0.85 4.16 0.98
8192 7.93 9.71 0.82 8.18 0.97
anc_r anc_r(1,Y) | Chain 128 0.25 0.47 0.53 0.34 0.74
256 1.06 1.59 0.67 1.08 0.98
512 4.18 6.25 0.67 4.15 1.01
1024 16.78 || 24.31 0.69 || 16.04 1.05

Table 2: Performance of subsumption-based tabling before and after Lazy Creation optimization.

anc_d(a,Z), where a is some atom drawn from the parent database) fail. Subsumption-based
engine treats these calls as dependent on the original goal (anc(X,Y)) and can recognize the failure
of these subgoals only when all answers to the original goal have been completed. Hence these
programs show a high overhead due to answer scheduling, and exhibit speedups only when the
number of program resolution steps avoided — which increases with the size of the parent relation
— is sufficient to overcome the overheads. In all other programs, we observe that the overheads for
subsumption are low enough to show speedups even when the underlying database is small.

Overheads and Optimization When no two subgoals in a program properly subsume each
other, subsumption-based tabling offers no gains to compensate for the overheads due to the more
expensive insert operations into call and answer tables. We measure these overheads directly
by evaluating programs and queries that do not show subsumptive behavior: the left-recursive
ancestor program (anc_1) with the query anc_1(1,Y) and the right-recursive ancestor program
(anc_r) with the query anc_r(1,Y). On these queries, we observe a slowdown of 13% to 47% when
the subsumption-based engine is used. However, we can eliminate most of these overheads by using
the following optimization, called Lazy Creation. The central idea of Lazy Creation is to delay
the construction of DTSA until the first properly subsumed subgoal is encountered; i.e., a DTSA
will be constructed for a subgoal G if and only if another call G' that is properly subsumed by
G is made later on. Thus we completely avoid constructing DTSA when no properly subsuming
calls are made, thereby enabling the subsumption-based engine to evaluate programs in which only
variant calls are made at speeds close to that of the variant-based engine.

Table 2 shows the overheads of performing subsumptive tabling and effect of Lazy Creation
optimization on the two sample programs and queries mentioned above. In contrast to the orig-
inal subsumption engine, the optimized engine does not create DTSAs in either of the two pro-
gram/query pairs. Hence the only overheads exhibited by the optimized engine are due to the
two-phase insert operation used for inserting a subgoal in the call table.

Space Performance Recall that the answer table in our subsumptive engine consists of an
answer trie and DTSA. The addition of the latter structure can result in increasing the overall
table space by a factor of two when compared to a variant engine. However, answer tables are
shared between subsuming and subsumed calls in a subsumptive engine, whereas in a variant
engine independent answer tables will be constructed for such calls. Hence sharing of answer tables
limits the table space requirments of a subsumptive engine. For instance, we observed that the

15

answer table space consumed by the subsumptive engine (with Lazy Creation optimization enabled)
is 10% to 45% more than that of the variant engine, for the programs in Table 1. Lastly, it should
be noted that the call table space requirement of the subsumptive engine never exceeds that of the
variant engine.

6 Conclusion

We presented the design and implementation of a novel table organization based on DTSA for
subsumption-based tabling. Preliminary experiments indicate that this implementation can effec-
tively exploit the subsumptive behavior of programs and queries, while performing close to the
speed of variant engine for programs where only variant calls are made.

The definition of DTSA and the associated retrieval algorithm impose the requirement that the
answers retrieved be consistent with the order in which they were inserted in the table. Note that
as far as answer resolution is concerned, the order of selection is unimportant; it is imposed merely
to ensure that no answer is missed. Whether answers can be efficiently retrieved without imposing
such an order remains open.

In a deductive database environment, due to the disk accesses involved, making a few calls
that return a large number of answers is clearly more efficient than making a large number of
more specific calls. Tabling systems based on subsumption are ideal for such an environment
since they reuse answers computed for general calls instead of recomputing them for each specific
call. To fully realize this potential in practice, however, new program transformation and query
optimization techniques may need to be devised. One such problem is to transform a program so
that more general calls are made before specific calls.

Finally, it is interesting to note that TSA can be used for processing clause-heads in Prolog
since the selection strategy imposes a top-down order on the clauses. In a similar vein, given the
dynamic nature of asserts and retracts, DTSA can in principle be used to handle them. Whether
we can gain in performance using TSA and DTSA in these two important applications remains to
be investigated.

Acknowledgements

We thank Terrance Swift and David S. Warren for their valuable comments on an early draft of
this paper. This work was supported in part by NSF grants CCR-9404921, CCR-9510072, CDA-
9303181, CDA-9504275 and INT-9314412.

References

[1] W. Chen and D.S. Warren. Query evaluation under the well-founded semantics. In ACM
Symposium on Principles of Database Systems. ACM Press, 1993.

[2] S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, K. Sagonas, S. Skiena, T. Swift, and D.S.
Warren. Unification factoring for efficient execution of logic programs. In ACM Symposium
on Principles of Programming Languages, pages 247-258. ACM Press, 1995.

16

[3]

[4]

S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, and T. Swift. Optimizing clause reso-

lution: Beyond unification factoring. In International Logic Programming Symposium, pages
194-208. MIT Press, 1995.

I.V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D.S. Warren. Efficient tabling mecha-
nisms for logic programs. In International Conference on Logic Programming, pages 697—711.
MIT Press, 1995.

R. Ramesh and W. Chen. A portable method for integrating SLG resolution into Prolog
systems. In International Logic Programming Symposium, pages 618—-632. MIT Press, 1994.

K. Sagonas, T. Swift, and D.S. Warren. The XSB programmer’s manual, Version 1.4.2. Tech-
nical report, Department of Computer Science, SUNY, Stony Brook, 1995.

T. Swift and D.S. Warren. Analysis of sequential SLG evaluation. In International Logic
Programming Symposium, pages 219-235. MIT Press, 1994.

H. Tamaki and T. Sato. OLDT resolution with tabulation. In International Conference on
Logic Programming, pages 84—98. MIT Press, 1986.

L. Vieille. Recursive query processing: The power of logic. Theoretical Computer Science,
69:1-53, 1989.

J. Wunderwald. Memoing evaluation by source-to-source transformation. In Fifth International
Workshop on Logic Programming Synthests and Transformation, 1995.

17

