
Tabulation-based Induction Proofs with Application to
Automated Verification

Abhik Roychoudhury C.R. Ramakrishnan I.V. Ramakrishnan S. A. Smolka�

1 Introduction

XSB [14] is atabled logic programming system designed to address shortcomings in Prolog’s SLD eval-
uation mechanism for Horn programs. SLD’s poor termination and complexity properties have rendered
Prolog unsuitable for deductive database (DDB) and non-monotonic reasoning (NMR) applications. In con-
trast, XSB’s implementation achieves a computationally tight integration of the logic programming (LP),
DDB, and NMR paradigms.

When tabled resolution is used in XSB (by declaring particular predicates to be tabled), the system
automatically maintains a table of predicate invocations and answers, using the table for all equivalent
invocations after the first one. Many programs that would loop infinitely in Prolog will terminate in XSB
because XSB calls a tabled predicate with the same arguments only once, whereas Prolog may call such a
predicate infinitely often. For these terminating programs XSB efficiently computes the least model, which
is the least fixed point of the program rules understood as “equations” over sets of atoms. More precisely,
XSB is based on SLG resolution [2], which computes queries to normal logic programs (containing default
negation) according to the well-founded semantics.

Tabled resolution methods introduce a new level of declarativeness over traditional (Prolog-like) logic
programming systems. Availability of tabled LP systems makes it feasible to develop a larger class of effi-
cient declarative solutions to complex applications. One such application ismodel checking[3, 11, 4] which
is a verification technique aimed at determining whether a system specification possesses a certain property
expressed as a temporal logic formula. From a computational viewpoint, algorithmic model checking can
be formulated in terms of fixed-point computations. By encoding the semantics of process languages and
temporal logics as logic programs we can cast this computation at a high level into computing the minimal
model of the logic programs. By using metaprogramming facilities of logic programming, one can imple-
ment deductive techniques and thereby integrate them tightly with algorithmic model checking. Our XMC
system [12] aims to achieve such an integration.

XMC is an XSB-based model checker written in less than 200 lines of tabled Prolog code. In its current
state, XMC can verify finite-state systems specified using value-passing CCS [9] and formulas expressed
in modal mu-calculus [8]. XMC’s space and time performance is competitive with hand-coded (in C/C++)
model checkers such as the Concurrency Factory [5] and SPIN [6] from Bell Labs.

In this abstract we illustrate how tabled resolution, as realized in XSB, can be exploited to construct
induction proofs. Our motivation for using tabulation-based induction stems from our desire to perform
model checking oninfinite-state systems. A common example of infinite-state systems areparameterized
systems, such as ann-bit shift register or a sliding-window protocol having window sizew and buffer
capacityb. With finite-state model checking, one is limited to verifying only particular instances of such

�The authors are at : Dept. of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11794-4400. E-mail :fabhik,
cram, ram, sas g@cs.sunysb.edu

systems (such as a sliding-window protocol with window size 2 and buffer capacity 4). Verifying the entire
(infinite) family of instances of a parameterized system requires model checking using induction.

In this abstract we focus only on the tabled logic programming aspects of doing induction. We briefly
outline the application of these techniques to verification problems in Section 3.

2 Overview of Tabulation-based Induction

Induction can be “programmed” on top of a tabled resolution system such as XSB. The XSB system has a
mechanism to computeconditional answerswhich mark computations whose truth or falsity have not yet
been (or cannot be) established. This mechanism is used for handling programs with non-stratified negation
under well-founded semantics. For instance, for the program fragmentp :- q. q :- not r. r :-

not q. XSB generates three answers: one forp that is conditional on the truth ofq, and one each forq
andr , both conditional on the falsity of the other. Now, ifr can be proven false independently, conditional
answers forq andp can besimplified: both can marked as unconditionally true.

We can implement a scheme to uncover the inductive structure of a verification proof based on the above
mechanism for marking and simplifying conditional answers. Letp(n) be the predicate for verifying a prop-
erty of then-th instance of a family of systems. Assume that while attempting to evaluatep(n) we encounter
the subgoalp(n � 1). Note that the truth value ofp(n � 1) cannot be independently established, since any
attempt to do so is bound not to terminate. We can hence “skip over”p(n� 1) (i.e., without establishing its
truth), and markp(n) as conditional on the truth ofp(n� 1). Using this mechanism to skip over the infinite
parts of the computation, we will be left with aresidual program, a set of conditional answers that reflects
the structure of the inductive proof. The residual program, in fact, computes exactly the set of instances of
the family for which the property holds. Preliminary exploration using this approach indicates that for many
problems, the structure of the residual program is simple enough that we can complete the proof by heuristic
methods that attempt to find a counter example,i.e., an instance of the family that is not generated by the
residual program. A detailed description of our technique appears in [13].

2.1 An Example

We now illustrate our approach by proving the associativity ofappend/3 predicate using tabulation-based
induction.

Consider the predicateprop/3 that expresses the associativity property ofappend/3 (which concate-
nates two lists to yield a third list) defined by the following logic program:

append([], Y, Y).
append([X|Xs],Y,[X|Zs]) :� app(Xs, Y, Zs).

prop(X,Y,Z) :� append(X,Y,L1), append(L1,Z,L2), append(Y,Z,L3), append(X,L3,L2).

When we compute answers for the queryprop(X,Y,Z) using (tabled) resolution, we attempt toenu-
merateall substitutions to variablesX, Y andZ such thatprop(X,Y,Z) is true. It is easy to see that evalu-
ation ofprop(X,Y,Z) terminates for particular values ofX, Y andZ, whereas the queryprop(X,Y,Z)
with X, Y andZ not ground does not terminate. The core problem stems from the fact thatprop(X,Y,Z)
as well as some of the subgoals generated while resolvingprop(X,Y,Z) have infinite number of answers,
and any attempt to compute this set by enumeration is bound to fail.

However, instead of attempting to enumerate all answers toprop(X,Y,Z) , we seek simply to capture
thestructureof the set of answers—i.e., dependencies between the different answers— as follows.

When the initial call toprop(X,Y,Z) is made, we do not know the structure of the answer space,
and hence we perform program clause resolution. This results in the callappend(X,Y,L1) . Resolution

of this subgoal with the first clause definingappend/3 yields an answerX = [], Y = L1 . After
adding this answer to the answer table forappend(X,Y,L1) , we explore the other alternative of resolving
append(X,Y,L1) with the second clause ofappend/3 . This leads to the callappend(Xs,Y,Zs)
such thatX=[X1|Xs], L1=[X|Zs] .

Under normal tabled resolution, since a variant ofappend(Xs,Y,Zs) has been called before, we
will resolve this subgoal using answer clause resolution, and generate the answerXs = [], Y=Zs for
append(Xs,Y,Zs) . Propagating this answer further, we will get the answerX = [X1], L1=[X1|Y]
for the original callappend(X,Y,L1) . This new answer can be be used to resolveappend(Xs,Y,Zs)
generating a third answer, and so on, resulting in an infinite computation. The infiniteness comes from the
fact that we resolveappend(Xs,Y,Zs) with answers from the table ofappend(X,Y,L1) , which in
turn generates more answers toappend(X,Y,L1) .

Instead of generating answers forappend(X,Y,L1) by performing answer clause resolution of
append(Xs,Y,Zs) , we simply “remember” the dependency between answers ofappend(Xs,Y,Zs)
and append(X,Y,L1) . We generate aconditionalanswer forappend(X,Y,L1) of the form that
X=[X1|Xs], L1=[X|Zs] wheneverXs, Y andZs are answers toappend(Xs,Y,Zs) . Conditional
answers can be computed using the delay and simplification mechanisms of SLG resolution— mechanisms
that are used to compute well-founded models. In SLG terminology, then, the structure of the answer space
is revealed by theresidual program(set of conditional answers treated as clauses) when subgoals with
potentially infinite number of answers aredelayed.

Using this model of computation, we obtain the following residual program for the queryprop(X,Y,Z) :

prop(X,Y,Z) :� X = [], append(Y,Z,).
prop(X,Y,Z) :� X = [|Xs], append(Xs,Y,L1), append(L1,Z,L2),

append(Y,Z,L3), append(X,L3,L2).

append(X,Y,Z) :� X = [], Z = Y.
append(X,Y,Z) :� X = [X1|Xs], Z = [X1|Zs], append(Xs,Y,Zs).

Now, folding append(Xs,Y,L1), append(L1,Z,L2), append(Y,Z,L3),
append(X,L3,L2) into prop(Xs,Y,Z) (from the definition of prop/3 in the original program), and
specializingappend(Y,Z,) asapp1(Y,Z) , we obtain the program:

prop(X,Y,Z) :� X = [], app1(Y,Z).
prop(X,Y,Z) :� X = [|Xs], prop(Xs,Y,Z).

app1(X,Y) :� X = [].
app1(X,Y) :� X = [|Xs], app1(Xs,Y).

We have thus extracted the underlying structure of the answer space forprop(X,Y,Z) . Note thatno
approximations have been performedand hence the residual program isequivalentto the original definition
of prop/3 . Moreover, it should be noted that the transformations applied to the residual program are simple
fold/specialize transformations that can be readily implemented in a tabling system.

The above program is equivalent to the “lemmas” generated by induction proof strategy for Prolog
suggested in [7]. While in [7] the lemmas are considered simple enough to be proved by inspection, and
hence the final step of the induction proof, we can in fact go one step further.

Note that for every induction proof, there is a specific domain over which the induction variables range.
We can define the domain of induction variables also as a logic program. For instance, the variablesX, Y
andZ in prop(X,Y,Z) range over the domain of lists, which can be defined as:

list([]).
list([|Xs]) :� list(X).

Now, we can reduce the induction problem to the problem of ascertaining whether the counterexample
program (see below) has an empty model.

counter example(X,Y,Z) :� list(X), list(Y), list(Z), not(prop(X,Y,Z)).

By applying fold/unfold transformations (under tabling, to avoid infinite application of these rules), we
can, in many cases, reduce the counterexample program to one that finitely fails under tabled evaluation.
Our induction proof succeeds when the counterexample predicate finitely fails. However, note that since
the counterexample predicateexactlycaptures the set of counterexamples, tabled evaluation of the predicate
may not terminate. In such situations, it is desirable to evaluate the predicate over an abstract domain in
order to ensure termination.

The steps described above can be formalized as an algorithm. The details will appear in the full paper.

3 Application to Automated Verification

Algorithmic model checking in the XMC system is implemented in two parts using tabled logic program-
ming. First, the semantics of the process language (value-passing CCS) is specified as a predicatetrans/3
that, given a process definition, evaluates the edge relation in the corresponding Labeled Transition System
(LTS). Next, the semantics of the temporal logic (modal mu-calculus) is specified as a predicatemodels/2
that, given a formulaF in the logic and a stateS (a vertex in the LTS), determines whetherF holds in
S. The predicatetrans/3 is used in the definition ofmodels/2 . The following is a fragment of the
encoding oftrans/3 andmodels/2 (see [12] for details):

:- table trans/3. % Evaluate ’trans’ relation using tabled resolution.
% Prefix:
trans(Act o P, Act, P).
% Choice:
trans(P + Q, Act, R) :- trans(P, Act, R).
trans(P + Q, Act, R) :- trans(Q, Act, R).
% .. and so on for other operators

:- table models/2. % Evaluate ’models’ using tabled resolution.
models(S, and(F1, F2)) :- models(S, F1), models(S, F2).
models(S, diam(A,F)) :- trans(S, A, S1), models(S1, F).

The processes are specified using value-passing CCS, which augments Milner’s CCS to enable commu-
nication of values (rather than atomic signals alone) over channels, and computation using these values.
Parameterized systems as well as (infinite) families of systems can be encoded using value-passing CCS.
For example, a FIFO channel with a fixed buffer size can be specified as:

chan(Buf, N, Limit) ::=
if (N == 0) then input_only(Buf, N, Limit)
else if (N == Limit) then output_only(Buf, N, Limit)
else input_only(Buf, N, Limit) + output_only(Buf, N, Limit).

input_only(Buf, N, Limit) ::= in(input_chan(X)) o chan([X|Buf], N+1, Limit).
output_only(Buf @ [X], N, Limit) ::= out(output_chan(X)) o chan(Buf, N-1, Limit).

Now, the problem of verifying some property of the bounded bufferfor an arbitrary, albeit fixed, buffer
sizebecomes an instance of the model checking problem for infinite-state systems. With the encoding of
CCS and modal mu-calculus semantics as a logic program, model checking a parameterized system reduces
to evaluating a logic program with infinite answer sets. Applying tabulation-based induction techniques,
we first evaluate away the finite parts of the process definition to expose the structure of induction. The
induction proof is completed with the counter-example generation phase. If the counter-example program
finitely fails, then the formula holds of every system in the infinite family. On the other hand, if the counter-
example program finitely succeeds, not only do we have a disproof, but an exact scenario when the formula
is false: an invaluable tool for “debugging” safety-critical systems. Moreover, tabulation-based induction

is completely automatic, in contrast to systems such as PVS [10] which supply a suite of tools to assist the
user derive induction proofs.

We have thus far used our method to verify safety and liveness properties of infinite families of systems
using model checking, including the liveness of ann-bit shift register (fed with an infinite supply of input
bits) and deadlock freedom of a token ring ofn-processes. Since our method is a generic technique for
generating induction proofs, it is also applicable to verification problems that do not use model checking.
For instance, we have been able to verify the correctness of parameterized hardware circuits such as ann-bit
carry-lookahead adder directly using tabulation-based induction. A detailed description of the verification
problems as well as our solutions appear in [13].

References

[1] R. Alur and T. A. Henzinger, editors.Computer Aided Verification (CAV ’96), volume 1102 ofLecture Notes in
Computer Science, New Brunswick, New Jersey, July 1996. Springer-Verlag.

[2] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.JACM, 43(1), 1996.

[3] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching-time
temporal logic. In D. Kozen, editor,Proceedings of the Workshop on Logic of Programs,Yorktown Heights,
volume 131 ofLecture Notes in Computer Science, pages 52–71. Springer-Verlag, 1981.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications.ACM TOPLAS, 8(2), 1986.

[5] R. Cleaveland, P. M. Lewis, S. A. Smolka, and O. Sokolsky. The Concurrency Factory: A development environ-
ment for concurrent systems. In Alur and Henzinger [1], pages 398–401.

[6] G. J. Holzmann and D. Peled. The state of SPIN. In Alur and Henzinger [1], pages 385–389.

[7] J. Hsiang and M. Srivas. Automatic inductive theorem proving using prolog.TCS, 54:3–28, 1987.

[8] D. Kozen. Results on the propositional�-calculus.Theoretical Computer Science, 27:333–354, 1983.

[9] R. Milner. Communication and Concurrency. International Series in Computer Science. Prentice Hall, 1989.

[10] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas. PVS: Combining Specification, Proof checking
and Model checking. InProceedings of the Seventh International Conference on Computer Aided Verification
(CAV ’96),Vol. 1102 ofLecture Notes in Computer Science, pages 411–414. Springer-Verlag, 1996.

[11] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. InProceedings of
the International Symposium in Programming, volume 137 ofLecture Notes in Computer Science, Berlin, 1982.
Springer-Verlag.

[12] Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, Terrance Swift, S.A. Smolka, and D.S. Warren.
Effficient model-checking using tabled resolution.Proceedings of CAV ’97, 1997.

[13] Abhik Roychoudhury, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka. Automated verification of
parametrized families using tabled logic programming. Technical report, Dept. of Computer Sc., State university
of New York at Stony Brook, December1997.

[14] XSB. The XSB logic programming system v1.7, 1997. Available by anonymous ftp from
ftp.cs.sunysb.edu .

