
A Conservative Technique to Improve

Deterministic Evaluation of Logic Programs�

A. Roychoudhury C.R. Ramakrishnan I.V. Ramakrishnan

Dept. of Computer Science

SUNY at Stony Brook, NY 11794.

fabhik, cram, ramg@cs.sunysb.edu

R. Sekar

Dept. of Computer Science

Iowa State University, Ames, IA 50011.

sekar@cs.iastate.edu

Abstract

The performance of logic programs can be signi�-

cantly improved by reducing nondeterminism in their

evaluation using techniques for early pruning of com-

putation paths that would eventually fail. Using static

information gleaned from the program, we can identify

(simple) conditions that must hold for certain compu-

tation paths to succeed, and test them before search-

ing along those paths. However, naive introduction of

such tests can actually lead to performance degradation

since tests may be repeated along a branch, and also be-

cause the tests themselves may create additional choice

points. We therefore develop a program transformation

algorithm that enables us to introduce only those tests

that facilitate early pruning of failure branches, while

providing formal guarantees against any performance

degradation. Our transformation is based on a novel

polyvariant program specialization technique that can

reason about the relative execution times of the origi-

nal and transformed programs. We present results of a

prototype implementation that shows the e�ectiveness

of our approach.

Keywords: Optimization of Logic Programs, Deter-

minacy, Program Specialization.

1 Introduction

The ability to perform non-deterministic search is

one of the most attractive and powerful features of

logic programming languages such as Prolog. At the

same time, in many cases, solutions are found only

on a few of the possible computation paths. Signi�-

cant performance gains can be obtained by identifying

and avoiding searches down those paths of computation

that would eventually fail to produce a solution.

One of the earliest known techniques for im-

proving determinacy is shallow-backtracking [3, 11,

19, 27]. However, this technique cannot propagate

�This work was partially supported by NSF grants CCR

9404921, 9510072, 9705998, 9711386, CDA 9504275 and INT

9600598.

failure-related information across predicates or pro-

gram clauses. Functionality analysis [8, 9], mutual ex-

clusion analysis [18] and cut-based determinacy anal-

ysis [16, 24] overcome this drawback. However, these

techniques perform an all-or-nothing optimization: no

optimization is possible if we cannot determine whether

a predicate is functional, or a set of clauses are mutu-

ally exclusive. Necessary-condition based techniques

[5, 12, 15, 23] combine the bene�ts of the above two

categories of techniques. They exploit failure-related

information that may be embedded deep within a pro-

gram, and use it systematically to prune failure-bound

branches, regardless of whether the branch involves de-

terministic or non-deterministic predicates.

Speci�cally, necessary-condition based techniques

derive a condition for each program clause that must be

satis�ed in order for the clause to be used in comput-

ing a solution. At run time, a clause is selected only

if the condition associated with that clause is satis�-

able. Naive tests for satis�ability can however degrade

performance due to repetition of tests. This problem

is compounded by the fact that the satis�ability check

itself may lead to creation of new choice points. Hence,

a direct implementation of this model can lead to sig-

ni�cant loss in performance [4]. A natural problem,

then, is to design a program transformation technique

for introducing satis�ability tests at the earliest pos-

sible point (thereby promoting early pruning) without

degrading the program's performance. In this paper, we

present a solution to this problem. Our transformation

technique, called SNIP (Specialization usingNecessary

conditions to Improve Pruning), is based on polyvari-

ant program specialization.

1.1 Overview of Approach

The input to our transformation algorithm consists

of a Prolog program, together with a description of

the set of all possible top-level goals, called permis-

sible queries. The set of permissible queries can be

compactly described by mode declarations (specifying

which predicate arguments are inputs and/or outputs)

and export declarations (specifying which predicates

are visible outside the module). We will use the follow-

ing example program to illustrate SNIP.

Example 1 p([a]).

p([a|X]) :- p(X).

Consider permissible queries of the form p(t), where t

is any ground term. Our �rst step is to use a depth-k

program analysis technique such as that described in [5]

to infer the clause condition for each program clause.

The clause condition is a constraint that must be satis-

�ed whenever an answer to a permissible query can be

computed using the clause. We annotate the program

with the clause conditions; to simplify the description,

we also move all the uni�cations in the head of a clause

to its body, as shown below:

p(X) :- (X = [a]; �) j X = [a]:

p(X) :- (X = [ajX1]^ X1 = [ajX2]; �) j

X = [ajX1]; p(X1):

SNIP breaks up a clause condition into a series of

primitive tests, and attempts to promote these tests

into the body of the program. In order to provide the

necessary performance assurance, the promoted tests

are such that (a) we can statically assure that the tests

will not introduce additional choice points, and (b) the

cost of the newly introduced test can be \absorbed"

by specializing the clause body to eliminate a test with

equivalent cost further down in the computation path.

SNIP promotes such tests and proceeds to specialize

the body of the clause (together with the predicates oc-

curring within them) to eliminate any other tests that

are implied by the newly-introduced tests. Tests that

cannot be promoted are simply discarded. This pro-

cess is repeated until every test is either promoted or

discarded. At this point, we have transformed an input

program P into another program PT such that

� P and PT compute the same set of answers in the

same order for every permissible query, and

� PT tests the necessary conditions as early as pos-

sible, while ensuring that

� PT evaluates every permissible query at least as

quickly as the untransformed program P. Speci�-

cally, successful computation paths for PT are no

longer than the corresponding paths for P, and,

no new failure paths are introduced in PT .

The transformed program for our example is:

p([a]).

p([a,a|X]) :- p1(X1)

p1([]).

p1([a|X]) :- p1(X).

1.2 Salient Features of SNIP

1. In contrast to most specialization techniques,

SNIP provides a formal assurance about the rela-

tive performance of the transformed program over

that of the original program.

2. SNIP performs aggressive specialization, uni-

formly handling specialization contexts with dis-

junction. (See Section 4 for a brief discussion re-

lating SNIP to partial evaluation.)

3. A prototype implementation of SNIP shows that

the aggressive specialization strategy leads to sig-

ni�cant performance gains, while still retaining the

assurances regarding worst-case performance.

LL(k) grammars provide an interesting example of the

e�ectiveness of SNIP. Given depth-k necessary condi-

tions [5, 23], SNIP transforms a DCG representation of

an LL(k) grammar into the equivalent (deterministic)

LL(k) parser.

1.3 Organization of the Paper

The rest of the paper is organized as follows. After

stating the notational conventions and basic de�nitions

in Section 1.4, we describe our technique, SNIP, and

its e�ectiveness in Section 2. In Section 3, we brie
y

sketch the proofs of soundness and termination of our

technique. Detailed comparisons of our work with ear-

lier works on deterministic evaluation as well as partial

evaluation and specialization appear in Section 4. Fi-

nally, we discuss potential extensions of our technique

in Section 5.

1.4 Notations and Conventions

We use the following naming conventions. These

names may sometimes be used with subscripts and su-

perscripts:

�; �;
 predicate clauses

� the set of all terms

C context conditions, or simply, contexts

F the set of uninterpreted function symbols

f; g; h uninterpreted function symbols

� program points

! SLD-derivations

P the set of all predicate symbols

p; q; r; s predicate symbols

P;Q programs

�; � substitutions

t; u; v; w terms

V the set of all variables

X;Y; Z variables

X;Y ; Z lists of variables

'; constraints

anonymous variable

The notation [X 7! t] means that X assumes the sub-

stitution t. The value of variable X under substitution

� is denoted by �(X). An elementary uni�cation oper-

ation is of the formX = f(X) where f is an n-ary func-

tion symbol in F , and cardinality ofX is n. Each clause

in a program is of the form p(X) :� q1(X1); : : : ; qn(Xn)

where the uni�cations in the body are all elementary

uni�cation operations. Note that this form does not

restrict the set of programs we consider, since all pro-

grams can be readily transformed into this form. An el-

ementary constraint has the form p(t1; t2; : : : ; tn) where

each ti 2 � and p 62 P . Constraints are built using con-

junction and disjunction over elementary constraints.

A constraint '(X) is parametrized w.r.t variables in

X. Application of substitution � to constraint ' is

denoted by '[�].

We assume familiarity with the standard notions of

SLD derivations and SLD derivation trees [14]. An an-

swer substitution is the substitution computed for the

variables in the goal by a successful derivation. We as-

sume Prolog-style evaluation, and for the sake of sim-

plicity, consider only positive programs without control

features or side e�ects (e.g., cut).

2 Transformation Algorithm
We begin this section with the concepts and de�ni-

tions needed to describe our algorithm. First we for-

malize the notion of a context at a program point �

which speci�es the conditions that are known to hold

whenever that program point is reached in any evalua-

tion of any permissible top-level query. More formally,

De�nition 1 (Context) Let ! be a derivation start-

ing with a permissible top-level query, and let ��! be the

substitution computed by this derivation at a program

point �. Then the context at � is a constraint C� such

that C�[�
�
!] is true, for all such !.

The following notion of clause condition is stronger

than the notion of context in that it also takes into

account those conditions that would be tested after

the computation reaches a certain program point (the

point where the clause is invoked).

De�nition 2 (Clause-Condition) A constraint ' is

a clause-condition for a clause � i� the following holds

for any successful derivation ! starting with any per-

missible top-level query: if � is used in ! then '[�!] is

true (where �! is the substitution computed by !).

Note that clause conditions are constraints, whereas

we can introduce (into programs) only primitive oper-

ations or tests that can be evaluated by a Prolog engine.

De�nition 3 (Test and Elementary Test) An el-

ementary test is either a program builtin or an ele-

mentary uni�cation operation. A test is a sequence

of elementary tests.

We also need a formal way to map from tests to con-

straints.

De�nition 4 (Success-constraint) The success-

constraint of a built-in predicate built in(X) is a con-

straint (built in(X)) that holds whenever built in(X)

succeeds.

In our transformation algorithm, we annotate each

clause (in the program being transformed) with the

corresponding clause conditions and also those tests

that have been promoted into the clause body from

the clause condition:

De�nition 5 (Annotated Program) An annotated

program consists of clauses of the form q(X) :- NjB

where q(X) is the head, N is the neck and B is the body.

N consists of the clause-condition ' and the promoted

tests D.

2.1 Algorithm Transform

The top-level procedure in the transformation al-

gorithm is called Transform which takes an annotated

programP as its argument and returns the transformed

program Pt. It iterates through the clauses in P and

moves as many tests from clause conditions into clause

bodies as possible. The actual movement is performed

by a second level procedure called IntroduceTest .

Transform(P) returns Pt

1. Pt := P

2. while Pt contains a clause � that is not

marked \done"

3. Pt := IntroduceTest(�;Pt)

4. return Pt

To provide guarantees on the performance of the

transformed program, IntroduceTest ensures that the

cost of the newly introduced test is compensated by

elimination of the same (or equivalent) test(s) further

down in the program. This elimination is achieved by a

transformation process that specializes the body of the

current clause and the (de�nitions of the) predicates

used therein. The transformed program is returned

by IntroduceTest . If no new tests could be introduced

in �, then IntroduceTest marks the clause as \done."

Marked clauses are not considered again for test intro-

duction.

We illustrate Transform using the following exam-

ple.

�1 : p(X) :- (X = [a]; �) j X = [a]:

�2 : p(X) :- (X = [ajX1]^ X1 = [ajX2]; �) j

X = [ajX1]; p(X1):

Transform will �rst invoke IntroduceTest on �1.

IntroduceTest attempts to introduce the test X = [a]

from the neck to the body, and the cost of introduc-

tion is paid for by elimination of the same test. Thus

we get the (trivial) transformation to a new clause:

�3: p(X) :- (X = [a]; fX = [a]g) j X = [a]:

Now the program consists of the clauses f�3; �2g. In

the next iteration through the loop in Transform ,

IntroduceTest is invoked on �3. Since no more

tests can be introduced into the body of this clause,

IntroduceTest returns without any further transforma-

tion, but simply marking �3 as done. Transform then

invokes IntroduceTest on �2, which performs the (triv-

ial) step of introducing the test X=[a|X1] into the

clause body and eliminating it. We now have

�4: p(X) :- (X = [ajX1] ^ X1 = [ajX2]; fX = [ajX1]g) j

X = [ajX1]; p(X1):

Now IntroduceTest is invoked on �4. IntroduceTest

moves X1 = [a|X2] into the clause body. It then

tries to eliminate tests implied by the newly intro-

duced tests. As we will explain later, this elimination

is achieved by replacing the call p(X1) in the clause

body by a call p1(X2) to a specialized version of p.

By passing only the unexamined portion X2 of X1 into

p1, we avoid reexamining the structure of X1. At this

point, �4 is replaced by the following clauses:

�5: p(X) :- (X = [ajX1] ^ X1 = [ajX2];

fX = [ajX1]; X1 = [ajX2]g) j

X = [ajX1]; X1 = [ajX2]; p1(X2):

�6 : p1(X2) : � (X2 = []; �) j X2 = []:

�7 : p1(X2): � (X2 = [ajX3]; �) j p(X2):

Finally, we attempt to introduce the test X2 =

[a|X3] into the body of �7 and then create a spe-

cialized version of p(X2) for the context X2 = [a|X3].

Noting that the previous specialization of p was for the

same context, we �nally obtain the following clause in

place of �7:

�8: p1(X2) :- (X2 = [a|X3], fX2 = [a|X3]g) |

X2=[a|X3], p1(X3).

Also, we introduce the test X2 = [] in �6 to get

�9 : p1(X2) : � (X2 = []; fX2 = []g) j X2 = []:

The �nal program consists of clauses �3; �5; �8 and �9.

Observe that the transformed program can be executed

in a deterministic fashion by any Prolog engine that

uses deep indexing (such as XSB), whereas evaluation

of the original program requires backtracking.

2.2 Algorithm IntroduceTest

The actual task of introducing a test from a

clause condition into the clause body is performed by

IntroduceTest . This algorithm uses a function Select to

identify tests that can be promoted into clause bodies

from clause conditions. For each test thus identi�ed, it

uses another procedure AbsorbTest to perform special-

ization aimed at eliminating equivalent tests that may

be performed in the clause body or within the predi-

cates invoked from the clause. At �rst sight, it may ap-

pear that almost any test selected from the clause con-

dition can be introduced (and the clause body special-

ized) in this manner, without causing overall execution

times to increase. This is because the clause condition

consists of necessary conditions that must be checked

directly or indirectly in every successful execution path

using this clause. However, several complications arise

� As mentioned earlier, necessary conditions are

constraints, whereas we can introduce only tests

into the program that can be evaluated at the

point they appear.

� The clause condition may contain disjunctions

such as (X = f(b; c)) _ (X = f(c; Z)). A natu-

ral way to deal with this situation is to identify a

set of tests ft1; : : : ; tng such that (the clause condi-

tion implies that) one of these tests are performed

in every successful derivation. Then we can create

n specialized versions of the current clause, where

ti is promoted into the ith clause. However this

transformation may create an n-way choice point

where none existed before. To avoid this possibil-

ity, we must �rst ensure that the ti's are mutually

incompatible. But this alone is not enough, since

the tests (X = f(b; c)) and (X = f(c; Z)) are mu-

tually incompatible, but both are compatible with

a goal substitution X = f(U; c). On the other

hand, if we know that X = f(U; V) where U is

bound, we can again ensure that at most one of

the two tests can be satis�ed.

� A newly introduced test can alter the bindings as-

sociated with variables in such a way that costs

of subsequent operations are increased (e.g. by

converting a binding to a matching).

� Even if the promoted test satis�es the above three

conditions, its promotion may still increase over-

all costs because we are unable to eliminate tests

with equivalent costs below | in spite of the fact

that the promoted test is a necessary condition.

In particular, since the computation of clause con-

ditions involves approximations, it is possible that

the promoted test t itself is not tested below this

point, but only a test t0 that is strictly stronger

than t.

Thus, in order to provide formal guarantees, we need

to ensure that the tests returned by Select satisfy the

above conditions. We then attempt to absorb the cost

of the promoted test through specialization. If this

attempt is unsuccessful, we proceed to select alterna-

tive tests for introduction. The formal de�nition of

IntroduceTest is given as :

IntroduceTest(�;P) returns Pt

1. Let � be of the form qC(X) :�(';D)jB;

2. while ((ft1; :::; tng � Select('; C;D)) 6= nil)

3. P0 := P

4. for i := 1 to n do

5. (B0; ;T0;P0) :=

AbsorbTest(B; C ^ ti; ftig;P
0)

6. if T0 is empty then

P0 := P0 [

fqC(X) :�(';D [ftig) j ti;B
0g

7. else

8. D := D [ftig

9. continue while

10. endfor

11. return P0 � f�g

12. endwhile

13. Mark � as done.

14. return P

Given a Prolog program P and a permissible query

G we obtain the corresponding annotated program by

replacing every clause � of the form q(X) :- B by the

clause qtrue(X) :- ('; �) j B0 where ' is the clause con-

dition of �, and B0 is obtained from B by annotating

the occurrence of all user-de�ned predicates with the

context true. We also add a clause topC(X) :- ptrue(X)

where top does not appear in P and G is the instan-

tiation of p(X) under context C1. To avoid clutter,

in the illustrations of the paper, we explicitly specify

the context C of a specialized predicate pC in words.

Also, we avoid showing the clause of the form topC(X)

:- ptrue(X) that we add while constructing any anno-

tated program.

Now, in algorithm IntroduceTest , the function Select

takes the current context C as an argument so that it

can return only tests that can be evaluated in this con-

text. It also takes the set D of tests that we have

already attempted to introduce into this clause so as

to avoid returning the same test over and over. We

do not specify an implementation of Select here ,-

IntroduceTest is parameterized w.r.t. to this function,

enabling us to change the behavior of IntroduceTest by

changing Select . The conditions that need to be sat-

is�ed by Select in order to provide formal guarantees

are discussed in section 2.4. In general, Select may not

return a single test from the clause condition, but a

set of tests ft1; : : : ; tng. We then need to generate n

1The context of all other predicates will be propagated in the

course of our transformation.

specialized clauses from the current clause such that

ti is introduced into the ith specialization (polyvariant

specialization: done in loop at lines 4{10). If ti can be

absorbed, then the new (specialized) clause is added to

the current program P0 at line 6. Otherwise, if any of

the n tests cannot be absorbed then we try to go back

and select alternative tests. To ensure that a test that

has been selected once for introduction is not selected

again, we update D at lines 6 and 8.

To illustrate IntroduceTest , consider the program

Example 2 ans(Y,Z) :- costly(Y,Z), q(Y).

q(b).

q(c).

Let the annotated version of the �rst clause be

ans(Y; Z) : � (Y = b _ Y = c; �) j costly(Y; Z); q(Y):

and also assume that ans is called with its �rst argu-

ment ground, denoted Y 2 g. Then Select(Y = b_Y =

c; Y 2 g; �) returns fY = b; Y = cg. Observe that,

based on the context, both the tests can be evaluated

at the time ans is invoked. The clause generated by

introduction of Y=b is:

ans(Y, Z) :- (Y=b _ Y=c, fY=bg) |

Y = b, costly(Y,Z), q1.

where q1 is obtained by specializing q given that its

argument is b. Note that in this specialized version,

we can avoid the test Y=b that would otherwise have

been performed in the body of q. Thus the cost of

promoting the test has been absorbed. Similarly, the

introduction of Y=c yields the specialized clause:

ans(Y, Z) :- (Y=b _ Y=c, fY=cg) |

Y = c, costly(Y,Z), q2.

where we have again been able to eliminate the test

Y=c that would have been performed in evaluating q.

Thus we can absorb the newly introduced test along

both branches of computation, so we would retain these

transformed clauses and discard the original clause.

2.3 Algorithm AbsorbTest

The purpose of AbsorbTest is to specialize the body

of a clause and the literals contained in the clause.

The specialization is based on the context information

C that captures information that is known about the

variables appearing in the clause. While performing

specialization, we check if some of the tests T that

have been newly introduced before this clause can be

eliminated in the specialized versions. It returns the

transformed program and the subset of tests that have

not been absorbed in this manner.

AbsorbTest is de�ned using the equations below. Its

structure is simple: it loops through the literals in the

body of the clause, delegating the task of specializing

each of these literals to the function AbsorbLit . The

set of tests yet to be absorbed, the current context and

program are all \updated" as we specialize the liter-

als, by threading these arguments through successive

invocations.

AbsorbTest(nil; C;T;P) = (nil; C;T;P)

AbsorbTest((r(X);B); C;T;P) =

Let (r0(X
0
); C0;T0;P0) =

AbsorbLit(r(X); project(C; X);T;P)

(B0; C00;T00;P00) =

AbsorbTest(B; C0 ^ C;T0;P0)

in ((r0(X
0
);B0); C00;T00;P00)

The function AbsorbLit takes four arguments : (a)

the literal r(X) to be specialized, (b) the context in

which this literal will be evaluated. This context is ob-

tained by projecting the current context in AbsorbTest

onto the argumentsX of r, (c) the tests T yet to be ab-

sorbed through specialization, and (d) the current pro-

gram P It returns the specialized literal r0(X
0
), which

refers to a specialized version of r. It also returns a

new context that captures the conditions that hold af-

ter the evaluation of this literal, the subset T0 of T

that were not absorbed through the specialization, and

the transformed program P0.

The �rst equation de�ning AbsorbLit (see below)

deals with the case when the literal to be specialized

is a built-in. The function Remove is used to simplify

(or even eliminate) this built-in based on the current

context. If this simpli�cation results in cost reductions

that can o�set the cost of some of the promoted tests

T, such tests are removed from T by Remove to get

the set T0 of tests that are yet to be absorbed. Finally,

the context C is updated to indicate the fact that the

test built in(X) has been performed.

AbsorbLit(built in(X); C;T;P) =

(built in0(X
0
); C ^ (built in(X));T0;P)

where (built in0(X
0
);T0) = Remove(T; built in(X); C)

The second equation for AbsorbLit (see below) is ap-

plicable when r is user-de�ned. In this case, we �rst

identify the subset of clauses de�ning r that are appli-

cable in the current context, and specialize their bodies

using the function AbsorbClauses . We then introduce

a new version rC of r whose de�nition is given by these

bodies. Its arguments are computed by using a func-

tion called depend. Intuitively, the arguments of rC

consist of all variables Y for which the following con-

ditions hold: (a) instantiation of Y depends on some

variable in X whenever C is true (b) Y is used deeper

down in at least one of the computation paths of r(X).

Hence in the specialized version rC , we try to pass as

arguments only unexamined subterms of the structures

which appear as arguments of r2.

AbsorbLit(r(X); C;T;P) =

Let R be the clauses de�ning r whose

clause conditions are compatible with C

(R0; C0;T0;P0) = AbsorbClauses(R; C;T;P)

X
0
=
S
R02R0 depend(X; C; R0),

in (rC(X
0
); C0;T0;P0 [frC(X

0
) : �R0jR0 2 R0g)

To complete the algorithm, we now provide the rules

for AbsorbClauses . It iterates through all of the clauses

in its �rst argument, and specializes the body of each

of them using AbsorbTest .

AbsorbClauses([]; C;T;P) = ([]; false; false;P).

AbsorbClauses([RjR]; C;T;P) =

LetN be the neck of R and B its body

(B0; C0;T0;P0) = AbsorbTest(B; C;T;P)

(R0; C00;T00;P00) = AbsorbClauses(R; C;T;P0)

R0 = NjB0

in ([R0jR0]; C0 _ C00;T0 [T00;P00)

Note that AbsorbTest returns the new context that

holds at the end of evaluating the specialized clause,

and also the tests that have not yet been absorbed.

The context that holds after evaluation of any one of

these specialized clauses is simply the disjunction of

the contexts returned by AbsorbTest for each of the

clauses. Similarly, the tests yet to be absorbed at the

end of AbsorbClauses includes all the tests that may

not be absorbed in one of the clauses.

2.4 Requirements on Select and Remove

Select: Whenever Select('; C;D) returns a set of

tests ft1; :::; tng the following conditions must hold:

Soundness of Specialization: ')
Wn

i=1 ti

Avoiding choice points : 8� that satisfy C 8�;
 that

are instances of � 8i 6= j :(ti� ^ tj
)

Nonredundancy: 8i [(' ^ C ^ ti) is satis�able] ^ [ti 62

D] ^ [C 6) ti]

The �rst condition ensures that the new tests intro-

duced do not prune away success paths and is thus

required for soundness. Given any substitution � that

satis�es the context C, the second condition ensures

that it is impossible to instantiate � one way to take

the ith specialized clause, backtrack, and then come

back to take another jth specialized clause. The third

condition ensures that we do not select redundant tests

that are (a) incompatible with the clause condition and

2A subterm which has already been examined is passed only

if it is used deeper down. This is to avoid the overhead of redun-

dant term construction.

Benchmarks CPU time CPU time CPU time Speedup Code-size

(Original (after naive (Final increase

pgm.) insertion) pgm.)

LL(2) 20.18 � 30,000 14.32 1.41 1.68

ListtoAtom 10.15 9.37 8.24 1.23 1.67

TreeParser 23.86 8.69 2.44 9.78 2.13

Quicksort 24.1 19.13 18.55 1.3 2.18

DNA Parser 67.62 19.37 3.49 7.5

Table 1: Performance improvement through determinacy extraction

the context, or (b) have already been selected, or (c)

implied by the context.

In the actual implementation, we can satisfy sound-

ness of specialization by choosing a conjunct i from

each conjunction in ' (the clause condition ' is main-

tained in disjunctive normal form). Avoidance of

choice points is satis�ed by choosing tests on variables

whose inferred modes are ground and by also ensuring

that 8i; j, i ^ j is not satis�able if i 6= j.

Remove: Whenever Remove(T; b(X); C) returns

(b0(X
0
);T0) (where b and b0 are program builtins) the

following conditions hold:

Soundness of Removal: T0 � T

Soundness of Specialization: 8� that satisfy C

(b0(X
0
)� , b(X)�)

Soundness of Test Absorption: 8�C[�]) 8�((� �

�) ^ (�) ti))) Cost(T; �) � Cost(T0; �) �

Cost(b(X); �)

The �rst requirement is needed for soundness. The sec-

ond requirement ensures that provided the context C

is true, specialization of the builtin produces another

builtin which succeeds or fails under the same circum-

stances. In the third requirement, ti denotes the most

recently introduced test. This requirement ensures that

our estimate of costsavings (i.e., di�erence in costs of T

andT0) correctly captures the gains achieved by replac-

ing b with b0 for any possible substitution � compatible

with C.

2.5 Experimental Results

We implemented a prototype of SNIP using the XSB

tabled logic programming system [26]. The annotated

program (input to SNIP) is automatically generated

by an implementation of the analysis technique of [5].

We encoded the rules of AbsorbTest , AbsorbLit and

AbsorbClauses as a logic program, and used the tabled

resolution strategy of XSB to directly compute the

�xed points of these equations.

Table 1 summarizes the timings obtained before and

after our program transformation was applied, as well

as the increase in code size. We also indicate the tim-

ings obtained by naively introducing tests from the

clause conditions into the program clauses. All mea-

surements were taken using XSB version 1.6.1 on a

SPARC Station 20 with 64 MB main memory running

SunOS 5.3. All the timings given below are in CPU

seconds.

LL(2) is a parsing program obtained from the DCG

speci�cation of the language (aa)n(ab)n. Treeparser

is a recursive descent parser over tree grammars.

ListtoAtom is a predicate taken from the XSB compiler

that re
ects the structure of Example 1. The DNA

Parser [1], is a Prolog program for identifying the `in-

trons ' or coding regions from a given DNA sequence3.

Observe from the table that SNIP improves the perfor-

mance of this program by more than a factor of three.

This indicates that even while giving assurances about

the worst case behavior, SNIP can e�ectively achieve

early pruning for large programs.

3 Correctness and Performance Guar-

antees

The proof of correctness and performance guarantee

are based on a mapping from the SLD-derivations of

the original program to those of the transformed pro-

gram. This mapping ensures that (a) the transformed

program computes the same answers as the original

program, (b) the answers are computed in the same

order, and (c) every successful derivation in the trans-

formed program is no longer than the corresponding

derivation in the original program. In order to formally

state these criteria, we develop the notion of Resolution

trees which are SLD trees with cost annotations.

De�nition 6 (Resolution Tree) The resolution tree

of a goal G w.r.t. a program P is the SLD-tree for G

with the following annotations: (i) Each leaf of the

tree is either an empty node (denoting success) or a

3The program was given to us by Jacques Cohen of Brandeis

University.

fail node. and (ii) Any edge N ! N 0 from node N

to node N 0 is labelled by the operations (e.g., builtins

and uni�cation operations) performed in going from N

to N 0. For a root-to-leaf path E, leaf(E) denotes its

leaf and cost(E) denotes the sum of the costs of all the

operations on it.

The notation Succ(P; G) denotes the set of all success-

ful root-to-leaf paths in the resolution tree.

Note that Prolog evaluation of the goal G would cor-

respond to a preorder traversal of the resolution tree.

Our concept of a sound program transformation is

based on the notion of similarity mapping:

De�nition 7 (Similarity Mapping)

A similarity mapping I
(P0;G0)

(P;G)
is a mapping from

Succ(P; G) to Succ(P0; G0) (where G0 is a special-

ization of G) s.t. : (a) I
(P0;G0)

(P;G)
is one-to-one and

onto, (b) 8E 2 Succ(P; G), the answer substitu-

tions of E and I
(P0;G0)

(P;G)
(E) are identical, and (c)

8E1; E2 2 Succ(P; G), if i leaves are encountered be-

tween leaf(E1) and leaf(E2) during a preorder traver-

sal of the resolution tree of G in P, then at most i

leaves are encountered between leaf(I
(P0;G0)

(P;G)
(E1)) and

leaf(I
(P0;G0)

(P;G)
(E2)) in a preorder traversal of the reso-

lution tree of G0 in P0.

Soundness of transformation can be formally stated in

terms of similarity mapping :

De�nition 8 (Sound Transformation) A program

P0 is a sound transformation of P for a goal G i� there

exists the mapping I
(P

0;G)

(P;G)
.

That the transformed program P0 is no worse than P

can be formalized using the notion of:

De�nition 9 (Bounded Success Paths) Let P0 be

a sound transformation of P for a goal G. This trans-

formation is said to bound the success paths in P de-

noted P0 �G P, i� the following condition holds :

8E 2 Succ(P; G), cost(I
(P0;G)

(P;G)
(E)) � cost(E).

We now proceed to establish that our transformation

meets the above mentioned conditions for soundness

and performance improvement. conditions. The main

component of our proof is in establishing these results

for AbsorbTest, AbsorbLit and AbsorbClauses. We

make use of the usual �xed point construction approach

for these proofs.

Termination: The termination of the transforma-

tion algorithm is guaranteed by the following theorem

(proof appears in [20]).

Theorem 1 Let P be any annotated logic program.

Then the computation Transform(P) terminates in a

�nite number of steps.

Performance Guarantee: We establish that a test

that is successfully introduced into a body, will never

be repeated deeper down.

Theorem 2 (Performance Guarantee) Let P be

an annotated program with a permissible query G and

P0 = Transform(P). Then P0 �G P

Proof sketch: Since our algorithm terminates, there-

fore P0 is obtained from P by �nite number of invoca-

tions of IntroduceTest, i.e., there is a �nite sequence

P0, P1, ... , Pn where : P � P0, P
0 � Pn, and Pi+1 =

IntroduceTest(�;Pi), where � is a clause in Pi. Then,

it is su�cient to prove that 8qC 2 PredSet(Pi) and 8�

that satisfy C, Pi+1 �qC(X)�
Pi, where PredSet(Pi)

denotes the set of user-de�ned predicates in Pi. As-

suming � � qC(X) : � (';D) j B, qC is the only pred-

icate in PredSet(Pi), whose success paths are altered.

We then prove by induction (on the number of �xed

point iterations) that whenever AbsorbTest(B; C;T;P)

returns (, ,nil,), the cost of all the tests inT have been

absorbed. Hence the cost of root-to-leaf success paths

of qC also do not increase in Pi+1. The complete proof

appears in [20].

4 Related Work

Shallow determinacy: The works of Carlsson [3],

Hickey and Mudambi [11], Van Roy et al. [19], and

Zhou et al. [27] eliminate shallow backtracking| back-

tracking due to failure caused by a built-in literal in

the beginning of a clause body. Typically, these tech-

niques perform built-in operations (present as the �rst

literals in the body) as a part of indexing for selecting

clauses at each resolution step. These techniques do

not propagate, nor can exploit, information not imme-

diately available in the clause being optimized.

Cardinality-based techniques: Mellish [16] and

Sawamura and Takeshima [24] describe analysis meth-

ods, based on cuts in the program, to determine if

a query to a predicate has more than one solution.

Debray and Warren [8] describe a technique to de-

tect functional predicates in a program| predicates

that have at most one answer to every query. Cardi-

nality analysis by Braem et al. [2] extends function-

ality analysis by estimating the number of answers

to queries (instead of whether is more or less than

1). The determinacy analysis implemented in Mer-

cury compiler [10] also estimates the cardinality of each

query. Non-failure analysis proposed by Debray and

Hermenegildo [7] determines the set of goals that can-

not fail: i.e., have at least one answer. Mutual exclu-

sion analysis described by Post [18] infers predicates

with the property that at most one clause becomes ap-

plicable at clause selection time.

All the above methods attempt to classify the pred-

icates in a program into multiple categories, such as

functional and non-functional. The cardinality infor-

mation can be used for automatic cut-insertion to re-

duce backtracking. However, when a predicate cannot

be inferred as determinate, no further optimization is

possible.

Necessary condition-based techniques: Tech-

niques proposed by Sato and Tamaki [23], and Dawson

et al. [5] infer, at compile-time, the necessary condi-

tions for clauses to succeed. However, they do not

address the central problem underlying SNIP: of ef-

fectively optimizing programs based on this informa-

tion. A similar approach is used to optimize evaluation

of constraint logic programs; detailed comparison with

these works is given later in this section.

Note that the strategy to eagerly prune failure paths,

by its very nature, enables optimization of programs

even when none of the predicates are strictly determi-

nate. Moreover, these techniques propagate informa-

tion from deeper levels of the search tree in order to

prune failure paths early, and hence can be naturally

generalized to include various cardinality-based analy-

ses described above.

\Early Failure" in CLP: Necessary condition-

based techniques have been used in the context of CLP,

to optimize operations over the constraint store [12, 15].

Kemp and Stuckey [12] describe a technique to push

constraint selections to achieve early failure by extend-

ing the earlier work of Ramakrishnan and Srivastava

[25]. They also use techniques proposed by Mariott

and Stuckey [15] to remove redundant operations due

to the newly introduced constraints.

The techniques employed in [12, 15] start with a

source program, generate an intermediate program in

which constraints are eagerly introduced and �nally

eliminate constraints that can be shown to be redun-

dant. Note that introduction of constraints may add

operations that were not present in the original pro-

gram in the �rst place, and hence redundancy removal

does not provide any assurance about the relative per-

formance of the resultant program. In contrast, SNIP

takes a conservative approach where tests are intro-

duced only if they can be paid back by the elimination

of equivalent tests deeper down in the search tree. It

must, however, be noted that, in the evaluation of CLP

programs, the gains achieved through early testing can

be substantial. On the other hand our conservative ap-

proach is more appropriate for top-down evaluation of

Prolog programs, since redundant testing is indeed a

factor that can lead to performance degradation.

Moreover, unlike in these works, the necessary con-

ditions considered by SNIP may contain disjunctions,

which enables more aggressive optimization in some

cases. For instance, consider the program in Exam-

ple 2. The condition for success of q(Y) is given by

Y = b_Y = c. The polyvariant specialization of SNIP

generates two di�erent versions of q/1. Consequently,

we can promote the tests on Y, and avoid the unnec-

essary computation associated with costly/2. In con-

trast, the techniques described in [12, 15] consider only

the glb of call and answer constraints, and hence do

not promote the tests on Y.

Early Pruning by Partial Evaluation: Some of

the e�ects of eagerly pruning failure-bound computa-

tions can also be achieved by partial evaluation. Con-

sider a generic partial evaluator such asMixtus [21, 22].

Mixtus's \left propagation of bindings" converts say

p(X,X), X = term to p(term,term). Note that this

operation corresponds to our notion of test promotion.

However, partial evaluators do not consider the rela-

tive costs of the resultant program. For example, con-

sider the following predicate get/4, and its partial eval-

uation with (ground,ground,free,free) as the calling

mode:

get(Z1,Z2,X,Y) :- X = Y, X = f(Z1), Y = f(Z2).

=)

get(A,A,f(A),f(A)).

While the original de�nition of get/4 shares the answer

substitution for X and Y, the modi�ed de�nition results

in building two di�erent (but equivalent) terms.

Moreover, most of the current partial evalua-

tion techniques, including conjunctive partial evalua-

tion [13] specialize each computation path in isola-

tion. This restricts the class of programs that can be

optimized4, as explained below. Consider, for instance,

the program in Example 1 (page 2). Note that, for

any call to p/1 with a ground argument, at most one

of the two clauses succeed. However, reasoning about

this mutual exclusion needs ability to combine the con-

ditions for success of di�erent computation paths. In

contrast to SNIP, partial evaluation techniques cannot

extract and exploit this information.

5 Discussion
Promoting early failure of unsuccessful computa-

tions is a powerful optimization for enhancing deter-

ministic evaluation of logic programs. In this paper, we

4Recent extensions by Pettorossi et al. [17] relax this re-

striction somewhat by allowing disjunctive de�nitions of newly

de�ned predicates.

have presented SNIP, a technique to e�ectively prune

failure paths by using necessary conditions. Below we

discuss some possible extensions and re�nements.

First of all, while SNIP takes into account the costs

of any test introduced, it does not consider the bene�ts

accrued by performing those tests, e.g., possible elimi-

nation of choice-points. The underlying cost model can

be easily extended to account for such bene�ts as well.

Secondly, we considered only those tests that do not

bind program variables. Promoting operations that

create variable bindings can in general increase the cost

of other operations. Note that, to reason about relative

costs of original and transformed programs when costs

of individual operations can increase, we need upper

bound estimates of the number of times loops in the

program will be traversed. Such estimates can be ob-

tained by adapting techniques from cost analysis [6].

Integrating the results of such analyses with SNIP is a

topic of further research.

Finally, since SNIP performs polyvariant specializa-

tion, the code-size of the transformed program can blow

up. (Observe the code size of the optimized DNA pro-

gram in Section 2.5.) However, a specialized version

of a predicate is generated for each context. In many

cases, we can bound the number of possible contexts.

For instance, for LL(k) grammars, the number of con-

texts are limited by the size of the parsing table. Thus

using SNIP we can obtain a deterministic parser for

an LL(k) grammar with code space linear in the size

of the LL(k) parsing table. Furthermore, in the �xed

point computation of AbsorbTest , we obtain a sound

program at the end of every iteration, and hence it is

straightforward to impose limits on code size. Develop-

ing more sophisticated techniques that trade o� code

space for time is an open problem.

References
[1] O. Baby and J. Cohen. DNA parsing: a multi-pass

constraint-based approach. JFPLC, 1996. Available at

http://www.cs.brandeis.edu/�obaby.

[2] C. Braem, B. Le Charlier, S. Modart, and P. Van Henten-

ryck. Cardinality analysis of Prolog. In International Logic

Programming Symposium (ILPS), pages 457{471, 1994.

[3] M. Carlsson. On the e�ciency of optimizing shallow back-

tracking in compiled Prolog. In International Conference

on Logic Programming (ICLP), 1989.

[4] S. Dawson. Theory and practice of deterministic evaluation

of logic programs. PhD thesis, State University of New York

at Stony Brook, December 1995.

[5] S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, and

R.C. Sekar. Extracting determinacy in logic programs. In

ICLP, pages 424{438, 1993.

[6] S. Debray and N. Lin. Cost analysis of logic programs. ACM

TOPLAS, 15(5):826{875, November 1993.

[7] S. Debray, P. Lopez-Garcia, and M. Hermenegildo. Non-

failure analysis of logic programs. In ICLP, pages 48{62,

1997.

[8] S. Debray and D.S. Warren. Functional computations in

logic programs. ACM TOPLAS, 11(3):451{481, July 1989.

[9] R. Giacobazzi and L. Ricci. Detecting determinate compu-

tations by bottom-up abstract interpretation. In European

Symposium on Programming, pages 167{181, 1992.

[10] F. Henderson, Z. Somogyi, and T. Conway. Determin-

ism analysis in the Mercury compiler. In Nineteenth Aus-

tralasian Computer Science Conference, pages 337{346,

1996.

[11] T. Hickey and S. Mudambi. Global compilation of Prolog.

J. Logic Prog., 7:193{230, 1989.

[12] D.B. Kemp and P.J. Stuckey. Optimizing bottom-up evalua-

tion for constraint queries. J. Logic Prog., 26:1{30, January

1996.

[13] M. Leuschel, D. De Schreye, and A. de Waal. A conceptual

embedding of folding into partial deduction : Towards a

maximal integration. In Joint International Conference and

Symposium on Logic Programming, pages 319{332, 1996.

[14] J.W. Lloyd. Foundations of Logic Programming, Second,

Extended Edition. Springer-Verlag, 1993.

[15] K. Mariott and P.J. Stuckey. The 3 R's of optimizing con-

straint logic programs: Re�nement, Removal and Reorder-

ing. In POPL, pages 334{344, 1993.

[16] C.S. Mellish. Some global optimizations for a Prolog com-

piler. J. Logic Prog., 2:43{66, 1985.

[17] A. Pettorossi, M. Proietti, and S. Renault. Reducing non-

determinism while specializing logic programs. In POPL,

pages 414{427, 1997.

[18] K. Post. Mutually exclusive rules in logic programming. In

ILPS, pages 472{486, 1994.

[19] P. Van Roy, B. Demoen, and Y.D. Willems. Improving

the execution speed of compiled Prolog with modes, clause

selection and determinism. In TAPSOFT'87, pages 111{

125, March 1987.

[20] A. Roychoudhury, C. R. Ramakrishnan, I. V. Ramakrish-

nan, and R. C. Sekar. Making success out of early failures.

Technical report, State University of New York at Stony

Brook, 1997.

[21] D. Sahlin. The mixtus approach to automatic partial eval-

uation of full Prolog. In North American Conference on

Logic Programming, 1990.

[22] D. Sahlin. An Automatic Partial Evaluator for Full Prolog.

PhD thesis, Swedish Institute of Computer Science, March

1991.

[23] T. Sato and H. Tamaki. Enumeration of success patterns in

logic programs. Theoretical Computer Science, 34:227{240,

1984.

[24] H. Sawamura and T. Takeshima. Recursive unsolvability of

determinacy, solvable cases of determinacy and their appli-

cations to Prolog optimization. In ICLP, pages 200{207,

1985.

[25] D. Srivastava and R. Ramakrishnan. Pushing constraint

selections. J. Logic Prog., 16:361{414, 1993.

[26] XSB. The XSB logic programming system v1.7, 1997. Avail-

able from http://www.cs.sunysb.edu/�sbprolog.

[27] N. Zhou, T. Takagi, and K. Ushijima. A matching tree

oriented abstract machine for Prolog. In ICLP, pages 159{

173, 1990.

